Open Access
Research (Published online: 26-12-2017)
16. Isolation and identification of a cellulolytic Enterobacter from rumen of Aceh cattle
Wenny Novita Sari, Safika, Darmawi and Yudha Fahrimal
Veterinary World, 10(12): 1515-1520

Wenny Novita Sari: Postgraduate student of Mathematics and Applied Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia.
Safika: Department of Veterinary Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Jalan Agatis IPB, Darmaga, Bogor, Indonesia.
Darmawi: Microbiology Laboratory, Faculty of Veterinary Medicine, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia.
Yudha Fahrimal: Parasitology Laboratory, Faculty of Veterinary, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia.

doi: 10.14202/vetworld.2017.1515-1520

Share this article on [Facebook] [LinkedIn]

Article history: Received: 25-08-2017, Accepted: 24-11-2017, Published online: 26-12-2017

Corresponding author: Safika

E-mail: fikakhan@yahoo.com

Citation: Sari WN, Safika, Darmawi, Fahrimal Y (2017) Isolation and identification of a cellulolytic Enterobacter from rumen of Aceh cattle, Veterinary World, 10(12): 1515-1520.
Abstract

Aim: The aim of this study was to isolate and identify a cellulolytic bacterium from the rumen fluid of Aceh's cattle. Biodegradation by cellulolytic rumen bacteria can be used as a source of cellulolytic bacteria that act to degrade feed fibrous material so as to improve the quality of nutrients and digestibility of feed ingredients at a cheaper price than the use of commercial cellulase enzymes.

Materials and Methods: Samples were collected from rumen fluid of Aceh's cattle in Abattoirs (RPH) of Banda Aceh city, Indonesia, isolation, and screening of cellulolytic bacteria were done in Microbiology Laboratory, Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Indonesia.

Results: The S1 isolates showed ±2.5 cm of clear zone diameter. Microscopically, this strain was found to be a Gram-negative, Bacillus. Homology and phylogenetic tree analysis of 16S rRNA showed that S1 isolate has 91% of sequence similarity with that of Enterobacter cloacae. 91% sequence homology shown in this study proved that the S1 isolate is probably either a new species or another genus of Enterobacteriaceae.

Conclusion: Current study suggests that cellulose hydrolytic bacteria isolated from rumen fluid of Aceh cattle on Bushnell Haas medium-carboxymethylcellulose agar, and some potent cellulose degrading bacteria have been identified.

Keywords: Aceh cattle, cellulose, cellulolytic bacteria, Enterobacteriaceae, rumen.

References

1. Martojo, H. (2003) Indigenous bali cattle: The best suited catlle breed for sustainable small farms in Indonesia. Laboratory of animal breeding and genetics. Faculty of Animal Science. Bogor Agricutural University, Indonesia.

2. Abdullah, M.A.N., Noor, R.R., Martojo, H., Solihin, D.D. and Handiwirawan, E. (2007) Phenotypic diversity of Aceh cattle in nanggroe Aceh darussalam. J. Indonesian. Trop. Anim. Agric., 32(1): 11-12.

3. Wahyudi, A., Cahyanto, M.N., Soejono, M. and Bachruddin, Z. (2010) Potency of lignocellulose degrading bacteria isolated from Buffalo and horse gastrointestinal tract and elephant dung for feed fiber degradation. J. Indonesian Trop. Anim. Agric., 35(1): 34-41. [Crossref]

4. Miron, J., Ghedalia, D.B. and Morisson, M. (2001) Invited review: Adhesion mechanism of rumen cellulolytic bacteria. Int. J. Dairy Sci. Process, 84(6): 1294-1309. [Crossref]

5. Kamra, D.N. (2005) Rumen microbial ecosystem. Special Section. Curr. Sci., 89(1): 122-243.

6. Stiverson, J., Morrison, M. and Yu, Z. (2011) Populations of select cultured and uncultured bacteria in the rumen of sheep and the effect of diets and ruminal fractions. Int. J. Microbiol. Res., 75: 165-174. [Crossref]

7. Hungate, R.E. (2013) The Rumen and its Microbes. Elsevier-Academic Press, New York. pp3-4.

8. Keshk, S.M.A. (2014) Bacterial cellulose production and its industrial applications. J. Bioprocess. Biotech., 4: 150. [Crossref]

9. Ekinci, M.S., Martin, J.C. and Flint, H.J. (2002) Expression of a cellulase gene, ce1 A, from the rumen fungus Neocallimastix patriciarum in Streptococcus bovis by means of promoter fusions. J. Biotechnol. Lett., 24: 735-741. [Crossref]

10. Lai, M.J., Chang, J.Y., Lee, H.Y., Kuo, C.C., Lin, M.H., Hsieh, H.P., Chang, C.Y., Wu, J.S., Wu, S.Y., Shey, K.S. and Liou, J.P. (2011) Synthesis and biological evaluation of 1-(4'-Indolyl and 6'-Quinolinyl) Indoles as a new class of potent anticancer agents. Eur. J. Med. Chem., 46: 3623-3629. [Crossref]

11. Wang, Y. and McAllister, T.A. (2002) Rumen microbes, enzymes and feed digestion-a review. AJAS, 15(11): 1659-1676.

12. Ling, L.Y., Zhang, Z., Wu, M., Wu, Y. and Xun, F.J. (2014) Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed. Res. Int., 2014: 13. [Crossref]

13. Singh, S., Moholkar, V.S. and Goyal, A. (2013) Isolation, identification, and characterization of a cellulolytic Bacillus amyloliquefaciens strain SS35 from rhinoceros dung. ISRN Microbiol., 2013 Article ID 728134. [Crossref]

14. Safika, Madayanti.F., Aditiawati, P. and Akhmaloka. (2013) Succession culture independent bacterial during manure composting process. J. Pure Appl. Microbiol., 7(13): 269-276.

15. Moon, C., Gagic, D., Ciric, M., Noel, S., Summers, E., Li, D., Atua, R., Perry, R., Sang, C., Zhang, Y. and Schofield, L. (2014) Exploring Rumen Microbe Derived Fibre-Degrading Activities for Improving Feed Digestibility. In: Proceedings of the 5 Australasian Dairy Science Symposium. p377.

16. Gupta, P., Samant, K. and Sahu, A. (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. Res., 2014: 578925. [Crossref]

17. Mohite, B.V. and Patil, S.V. (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohyd. Polym., 106: 132-141. [Crossref] [PubMed]

18. Morgan, J.L., Strumillo, J. and Zimmer, J. (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature, 493: 181-186. [Crossref] [PubMed] [PMC]

19. Huang, S., Sheng, P. and Zhang, H. (2012) Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae). Int. J. Mol. Sci., 13(3): 2563-2577. [Crossref] [PubMed] [PMC]

20. Ruijssenaars, H.J. and Hartmans, S. (2001) Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl. Microbiol. Biotechnol., 55(2): 143-149. [Crossref]

21. Dziga, D. and Flasinska, D.J. (2015) Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides. Acta Biochim. Pol., 62(2): 395-400. [Crossref] [PubMed]

22. Aminin ALN, Madayanti F, Aditiawati P and Akhmaloka. (2008) Simple Enrichment and Independent Cultures to Expand Bacterial Community Analysis from Gedongsongo Hot Spring. J Biosci. Bioeng 106(2): 211-214. [Crossref] [PubMed]

23. Baker, G.C., Smith, J.J. and Cowan, D.A. (2003) Review and re-analysis of domain specific 16S primers. J. Microbiol. Meth., 55: 541-555. [Crossref] [PubMed]

24. Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M. and Glockner, F.O. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res., 41(1): 1-11. [Crossref]

25. Shao, K., Ding, W., Wang, F., Li, H., Ma, D. and Wang, H. (2011) Emulsion PCR: A high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS One, 6(9): e24910. [Crossref]

26. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30(12): 2725-2729. [Crossref] [PubMed] [PMC]

27. Gaur, R. and Tiwari, S. (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol., 15: 19. [Crossref] [PubMed] [PMC]

28. Griffiths, R.I, Whiteley, A.S, O'donnell, A.G. and Bailey, M.J. (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-based microbial community composition. Appl. Environ. Microbiol., 66: 5488-5491. [Crossref]

29. Janda, J.M. and Abbot, S.L. (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Ploses, perils, and pitfalls. J. Clin. Microbiol., 5(9): 2761-2764. [Crossref] [PubMed] [PMC]

30. Hatami, S., Alikhani, H.A., Besharati, H., Salehrastin, N., Afrousheh, M. and Yazdani, J.Z. (2008) Investigation on aerobic cellulolytic bacteria in some of north forest and farming soils. Am. Eur. J. Agric. Environ. Sci., 3(5): 713-716.

31. Song, Y.H., Tai, L.K., Baek, J.Y., Ju, K.M., Joo, K.Y., Rim, P.M., Ko, H., Sung, L.J., Ra, K.M. and Sung, K.K. (2017) Isolation and characterization of a novel endo-β-1,4-glucanase from a metagenomic library of the black-goat rumen. Braz. J. Microbiol., 48: 801-808. [Crossref] [PubMed] [PMC]

32. Borji, M., Rahimi, S., Ghorbani, G.J.V., Yoosefi, J.V. and Fazaeli, H. (2003) Isolation and identification of some bacteria from termites gut capable in degrading straw lignin and polysaccharides. J. Vet. Res., 58(3): 249-256.

33. Ramin, M., Alimon, N. and Abdullah, K.K. (2009) Identification of cellulolytic bacteria isolated from the termite Coptotermes curvignathus (Holmgren). J. Rapid. Meth. Autom. Microbiol, 17(1): 103-116. [Crossref]

34. Harun, N.A.F., Baharuddin, A.S., Zainudin, M.H.M., Bahrin, E.K., Naim, M.N. and Zakaria, R. (2013) Cellulase from oil palm. Bio Resour., 8(1): 676-687.

35. Campos, E., Maria, J.N.A., Gonzalo, S.L., Sergio, G., Marcela, R., Paola, T., Daniel, H.G., Paloma, M.S., Mercedes, B.P., Felicia, S. and Angel A.C. (2014) Purification and characterization of a GH43-xylosidase from Enterobacter sp. identi?ed and cloned from forest soil bacteria. Microbiol. Res., 169: 213-220. [Crossref] [PubMed]

36. Lokapirnasari, W.P., Nazar, D.S., Nurhajati, T., Supranianondo, K. and Yulianto, A.B. (2015) Production and assay of cellulolytic enzymeactivity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya Abbatoir, Indonesia. Vet. World, 8(3): 367-371. [Crossref] [PubMed] [PMC]

37. Wilson, D.B. (2011) Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol., 14(3): 259-263. [Crossref] [PubMed]

38. Mathew, G.M., Sukumaran, R.K., Singhania, R.R. and Pandey, A. (2008) Progress in research on fungal cellulases for lignocellulose degradation. J. Sci. Ind. Res., 67: 898-908.

39. Singhania, R.R., Patel, A.K., Sukumaran, R.K., Larroche, C., Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol., 127: 500-507. [Crossref] [PubMed]

40. Liu, D., Chen, X., Yue, Y., Chen, M. and Wu, Q. (2011) Structure and rheology of nanocrystalline cellulose. Carbohyd. Polym., 84: 316-322. [Crossref]

41. Irwin, D.C., Zhang, S. and Wilson, D.B. (2001) Cloning expression and characterization of a family 48 exocellulase, cel48a, from Thermobifida fusca. Eur. J. Biochem., 267: 4988-4997. [Crossref]

42. Beg, Q.K.M., Kapoor, L., Mahajan, G. and Hoondal, S. (2001) Microbial xylanase from the newly isolated Bacillus sp. strain BP-23. Can. J. Microbiol., 39: 1162-1166.

43. Kajikawa, H. and Masaki, S. (1999) Cellobiose transport by mixed ruminal bacteria from a cow. Appl. Environ. Microbiol., 65: 2565-2569. [PubMed] [PMC]