Open Access
Review (Published online: 26-08-2017)
26. β-defensins: An innate defense for bovine mastitis
Ankita Gurao, Sudhir Kumar Kashyap and Ravinder Singh
Veterinary World, 10(8): 990-998

Ankita Gurao: Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Sciences, Rajasthan University for Veterinary and Animal Sciences, Bikaner - 334 001, Rajasthan, India.
Sudhir Kumar Kashyap: Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Sciences, Rajasthan University for Veterinary and Animal Sciences, Bikaner - 334 001, Rajasthan, India.
Ravinder Singh: Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib - 140 407, Punjab, India.

doi: 10.14202/vetworld.2017.990-998

Share this article on [Facebook] [LinkedIn]

Article history: Received: 26-05-2017, Accepted: 29-07-2017, Published online: 26-08-2017

Corresponding author: Ankita Gurao


Citation: Gurao A, Kashyap SK, Singh R (2017) β-defensins: An innate defense for bovine mastitis, Veterinary World, 10(8): 990-998.

Immune challenges are inevitable for livestock that are exposed to a varied range of adverse conditions ranging from environmental to pathogenic stresses. The β-defensins are antimicrobial peptides, belonging to "defensin" family and therefore acts as the first line of defense against the major infections occurring in dairy cattle including intramammary infections. The better resistance to mastitis displayed by Bos indicus is implicit in the fact that they have better adapted and also has more sequence variation with rare allele conserved due to lesser artificial selection pressure than that of Bos taurus. Among the 58 in silico predicted β-defensins, only a few have been studied in the aspect of intramammary infections. The data on polymorphisms occurring in various β-defensin genes is limited in B. indicus, indicating toward higher possibilities for exploring marker for mastitis resistance. The following review shall focus on concisely summarizing the up-to-date research on β-defensins in B. taurus and discuss the possible scope for research in B. indicus.

Keywords: Bos indicus, β-defensins, mastitis.


1. Robinson, T.P., Wint, G.R., Conchedda, G., Van Boeckel, T.P., Ercoli, V., Palamara, E., Cinardi, G., D'Aietti, L., Hay, S.I. and Gilbert, M. (2014) Mapping the global distribution of livestock. PLoS One, 9: e96084. [Crossref]

2. Casals, F., Sikora, M., Laayouni, H., Montanucci, L., Muntasell, A., Lazarus, R. and Bertranpetit, J. (2011) Genetic adaptation of the antibacterial human innate immunity network. BMC Evol. Biol., 11: 202. [Crossref] [PubMed] [PMC]

3. McTaggart, S.J., Obbard, D.J., Conlon, C. and Little, T.J. (2012) Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex. BMC Evol. Biol., 12: 63. [Crossref] [PubMed] [PMC]

4. Ferrer-Admetlla, A., Bosch, E., Sikora, M., Marques-Bonet, T., Ramirez-Soriano, A., Muntasell, A. and Casals, F. (2008) Balancing selection is the main force shaping the evolution of innate immunity genes. J. Immunol., 181(2): 1315-1322. [Crossref]

5. Strandberg, E. and Shook, G.E. (1989) Genetic and economic responses to breeding programs that consider mastitis. J. Dairy Sci., 72(8): 2136-2142. [Crossref]

6. Sharma, N. and Maiti, S.K. (2010) Incidence, etiology and antibiogram of sub clinical mastitis in cows in Durg, Chhattisgarh. Indian J. Vet. Res., 19: 45-54.

7. Beutler, B. (2004) Innate immunity: An overview. Mol. Immunol., 40: 845-859. [Crossref]

8. Ulvatne, H., Samuelsen, O. and Vorland, L.H. (2003) Defensins and defensin-like molecule: Anti-bacterial mode of action. In: Heidt, P.J., Midtvedt, T., Rusch, V. and Waaij, D.V., editors. Old Herborn University Seminar Monograph 16: Host Microflora Crosstalk. Herborn Litterae, Herborn. p17-31.

9. Uhlar, C.M. and Whitehead, A.S. (1999) Serum amyloid A, the major vertebrate acute-phase reactant. Eur. J. Biochem., 265: 501-523. [Crossref] [PubMed]

10. Vizioli, J. and Salzet, M. (2002) Antimicrobial peptides from animals: Focus on invertebrates. Trends Pharmacol. Sci., 23: 494-496. [Crossref]

11. Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L.S., Silva-Pereira, I. and Kyaw, C.M. (2013) Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol., 4: 353. [Crossref]

12. Selsted, M.E., Brown, D.M., de Lange, R.J., Harwig, S.S. and Lehrer, R.I. (1985) Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J. Biol. Chem., 260: 4579-4584. [PubMed]

13. Selsted, M.E., Miller, S.I., Henschen, A.H. and Ouellette, A.J. (1992) Enteric defensins: Antibiotic peptide components of intestinal host defense. J. Cell Biol., 118: 929-993. [Crossref] [PubMed]

14. Lehrer, R.I., Selsted, M.E., Szklarek, D. and Fleischmann, J. (1983) Antibacterial activity of microbicidal cationic proteins 1 and 2, natural peptide antibiotics of rabbit lung macrophages. Inf. Immuol., 42: 10-14.

15. Lehrer, R.I., Szklarek, D., Ganz, T. and Selsted, M.E. (1985a) Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacy. Inf. Immun., 49: 207-211. [PubMed] [PMC]

16. Lehrer, R.I., Daher, K., Ganz, T. and Selsted, M.E. (1985b) Direct inactivation of viruses by MCP-l and MCP-2, natural peptide antibiotics from rabbit. J. Virol., 54: 467-472. [PubMed] [PMC]

17. Selsted, M.E. and Ouellette, A.J. (2005) Mammalian defensins in the antimicrobial immune response. Nat. Immunol., 6: 551-557. [Crossref] [PubMed]

18. Diamond, G., Zasloff, M., Eck, H., Brasseur, M., Maloy, W.L. and Bevins, C.L. (1991) Tracheal antimicrobial peptide, a novel cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. USA, 88: 3952-3956. [Crossref]

19. Tran, D., Tran, P.A., Tang, Y.Q., Yuan, J., Cole, T. and Selsted, M.E. (2002) Homodimeric Θ-defensins from rhesus macaque leukocytes isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J. Biol. Chem., 277: 3079-3084. [Crossref] [PubMed]

20. WHO. Antimicrobial Resistance. WHO. Available from: Cited on 3-09-2013.

21. Schroeder, B.O., Wu, Z., Nuding, S., Groscurth, S., Marcinowski, M., Beisner, J., Buchner, J., Schaller, M., Stange, E.F. and Wehkamp, J. (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature., 469: 419-423. [Crossref] [PubMed]

22. Brogden, K.A. (2005) Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 3: 238-250. [Crossref] [PubMed]

23. Yeaman, M.R. and Yount, N.Y. (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 55: 27-55. [Crossref] [PubMed]

24. Latal, A., Degovics, G., Epand, R.F., Epand, R.M. and Lohner, K. (1997) Structural aspects of the interaction of peptidyl-glycylleucine-carboxyamide, a highly potent antimicrobial peptide from frog skin, with lipids. Eur. J. Biochem., 248: 938-946. [Crossref] [PubMed]

25. Oishi, O., Yamashita, S., Nishimoto, E., Lee, S., Sugihara, G. and Ohno, M. (1997) Conformations and orientations of aromatic amino acid residues of tachyplesin I in phospholipid membranes. Biochemistry, 36: 4352-4359. [Crossref] [PubMed]

26. Sahl, H.G., Pag, U., Bonness, S., Wagner, S., Antcheva, N. and Tossi, A. (2005) Mammalian defensins: Structures and mechanism of antibiotic activity. J. Leukoc. Biol., 77, 466-475. [Crossref] [PubMed]

27. Huang, H.W. (2000) Action of antimicrobial peptides: Two-state model. Biochemistry, 39: 8347-8352. [Crossref] [PubMed]

28. Palffy, R., Gardlik, R., Behuliak, M., Kadasi, L., Turna, J. and Celec, P. (2009) On the physiology and pathophysiology of antimicrobial peptides. Mol. Med., 15: 51-59. [PubMed]

29. Bierbaum, G. and Sahl, H.G. (1985) Induction of autolysis of staphylococci by the basic peptide antibiotics pep5 and nisin and their influence on the activity of autolytic enzymes. Arch. Microbiol., 141: 249-254. [Crossref] [PubMed]

30. Selsted, M.E., Tang, Y.Q., Morris, W.L., McGuire, P.A., Novotny, M.J., Smith, W., Henschen, A.H. and Cullor, J.S. (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem., 268: 6641-6648. [PubMed]

31. Roosen, S., Exner, K., Paul, S., Schroeder, J.M., Kalm, E. and Looft, C. (2004) Bovine b-defensins: Identification and characterization of novel bovine b-defensin genes and their expression in mammary gland tissue. Mamm. Genome, 15: 834-842. [Crossref] [PubMed]

32. Patil, A.A., Cai, Y., Sang, Y., Blecha, F. and Zhang, G. (2005) Cross species analysis of the mammalian beta-defensin gene family: Presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol. Genomics, 23: 5-17. [Crossref] [PubMed]

33. Cormican, P., Meade, K.G., Cahalane, S., Narciandi, F., Chapwanya, A., Lloyd, A.T. and O'Farrelly, C. (2008) Evolution, expression and effectiveness in a cluster of novel bovine beta-defensins. Immunogenetics, 60: 147-156. [Crossref] [PubMed]

34. Meade, K.G., Cormican, P., Narciandi, F., Lloyd, A. and O'farrelly, C. (2013) Bovine -defensin gene family: Opportunities to improve animal health? Physiol. Genomics, 46: 17-28. [Crossref] [PubMed]

35. Birchler, T., Seibl, R., Buchner, K., Loeliger, S., Seger, R., Hossle, J.P., Aguzzi, A. and Lauener, R.P. (2001) Human toll-like receptor 2 mediates induction of the antimicrobial peptide human beta-defensin 2 in response to bacterial lipoprotein. Eur. J. Immunol., 31: 3131-3137. [Crossref]

36. Fjell, C.D., Hiss, J.A., Hancock, R.E. and Schneider, G. (2012) Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 11: 37-51. [Crossref]

37. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. and Sternberg, M.J.E. (2015) The phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoco., 10: 845-858. [Crossref] [PubMed] [PMC]

38. Schonwetter, B., Stolzenberg, E. and Zasloff, M. (1995) Epithelial antibiotics induced at sites of inflammation. Science, 267: 1645-1648. [Crossref] [PubMed]

39. Stolzenberg, E.D., Anderson, G.M., Ackermann, M.R., Whitlock, R.H. and Zasloff, M. (1997) Epithelial antibiotic induced in states of disease. Proc. Natl. Acad. Sci. USA, 94: 8686-8690. [Crossref]

40. Swanson, K., Gorodetsky, S., Good, L., Davis, S., Musgrave, D., Stelwagen, K., Farr, V. and Molenaar, A. (2004) Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infect. Immunol., 72: 7311-7314. [Crossref] [PubMed] [PMC]

41. Jin, D., Guangjun, C., Kai, Z., Junfei, G., Tianle, X. and Xiangzhen, S. (2016) Rumen-derived lipopolysaccharide enhances the expression of lingual antimicrobial peptide in mammary glands of dairy cows fed a high-concentrate diet. BMC Vet. Res., 12: 1. [Crossref]

42. Kazuhiro, K., Akamatsu, H., Obayashi, T., Nagahata, H., Higuchi, H., Iwano, H., Oshida, T., Yoshimura, Y. and Isobe, N. (2013) Relationship between concentration of lingual antimicrobial peptide and somatic cell count in milk of dairy cows. Vet. Immunol. Immunopathol., 153: 298-301. [Crossref] [PubMed]

43. Ogorevc, J., Kunej, T., Razpet, A. and Dovc, P. (2009) Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet., 40: 832-851. [Crossref] [PubMed] [PMC]

44. Lopez-Meza, J.E., Gutierrez-Barroso, A. and Ochoa-Zarzosa, A. (2009) Expression of tracheal antimicrobial peptide in bovine mammary epithelial cells. Res. Vet. Sci., 87: 59-63. [Crossref] [PubMed]

45. Whelehan, C.J., Meade, K.G., Eckersall, P.D., Young, F.J. and O'Farrelly, C. (2011) Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression. Vet. Immunol. Immunopathol., 140: 181-189. [Crossref] [PubMed]

46. Yang, J., Sang, Y., Meade, K.G. and Ross, C. (2011) The role of oct-1 in the regulation of tracheal antimicrobial peptide TAP and lingual antimicrobial peptide LAP expression in bovine mammary epithelial cells. Immunogenetics, 63: 715-725. [Crossref] [PubMed]

47. Patel, S.M., Prakash, G.K., Neelam, N.M., Patel, N.V., Shah, T.M. and Joshi, C.G. (2015) Exploring genetic polymorphism in innate immune genes in Indian cattle Bos indicus and buffalo Bubalus bubalis using next generation sequencing technology. Meta Gene, 3: 50-58. [Crossref] [PubMed] [PMC]

48. Ryan, L.K., Rhodes, J., Bhat, M. and Diamond, G. (1998) Expression of beta-defensin genes in bovine alveolar macrophages. Infect. Immunol., 66: 878-881. [PubMed] [PMC]

49. Taha-Abdelaziz, K.I., Perez-Casal, J., Schott, C., Hsiao, J., Attah-Poku, S., Slavic, D. and Caswell, J.L. (2013) Bactericidal activity of tracheal antimicrobial peptide against respiratory pathogens of cattle. Vet. Immunol. Immunopathol., 152: 289-294. [Crossref] [PubMed]

50. Cormac, W.J., Meade, K.G., Eckersall, P.D., Young, F.J. and O'Farrelly, C. (2011) Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression. Vet. Immunol. Immunopathol., 140: 181-89. [Crossref] [PubMed]

51. Kosciuczuk, E.M., Lisowski, P., Jarczak, J., Krzyzewski, J., Zwierzchowski, L. and Bagnicka, E. (2014) Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative staphylococci. BMC Vet. Res., 10: 1. [Crossref]

52. Bagnicka, E., Strzalkowska, N., Flisikowski, K., Szreder, T., Jozwik, A. and Prusak, B. (2007) The polymorphism in the beta4-defensin gene and its association with production and somatic cell count in Holstein-Friesian cows. J. Anim. Breed. Genet., 124: 150-156. [Crossref] [PubMed]

53. Bagnicka, E., Strzalkowska, N., Jozwik, A., Krzyzewski, J., Horbanczu, J. and Zwierzchowski, L. (2010) Expression and polymorphism of defensins in farm animals. Acta Biochim. Pol., 57: 487-497. [PubMed]

54. Tarver, A.P., Clark, D.P., Diamond, G., Russell, J.P., Erdjument-Bromage, H., Tempst, P., Cohen, K.S., Jones, D.E., Sweeney, R.W., Wines, M., Hwang, S. and Bevins, C.L. (1998) Enteric beta-defensin: Molecular cloning and characterisation of a gene with inducible intenstinal epithelial cell expression associated with Cryptosporidium parvum infection. Infect. Immun., 66: 1045-1056. [PubMed] [PMC]

55. Merriman, K.E., Kweh, M.F., Powell, J.L., Lippolis, J.D. and Nelson, C.D. (2015) Multiple β-defensin genes are upregulated by the Vitamin D pathway in cattle. J. Steroid Biochem. Mol. Biol., 154: 120-129. [Crossref] [PubMed]

56. Goldammer, T., Zerbe, H., Aar, A., Schuberth, H.J., Brunner, R.M., Kata, S.R. and Seyfert, H.M. (2004) Mastitis increases mammary mRNA abudance of β defensin 5, toll-like-receptor 2. TLR2 and TLR4 but not TLR9 in cattle. Clin. Diagn. Lab. Immunol., 11: 174-185. [PubMed] [PMC]

57. Murillo, N., Ochoa-Zarzosa, A. and Opez-Meza, J.E.L. (2013) Effects of sodium octanoate on innate immune response of mammary epithelial cells during Staphylococcus aureus internalization. Biomed. Res. Int., 2013: Article ID: 927643, 8.

58. McLoughlin, K.E., Nalpas, N.C., Rue-Albrecht, K., Browne, J.A., Magee, D.A. and MacHugh, D.E.K. (2014) RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis. Front. Immunol., 5: 396. [Crossref] [PubMed] [PMC]

59. Mirabzadeh-Ardakani, A., Griebel, P. and Schmutz, S.M. (2014a) No Association Between β-Defensin103b. DEFB103B. Single Nucleotide Polymorphisms SNPs or Haplotypes and Staphylococcus aureus Mastitis in Holstein Cattle. 10th WCGALP.

60. Dreger, D.L. and Schmutz, S.M. (2010) The variant red coat colour phenotype of holstein cattle maps to BTA27. Anim. Genet., 41: 109-112. [Crossref] [PubMed]

61. Mirabzadeh-Ardakani, A., Griebel, P. and Schmitz, S.M. (2014b) Identification of a new non-coding exon and haplotype variability in the cattle DEFB103 gene. Gene, 551: 183-188. [Crossref] [PubMed]

62. Yeung, A.T.Y., Shaan, L.G. and Hancock, R.E.W. (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci., 68: 2161-2176. [Crossref] [PubMed]

63. Xiong, H., Guo, B., Gan, Z., Song, D., Lu, Z., Yi, H., Wu, Y., Wang, Y. and Du, H. (2016) Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci. Rep., 6: 27070. [Crossref] [PubMed] [PMC]

64. Lai, Y. and Gallo, R.L. (2009) AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 30: 131-141. [Crossref]

65. Easton, D.M., Nijnik, A., Mayer, M.L. and Hancock, R.E.W. (2009) Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol., 27: 582-590. [Crossref] [PubMed]

66. Oppenheim, J.J., Biragyn, A., Kwak, L.W. and Yang, D. (2003) Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann. Rheum. Dis., 62: ii17-ii21.40. [Crossref]

67. Mackenzie-Dyck, S., Kovacs-Nolan, J., Snider, M., Babiuk, L.A. and van Drunen Littel-van den Hurk, S. (2014) Inclusion of the bovine neutrophil beta-defensin 3 with glycoprotein D of bovine herpesvirus 1 in a DNA vaccine modulates immune responses of mice and cattle. Clin. Vaccine Immunol., 21: 463-477. [Crossref]