Open Access
Research (Published online: 18-04-2017)
7. The effects of quercetin on microRNA and inflammatory gene expression in lipopolysaccharide-stimulated bovine neutrophils
Phongsakorn Chuammitri, Suphakit Srikok, Duanghathai Saipinta and Sukolrat Boonyayatra
Veterinary World, 10(4): 403-410

Phongsakorn Chuammitri: Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
Suphakit Srikok: Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
Duanghathai Saipinta: Dairy Cow Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Mae On, Chiang Mai 50130, Thailand.
Sukolrat Boonyayatra: Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.

doi: 10.14202/vetworld.2017.403-410

Share this article on [Facebook] [LinkedIn]

Article history: Received: 20-09-2016, Accepted: 28-02-2017, Published online: 18-04-2017

Corresponding author: Phongsakorn Chuammitri


Citation: Chuammitri P, Srikok S, Saipinta D, Boonyayatra S (2017) The effects of quercetin on microRNA and inflammatory gene expression in lipopolysaccharide-stimulated bovine neutrophils, Veterinary World, 10(4): 403-410.

Aim: To investigate gene expression of microRNA (miRNA) milieus (MIRLET7E, MIR17, MIR24-2, MIR146A, and MIR181C), inflammatory cytokine genes (interleukin 1β [IL1B], IL6, CXCL8, and tumor necrosis factor [TNF]), and the pathogen receptor toll-like receptor (TLR4) in bovine neutrophils under quercetin supplementation.

Materials and Methods: Isolated bovine neutrophils were incubated with bacterial lipopolysaccharide under quercetin treatment or left untreated. Real-time polymerase chain reaction was performed to determine the expression of the miRNAs and messenger RNA (mRNA) transcripts in neutrophils.

Results: Quercetin-treated neutrophils exhibited a remarkable suppression in MIR24-2, MIR146A, and MIR181C expression. Similarly, mRNA expression of IL1B, IL6, CXCL8, TLR4, and TNF genes noticeably declined in the quercetin group. Many proinflammatory genes (IL1B, IL6, and CXCL8) and the pathogen receptor TLR4 had a negative correlation with MIR146A and MIR181C as revealed by Pearson correlation.

Conclusion: Interaction between cognate mRNAs and miRNAs under quercetin supplementation can be summarized as a positive or negative correlation. This finding may help understand the effects of quercetin either on miRNA or gene expression during inflammation, especially as a potentially applicable indicator in bovine mastitis.

Keywords: bovine neutrophil, gene expression, microRNA, quercetin.


1. Seegers, H., Fourichon, C. and Beaudeau, F. (2003) Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res., 34(5): 475-491. [Crossref] [PubMed]

2. Bradley, A.J. (2002) Bovine mastitis: An evolving disease. Vet. J., 164(2): 116-128. [Crossref]

3. Viguier, C., Arora, S., Gilmartin, N., Welbeck, K. and O'Kennedy, R. (2009) Mastitis detection: Current trends and future perspectives. Trends Biotechnol., 27(8): 486-493. [Crossref] [PubMed]

4. Bartel, DP. (2009) MicroRNAs: Target recognition and regulatory functions. Cell, 136(2): 215-233. [Crossref] [PubMed] [PMC]

5. Hammond, S.M. (2015) An overview of microRNAs. Adv. Drug Deliv. Rev., 87: 3-14. [Crossref] [PubMed] [PMC]

6. Srikok, S. and Chuammitri, P. (2016) MicroRNAs as a potential biomarker in bovine mastitis. Chiang Mai Vet. J., 14(1): 1-12.

7. Coutinho, L.L., Matukumalli, L.K., Sonstegard, T.S., Van Tassell, C.P., Gasbarre, L.C., Capuco, A.V. and Smith, T.P. (2007) Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues. Physiol. Genomics, 29(1): 35-43. [Crossref] [PubMed]

8. Fatima, A. and Morris, D.G. (2013) MicroRNAs in domestic livestock. Physiol. Genomics, 45(16): 685-696. [Crossref] [PubMed]

9. Gu, Z., Eleswarapu, S. and Jiang, H. (2007) Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett., 581(5): 981-988. [Crossref] [PubMed]

10. Fatima, A., Lynn, D.J., O'Boyle, P., Seoighe, C. and Morris, D. (2014) The miRNAome of the postpartum dairy cow liver in negative energy balance. BMC Genomics, 15(1): 279. [Crossref]

11. Buza, T., Arick, M., Wang, H. and Peterson, D.G. (2014) Computational prediction of disease microRNAs in domestic animals. BMC Res. Notes, 7(1): 403. [Crossref]

12. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O'Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B. and Tewari, M. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA, 105(30): 10513-10518. [Crossref] [PubMed] [PMC]

13. Cao, H.H., Cheng, C.Y., Su, T., Fu, X.Q., Guo, H., Li, T., Tse, A.K.W., Kwan, H.Y., Yu, H. and Yu, Z.L. (2015) Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Mol. Cancer, 14(1): 103. [Crossref]

14. Angeloni, C. and Hrelia, S. (2012) Quercetin reduces inflammatory responses in LPS-stimulated cardiomyoblasts. Oxid. Med. Cell. Longev., DOI: 10.1155/2012/837104. [Crossref]

15. Boots, A.W., Haenen, G.R. and Bast, A. (2008) Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol., 585(2): 325-337. [Crossref] [PubMed]

16. Chuammitri, P., Amphaiphan, C. and Nojit, P. (2015) In vitro modulatory effects of quercetin on bovine neutrophil effector functions. Thai J. Vet. Med., 45(1): 63-72.

17. Hakkinen, S.H., Karenlampi, S.O., Heinonen, I.M., Mykkanen, H.M. and Torronen, A.R. (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem., 47(6): 2274-2279. [Crossref]

18. Ma, J.Q., Li, Z., Xie, W.R., Liu, C.M. and Liu, S.S. (2015) Quercetin protects mouse liver against CCl 4-induced inflammation by the TLRr2/4 and MAPK/NF-?B pathway. Int. Immunopharmacol., 28(1): 531-539. [Crossref] [PubMed]

19. Liu, J., Li, X., Yue, Y., Li, J., He, T. and He, Y. (2005) The inhibitory effect of quercetin on IL-6 production by LPS-stimulated neutrophils. Cell. Mol. Immunol., 2(6): 455-460. [PubMed]

20. Kim, Y.J. and Park, W. (2016) Anti-inflammatory effect of quercetin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Molecules, 21(4): 450. [Crossref] [PubMed]

21. Li, C., Zhang, W.J. and Frei, B. (2016) Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol., 9: 104-113. [Crossref]

22. Dilda, F., Gioia, G., Pisani, L., Restelli, L., Lecchi, C., Albonico, F., Bronzo, V., Mortarino, M. and Ceciliani, F. (2012) Escherichia coli lipopolysaccharides and Staphylococcus aureus enterotoxin B differentially modulate inflammatory microRNAs in bovine monocytes. Vet. J., 192(3): 514-516. [Crossref] [PubMed]

23. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 25(4): 402-408. [Crossref] [PubMed]

24. Boesch-Saadatmandi, C., Loboda, A., Wagner, A.E., Stachurska, A., Jozkowicz, A., Dulak, J., Doring, F., Wolffram, S. and Rimbach, G. (2011) Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: Role of miR-155. J. Nutr. Biochem., 22(3): 293-299. [Crossref] [PubMed]

25. Cho, S.Y., Park, S.J., Kwon, M.J., Jeong, T.S., Bok, S.H., Choi, W.Y., Jeong, W.I., Ryu, S.Y., Do, S.H., Lee, C.S., Song, J.C. and Jeong, K.S. (2003) Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-?B pathway in lipopolysaccharide-stimulated macrophage. Mol. Cell. Biochem., 243(1-2): 153-160. [Crossref]

26. Byun, E.B., Yang, M.S., Choi, H.G., Sung, N.Y., Song, D.S., Sin, S.J. and Byun, E.H. (2013) Quercetin negatively regulates TLR4 signaling induced by lipopolysaccharide through tollip expression. Biochem. Biophys. Res. Commun., 431(4): 698-705. [Crossref] [PubMed]

27. Comalada, M., Camuesco, D., Sierra, S., Ballester, I., Xaus, J., Galvez, J. and Zarzuelo, A. (2005) In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-?B pathway. Eur. J. Immunol., 35(2): 584-592. [Crossref] [PubMed]

28. Chang, Y.C., Tsai, M.H., Sheu, W.H., Hsieh, S.C. and Chiang, A.N. (2013) The therapeutic potential and mechanisms of action of quercetin in relation to lipopolysaccharide-induced sepsis in vitro and in vivo. PloS One, 8(11): e80744. [Crossref]

29. Cho, Y.J. and Kim, S.J. (2013) Effect of quercetin on the production of nitric oxide in murine macrophages stimulated with lipopolysaccharide from Prevotella intermedia. J. Periodontal. Implant Sci., 43(4): 191-197. [Crossref] [PubMed] [PMC]

30. Nahid, M.A., Satoh, M. and Chan, E.K. (2015) Interleukin 1β-responsive microRNA-146a is critical for the cytokine-induced tolerance and cross-tolerance to toll-like receptor ligands. J. Innate Immun., 7(4): 428-440. [Crossref] [PubMed] [PMC]

31. Nahid, M.A., Pauley, K.M., Satoh, M. and Chan, E.K.L. (2009) MiR-146a is critical for endotoxin-induced tolerance. J. Biol. Chem., 284(50): 34590-34599. [Crossref] [PubMed] [PMC]

32. Bazzoni, F., Rossato, M., Fabbri, M., Gaudiosi, D., Mirolo, M., Mori, L.,Tamassia, N., Mantovani, A., Cassatella, M.A. and Locati, M. (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. USA, 106(13): 5282-5287. [Crossref] [PubMed] [PMC]

33. Pathak, S., Grillo, A.R., Scarpa, M., Brun, P., D'Inca, R., Nai, L., Banerjee, A., Cavallo, D., Barzon, L., Palu, G., Sturniolo, G.C., Buda, A. and Castagliuolo, I. (2015) MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp. Mol. Med., 47(5): e164. [Crossref]

34. Androulidaki, A., Iliopoulos, D., Arranz, A., Doxaki, C., Schworer, S., Zacharioudaki, V., Margioris, A.N., Tsichlis, P.N. and Tsatsanis, C. (2009) The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity, 31(2): 220-231. [Crossref] [PubMed] [PMC]

35. Singh, J., Mukhopadhyay, C., Kaur, S., Malhotra, P., Sethi, R. and Choudhary, R. (2016) Identification of the microRNA repertoire in TLR-ligand challenged bubaline PBMCs as a model of bacterial and viral infection. PloS One, 11(6): e0156598. [Crossref]

36. How, C.K., Hou, S.K., Shih, H.C., Huang, M.S., Chiou, S.H., Lee, C.H. and Juan, C.C. (2015) Expression profile of microRNAs in gram-negative bacterial sepsis. Shock, 43(2): 121-127. [Crossref] [PubMed]

37. Foster, P.S., Plank, M., Collison, A., Tay, H.L., Kaiko, G.E., Li, J., Johnston, S.L., Hansbro, P.M., Kumar, R.K., Yang, M. and Mattes, J. (2013) The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol. Rev., 253(1): 198-215. [Crossref] [PubMed]

38. Nahid, M.A., Benso, L.M., Shin, J.D., Mehmet, H., Hicks, A. and Ramadas, R.A. (2016) TLR4, TLR7/8 agonist-induced miR-146a promotes macrophage tolerance to MyD88-dependent TLR agonists. J. Leukoc. Biol., DOI: 10.1189/jlb.2A0515-197R. [Crossref]

39. Lindsay, M.A. (2008) MicroRNAs and the immune response. Trends Immunol., 29(7): 343-351. [Crossref] [PubMed]

40. Taganov, K.D., Boldin, M.P., Chang, K.J. and Baltimore, D. (2006) NF-?B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA, 103(33): 12481-12486. [Crossref] [PubMed] [PMC]

41. Galicia, J.C., Naqvi, A.R., Ko, C.C., Nares, S. and Khan, A.A. (2014) MiRNA-181a regulates toll-like receptor agonist-induced inflammatory response in human fibroblasts. Genes Immun., 15(5): 333-337. [Crossref] [PubMed] [PMC]

42. Zhang, W., Shen, X., Xie, L., Chu, M. and Ma, Y. (2015) MicroRNA-181b regulates endotoxin tolerance by targeting IL-6 in macrophage RAW264. 7 cells. J. Inflamm., 12(1): 18. [Crossref] [PubMed] [PMC]