Open Access
Research (Published online: 20-08-2017)
20. Beta-lactamase antimicrobial resistance in Klebsiella and Enterobacter species isolated from healthy and diarrheic dogs in Andhra Pradesh, India
N. Mohammad Sharif, B. Sreedevi, R. K. Chaitanya and D. Sreenivasulu
Veterinary World, 10(8): 950-954

N. Mohammad Sharif: Department of Veterinary Microbiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India.
B. Sreedevi: Department of Veterinary Microbiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India.
R. K. Chaitanya: Department of Veterinary Microbiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India.
D. Sreenivasulu: Department of Veterinary Microbiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India.

doi: 10.14202/vetworld.2017.950-954

Share this article on [Facebook] [LinkedIn]

Article history: Received: 05-05-2017, Accepted: 26-07-2017, Published online: 20-08-2017

Corresponding author: N. Mohammad Sharif

E-mail: sharifnoorbasha@gmail.com

Citation: Sharif NM, Sreedevi B, Chaitanya RK, Sreenivasulu D (2017) Beta-lactamase antimicrobial resistance in Klebsiella and Enterobacter species isolated from healthy and diarrheic dogs in Andhra Pradesh, India, Veterinary World, 10(8): 950-954.
Abstract

Aim: The aim of this study was to characterize beta-lactamase antimicrobial resistance in Klebsiella and Enterobacter species isolated from healthy and diarrheic dogs in Andhra Pradesh.

Materials and Methods: A total of 136 rectal swabs were collected from healthy (92) and diarrheic (44) dogs, bacteriological cultured for Klebsiella and Enterobacter growth and screened for beta-lactamase antimicrobial resistance phenotypically by disc diffusion method and genotypically by polymerase chain reaction targeting blaTEM, blaSHV, blaOXA, blaCTX-M Group 1, 2, blaAmpC, blaACC, and blaMOX genes.

Results: A total of 33 Klebsiella and 29 Enterobacter isolates were recovered. Phenotypic beta-lactamase resistance was detected in 66.6% and 25% of Klebsiella and Enterobacter isolates, respectively, from healthy dogs and 66.6% and 60% of Klebsiella and Enterobacter isolates, respectively, from diarrheic dogs. Overall, incidence of extended-spectrum beta-lactamase (ESBL) phenotype was found to be 21.2% (7/33) in Klebsiella isolates, whereas none of the Enterobacter isolates exhibited ESBL phenotype. Predominant beta-lactamase genes detected in Klebsiella species include blaSHV (84.8%), followed by blaTEM (33.3%), blaCTX-M Group 1 (15.1%), and blaOXA (6.1%) gene. Predominant beta-lactamase genes detected in Enterobacter species include blaSHV (48.2%), followed by blaTEM (24.1%), blaAmpC (13.7%), and blaOXA (10.3%) gene.

Conclusion: The present study highlighted alarming beta-lactamase resistance in Klebsiella and Enterobacter species of canine origin in India with due emphasis as indicators of antimicrobial resistance.

Keywords: beta-lactamase resistance, dogs, Enterobacter, extended-spectrum beta-lactamase, Klebsiella.

References

1. Rubin, J.E. and Pitout, J.D. (2014) Extended-spectrum β-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Vet. Microbiol., 170(1): 10-18. [Crossref] [PubMed]

2. Bush, K. and Jacoby, G.A. (2010) Updated functional classification of β-lactamases. Antimicrob. Agents Chemother., 54(3): 969-976. [Crossref] [PubMed] [PMC]

3. Stolle, I., Prenger-Berninghoff, E., Stamm, I., Scheufen, S., Hassdenteufel, E., Guenther, S., Bethe, A., Pfeifer, Y. and Ewers, C. (2013) Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J. Antimicrob. Chemother., 68: 2802-2808. [Crossref] [PubMed]

4. Schaufler, K., Bethe, A., Lubke-Becker, A., Ewers, C., Kohn, B., Wieler, L.H. and Gunther, S. (2015) Putative connection between zoonotic multiresistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates from dogs. Infect. Ecol. Epidemiol., 5: 25334. [PubMed]

5. Pfeifer, Y., Cullik, A. and Witte, W. (2010) Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int. J. Med. Microbiol., 300(6): 371-379. [Crossref] [PubMed]

6. Sneath, P.H.A. and Holt, J.G. (2001) Bergey's Manual of Systematic Bacteriology. 2nd ed., Vol. 1. A Waverly Company, Williams & Wilkins, Springer-Verlag, NewYork, USA.

7. Wani, S.A., Samanta, I., Munshi, Z.H., Bhat, M.A. and Nishikawa, Y. (2006) Shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli in healthy goats in India: occurrence and virulence properties. J. Appl. Microbiol., 100: 108-113. [Crossref]

8. Bauer, A.W., Kirby, W.M.M., Sherris, J.C. and Turck, M. (1966) Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45(4): 493. [PubMed]

9. Drieux, L., Brossier, F., Sougakoff, W. and Jarlier, V. (2008) Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: Review and bench guide. Clin. Microbiol. Infect., 14: 90-103. [Crossref] [PubMed]

10. Clinical and Laboratory Standards Institute, CLSI. (2014) Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fourth Informational Supplement. M100-S24. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

11. Dallenne, C., da Costa, A., Decre, D., Favier, C. and Arlet, G. (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother., 65: 490-495. [Crossref]

12. Shahid, M., Sobia, F., Singh, A. and Khan, H.M. (2012) Concurrent occurrence of blaampC families and blaCTX-M genogroups and association with mobile genetic elements ISEcp1, IS26, ISCR1, and sul1-type class 1 integrons in Escherichia coli and Klebsiella pneumoniae isolates originating from India. J. Clin. Microbiol., 50(5): 1779-1782. [Crossref] [PubMed] [PMC]

13. Balish, E., Cleven, D., Brown, J. and Yale, C.E. (1977) Nose, throat, and fecal flora of beagle dogs housed in "locked" or "open" environments. Appl. Environ. Microbiol., 34(2): 207-221. [PubMed] [PMC]

14. Suryawanshi, P.R. and Hirpurkar, S.D. (2008) Antibiogram of enteric and urinary isolates of Pseudomonas, Klebsiella and Proteus sp. from cattle, dogs and pigs. J. Bombay Vet. Coll., 16(1): 3-5.

15. Hordijk, J., Schoormans, A., Kwakernaak, M., Duim, B., Broens, E., Dierikx, C., Mevius, D. and Wagenaar, J.A. (2013) High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front. Microbiol., 4: 242. [Crossref] [PubMed] [PMC]

16. Haenni, M., Ponsin, C., Metayer, V., Medaille, C. and Madec, J.Y. (2011) Veterinary hospital-acquired infections in pets with a ciprofloxacin-resistant CTX-M-15-producing Klebsiella pneumoniae ST15 clone. J. Antimicrob.Chemother., 67: 770-771. [Crossref] [PubMed]

17. Sidjabat, H.E., Hanson, N.D., Smith-Moland, E., Bell, J.M., Gibson, J.S., Filippich, L.J. and Trott, D.J. (2007) Identification of plasmid-mediated extended-spectrum and AmpC β-lactamases in Enterobacter spp. isolated from dogs. J. Med. Microbiol., 56(3): 426-434. [Crossref] [PubMed]

18. O'Keefe, A., Hutton, T.A., Schifferli, D.M. and Rankin, S.C. (2010) First detection of CTX-M and SHV extended-spectrum β-lactamases in Escherichia coli urinary tract isolates from dogs and cats in the United States. Antimicrob. Agents Chemother., 54(8): 3489-3492. [Crossref] [PubMed] [PMC]

19. Wedley, A.L., Maddox, T.W., Westgarth, C., Coyne, K.P., Pinchbeck, G.L., Williams, N.J. and Dawson, S. (2011) Prevalence of antimicrobial-resistant Escherichia coli in dogs in a cross-sectional, community-based study. Vet. Rec., 168(13): 354. [Crossref]

20. Moreno, A., Bello, H., Guggiana, D., Dominguez, M. and Gonzalez, G. (2008) Extended-spectrum β-lactamases belonging to CTX-M group produced by Escherichia coli strains isolated from companion animals treated with enrofloxacin. Vet. Microbiol., 129(1): 203-208. [Crossref] [PubMed]

21. Sun, Y., Zeng, Z., Chen, S., Ma, J., He, L., Liu, Y., Deng, Y., Lei, T., Zhao, J. and Liu, J.H. (2010) High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin. Microbiol. Infect., 16(9): 1475-1481. [Crossref]

22. Sallem, R.B., Gharsa, H., Slama, K.B., Rojo-Bezares, B., Estepa, V., Porres-Osante, N., Jouini, A., Klibi, N., Saenz, Y., Boudabous, A. and Torres, C. (2013) First detection of CTX-M-1, CMY-2, and QnrB19 resistance mechanisms in fecal Escherichia coli isolates from healthy pets in Tunisia. Vector Borne Zoonotic Dis., 13(2): 98-102. [Crossref] [PubMed]

23. Baede, V.O., Wagenaar, J.A., Broens, E.M., Duim, B., Dohmen, W., Nijsse, R., Timmerman, A.J. and Hordijk, J. (2015) Longitudinal study of extended-spectrum-β-lactamase-and AmpC-producing Enterobacteriaceae in household dogs. Antimicrob. Agents Chemother., 59(6): 3117-3124. [Crossref] [PubMed] [PMC]

24. Sailal, D.C.C. (2013) Use of Antimicrobials and Cephamicin Resistance in Companion Animals. Ph.D. Thesis Submitted to University of Lisboa, Lisbon.