Open Access
Research (Published online: 10-12-2017)
5. Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study
Anuraga Jayanegara, Briliannanda Novandri, Nover Yantina and Muhammad Ridla
Veterinary World, 10(12): 1439-1446

Anuraga Jayanegara: Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia.
Briliannanda Novandri: Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia.
Nover Yantina: Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia.
Muhammad Ridla: Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia.

doi: 10.14202/vetworld.2017.1439-1446

Share this article on [Facebook] [LinkedIn]

Article history: Received: 07-07-2017, Accepted: 09-11-2017, Published online: 10-12-2017

Corresponding author: Anuraga Jayanegara


Citation: Jayanegara A, Novandri B, Yantina N, Ridla M (2017) Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study, Veterinary World, 10(12): 1439-1446.

Aim: This experiment aimed to evaluate substitution of soybean meal (SBM) by black soldier fly (BSF) larvae meal in a napier grass diet as performed by an in vitro rumen fermentation system.

Materials and Methods: Samples of napier grass, SBM, and BSF larvae age 1 week (BSF1) and 2 weeks (BSF2) were arranged according to the following dietary treatments (dry matter [DM] basis): T1, 100% napier grass; T2, 60% napier grass + 40% SBM; T3, 60% napier grass + 40% BSF1; T4, 60% napier grass + 40% BSF2; T5, 60% napier grass + 20% SBM + 20% BSF1; and T6, 60% napier grass + 20% SBM + 20% BSF2. The samples were determined for their chemical composition and were incubated in vitro using buffered rumen fluid for 48 h at 39°C. In vitro incubation was carried out in three runs and represented by two incubation bottles per run.

Results: Supplementation of BSF, both BSF1 and BSF2, increased ether extract, neutral- and acid-detergent insoluble crude protein contents of T3-T6 diets. The T3 or T4 diet resulted in lower ruminal ammonia concentration, in vitro DM digestibility, and in vitro organic matter (OM) digestibility as compared to those in T2 (p<0.05). Diet supplemented with BSF produced lower methane emission in comparison to that of supplemented with SBM (p<0.05). Diet containing BSF2 produced lower methane and methane per digestible OM than that containing BSF1 (p<0.05).

Conclusion: Substitution of SBM by BSF in ruminant diet results in a lower nutritional value in vitro but with an advantage of lowering ruminal methane emission.

Keywords: black soldier fly, chitin, insect, methanogenesis, rumen.


1. Van Huis, A. (2013) Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol., 58: 563-583. [Crossref] [PubMed]

2. Sanchez-Muros, M.J., Barroso, F.G. and Manzano-Agugliaro, F. (2014) Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod., 65: 16-27. [Crossref]

3. Jozefiak, D., Jozefiak, A., Kieronczyk, B., Rawski, M., Swiatkiewicz, S., Dlugosz, J. and Engberg, R.M. (2016) Insects-a natural nutrient source for poultry - A review. Annu. Anim. Sci., 16(2): 297-313. [Crossref]

4. Makkar, H.P.S., Tran, G., Heuze, V. and Ankers, P. (2014) State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197: 1-33. [Crossref]

5. Biasato, I., De Marco, M., Rotolo, L., Renna, M., Lussiana, C., Dabbou, S., Capucchio, M.T., Biasibetti, E., Costa, P., Gai, F., Pozzo, L., Dezzutto, D., Bergagna, S., Martinez, S., Tarantola, M., Gasco, L. and Schiavone, A. (2016) Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr., 100(6): 1104-1112. [Crossref] [PubMed]

6. Jayanegara, A., Yantina, N., Novandri, B. and Laconi, E.B. (2017) Evaluation of some insects as potential feed ingredients for ruminants: Chemical composition, in vitro rumen fermentation and methane emissions. J. Indonesian Trop. Anim. Agric., 39(3): 144-151.

7. Cullere, M., Tasoniero, G., Giaccone, V., Miotti-Scapin, R., Claeys, E., De Smet, S. and Dalle, Z.A. (2016) Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal, 10(12): 1923-1930. [Crossref] [PubMed]

8. Leiber, F., Gelencser, T., Stamer, A., Amsler, Z., Wohlfahrt, J., Fruh, B. and Maurer, V. (2017) Insect and legume-based protein s to replace soybean cake in an organic broiler diet: Effects on growth performance and physical meat quality. Renew. Agric. Food Syst., 32(1): 21-27. [Crossref]

9. Campos, A.F., Pereira, O.G., Ribeiro, K.G., Santos, S.A. and Valadares, F.S.D. (2014) Impact of replacing soybean meal in beef cattle diets with inactive dry yeast, a sugarcane by-product of ethanol distilleries and sugar mills. Anim. Feed Sci. Technol., 190: 38-46. [Crossref]

10. Jolazadeh, A.R., Dehghan-Banadaky, M. and Rezayazdi, K. (2015) Effects of soybean meal treated with tannins extracted from pistachio hulls on performance, ruminal fermentation, blood metabolites and nutrient digestion of Holstein bulls. Anim. Feed Sci. Technol., 203: 33-40. [Crossref]

11. Yildiz, E. and Todorov, N. (2014) The comparison of the main protein sources for dairy cows: A review. Bulgarian J. Agric. Sci., 20(2): 428-446.

12. Vollmann, J. (2016) Soybean versus other food grain legumes: A critical appraisal of the united nations international year of pulses 2016. Bodenkultur, 67(1): 17-24. [Crossref]

13. Marono, S., Piccolo, G., Loponte, R., Meo, C.D., Attia, Y.A., Nizza, A. and Bovera, F. (2015) In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci., 14(3): 338-343. [Crossref]

14. Oonincx, D.G.A., Van Broekhoven, S., Van Huis, A. and Van Loon, J.J.A. (2015) Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLOS ONE, 10(12): e0144601. [Crossref]

15. Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq, P. and De Smet, S. (2017) Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric., 97(8): 2594-2600. [Crossref] [PubMed]

16. AOAC. (2005) Official Methods of Analysis. 18th ed. AOAC International, Arlington, VA, USA.

17. Van Soest, P.J., Robertson, J.B. and Lewis, B.A. (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10): 3583-3597.

18. Licitra, G., Hernandez, T.M. and Van Soest, P.J. (1996) Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol., 57: 347-358. [Crossref]

19. Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J. (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol., 48: 185-197. [PubMed]

20. Fievez, V., Babayemi, O.J. and Demeyer, D. (2005) Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol., 123-124: 197-210. [PubMed]

21. Jayanegara, A., Dewi, S.P. and Ridla, M. (2016) Nutrient content, protein fractionation, and utilization of some beans as potential alternatives to soybean for ruminant feeding. Med. Pet., 39(3): 195-202. [Crossref]

22. Tilley, J.M.A. and Terry, R.A. (1963) A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci., 18(2): 104-111. [Crossref]

23. Sniffen, C.J., O'Connor, J.D., Van Soest, P.J., Fox, D.G. and Russel, J.B. (1992) A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci., 70(11): 3562-3577. [Crossref] [PubMed]

24. Pelletier, S., Tremblay, G.F., Bertrand, A., Belanger, G., Castonguay, Y. and Michaud, R. (2010) Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Anim. Feed Sci. Technol., 157: 139-150. [Crossref]

25. Chaudhari, S.S., Arakane, Y., Specht, C.A., Moussian, B., Boyle, D.L., Park, Y., Kramer, K.J., Beeman, R.W. and Muthukrishnan, S. (2011) Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proc. Natl. Acad. Sci., 108(41): 17028-17033. [Crossref] [PubMed] [PMC]

26. Wasko, A., Bulak, P., Polak-Berecka, M., Nowak, K., Polakowski, C. and Bieganowski, A. (2016) The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int. J. Biol. Macromol., 92: 316-320. [Crossref] [PubMed]

27. Diener, S., Zurbrugg, C. and Tockner, K. (2009) Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manage. Res., 27(6): 603-610. [Crossref] [PubMed]

28. Kroeckel, S., Harjes, A.G.E., Roth, I., Katz, H., Wuertz, S., Susenbeth, A. and Schulz, C. (2012) When a turbot catches a fly: Evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute - Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364-365: 345-352. [Crossref]

29. Finke, M.D. (2013) Complete nutrient content of four species of feeder insects. Zoo Biol., 32(1): 27-36. [Crossref] [PubMed]

30. Owens, F.N., Qi, S. and Sapienza, D.A. (2014) Applied protein nutrition of ruminants - Current status and future directions. Prof. Anim. Sci., 30(2): 150-179. [Crossref]

31. Pengpeng, W. and Tan, Z. (2013) Ammonia assimilation in rumen bacteria: A review. Anim. Biotechnol., 24(2): 107-128. [Crossref] [PubMed]

32. Bach, A., Calsamiglia, S. and Stern, M.D. (2005) Nitrogen metabolism in the rumen. J. Dairy Sci., 88 E. Suppl: E9-E21.

33. Maxin, G., Ouellet, D.R. and Lapierre, H. (2013) Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, corn, and wheat dried distillers grains. J. Dairy Sci., 96(8): 5151-5160. [Crossref] [PubMed]

34. Das, L.K., Kundu, S.S., Kumar, D. and Datt, C. (2014) Metabolizable protein systems in ruminant nutrition: A review. Vet. World, 7(8): 622-629. [Crossref]

35. Noziere, P., Glasser, F. and Sauvant, D. (2011) In vivo production and molar percentages of volatile fatty acids in the rumen: A quantitative review by an empirical approach. Animal, 5(3): 403-414. [Crossref] [PubMed]

36. Agbagla-Dohnani, A., Noziere, P., Clement, G. and Doreau, M. (2001) In sacco degradability, chemical and morphological composition of 15 varieties of European rice straw. Anim. Feed Sci. Technol., 94(1-2): 15-27. [Crossref]

37. Li, F., Yang, X.J., Cao, Y.C., Li, S.X., Yao, J.H., Li, Z.J. and Sun, F.F. (2014) Effects of dietary effective fiber to rumen degradable starch ratios on the risk of sub-acute ruminal acidosis and rumen content fatty acids composition in dairy goat. Anim. Feed Sci. Technol., 189: 54-62. [Crossref]

38. Laconi, E.B. and Jayanegara, A. (2015) Improving nutritional quality of cocoa pod (Theobroma cacao) through chemical and biological treatments for ruminant feeding: In vitro and in vivo evaluation. Asian Australas. J. Anim. Sci., 28(3): 343-350. [Crossref] [PubMed] [PMC]

39. De Boever, J.L., Aerts, J.M., Vanacker, J.M. and De Brabander, D.L. (2005) Evaluation of the nutritive value of maize silages using a gas production technique. Anim. Feed Sci. Technol., 123-124: 255-265. [Crossref]

40. Bettero, V.P., Del Valle, T.A., Barletta, R.V., de Araujo, C.E., Ferreira, J.E., de Almeida, G.F., Takiya, C.S., Zanferari, F., de Paiva, P.G., de Freitas Junior, J.E. and Renno, F.P. (2017) Use of protected fat sources to reduce fatty acid biohydrogenation and improve abomasal flow in dry dairy cows. Anim. Feed Sci. Technol., 224: 30-38. [Crossref]

41. Doreau, M. and Chilliard, Y. (1997) Digestion and metabolism of dietary fat in farm animals. Br. J. Nutr., 78(S1): S15-S35. [Crossref]

42. Processi, E.F., Fontes, C.A., Vieira, R.A.M., Bendia, L.C.R., Rocha, T.C., Fernandes, A.M. and Cunha, J.M. (2016) Degradability and kinetics of fibrous particles in cattle fed diets based on corn silage and concentrates with or without addition of lipids. Rev. Bras. Zootec., 45(12): 773-780. [Crossref]

43. Fiorentini, G., Carvalho, I.P.C., Messana, J.D., Canesin, R.C., Castagnino, P.S., Lage, J.F., Arcuri, P.B. and Berchielli, T.T. (2015) Effect of lipid sources with different fatty acid profiles on intake, nutrient digestion and ruminal fermentation of feedlot nellore steers. Asian Australas. J. Anim. Sci., 28(11): 1583-1591. [Crossref] [PubMed] [PMC]

44. Getachew, G., Blummel, M., Makkar, H.P.S. and Becker, K. (1998) In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol., 72: 261-281. [Crossref]

45. Lourenco, M., Ramos-Morales, E. and Wallace, R.J. (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal, 4(7): 1008-1023. [Crossref] [PubMed]

46. Buccioni, A., Decandia, M., Minieri, S., Molle, G. and Cabiddu, A. (2012) Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol., 174: 1-25. [Crossref]

47. Avila-Stagno, J., Chaves, A.V., Ribeiro, G., Ungerfeld E.M. and McAllister, T.A. (2014) Inclusion of glycerol in forage diets increases methane production in a rumen simulation technique system. Brit. J. Nutr., 111(5): 829-835. [Crossref] [PubMed]

48. Benhissi, H., Garcia-Rodriguez, A. and Beltran, D.H.I. (2014) Effect of type and inclusion level of cold-pressed oilseed cakes on in vitro rumen fermentation. Anim. Prod. Sci., 54(10): 1709-1713. [Crossref]

49. Maccarana, L., Cattani, M., Tagliapietra, F., Bailoni, L. and Schiavon, S. (2016) Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J. Anim. Sci. Biotechnol., 7(1): 54. [Crossref]

50. Toral, P.G., Hervas, G., Carre-o, D., Leskinen, H., Belenguer, A., Shingfield, K.J. and Frutos, P. (2017) In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes. J. Dairy Sci., 100(8): 6187-6198. [Crossref] [PubMed]

51. Morgavi, D.P., Forano, E., Martin, C. and Newbold, C.J. (2010) Microbial ecosystem and methanogenesis in ruminants. Animal, 4(7): 1024-1036. [Crossref] [PubMed]

52. Beauchemin, K.A., Kreuzer, M., O'Mara, F. and McAllister, T.A. (2008) Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric., 48: 21-27. [Crossref]

53. Johnson, K.A. and Johnson, D.E. (1995) Methane emissions from cattle. J. Anim. Sci., 73(8): 2483-2492. [Crossref]

54. Machmuller, A., Soliva, C.R. and Kreuzer, M. (2002) In vitro ruminal methane suppression by lauric acid as influenced by dietary calcium. Can. J. Anim. Sci., 82(2): 233-239. [Crossref]

55. Soliva, C.R., Meile, L., Cieslak, A., Kreuzer, M. and Machmuller, A. (2004) Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. Br. J. Nutr., 92(4): 689-700. [Crossref]

56. Belanche, A., Ramos-Morales, E. and Newbold, C.J. (2016) In vitro screening of natural feed additives from crustaceans, diatoms, seaweeds and plant extracts to manipulate rumen fermentation. J. Sci. Food Agric., 96(9): 3069-3078. [Crossref] [PubMed]

57. Belanche, A., Pinloche, E., Preskett, D. and Newbold, C.J. (2016) Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol. Ecol., 92(1): 160.