Open Access
Research (Published online: 11-07-2017)
10. Serotyping, antibiotic susceptibility, and virulence genes screening of Escherichia coli isolates obtained from diarrheic buffalo calves in Egyptian farms
Ashraf S. Hakim, Shimaa T. Omara, Sohier M. Syame and Ehab A. Fouad
Veterinary World, 10(7): 769-773

Ashraf S. Hakim: Department of Microbiology and Immunology, National Research Centre, Dokki, Cairo, Egypt.
Shimaa T. Omara: Department of Microbiology and Immunology, National Research Centre, Dokki, Cairo, Egypt.
Sohier M. Syame: Department of Microbiology and Immunology, National Research Centre, Dokki, Cairo, Egypt.
Ehab A. Fouad: Department of Microbiology and Immunology, National Research Centre, Dokki, Cairo, Egypt.

doi: 10.14202/vetworld.2017.769-773

Share this article on [Facebook] [LinkedIn]

Article history: Received: 10-02-2017, Accepted: 23-05-2017, Published online: 11-07-2017

Corresponding author: Ashraf S. Hakim


Citation: Hakim AS, Omara ST, Syame SM, Fouad EA (2017) Serotyping, antibiotic susceptibility, and virulence genes screening of Escherichia coli isolates obtained from diarrheic buffalo calves in Egyptian farms, Veterinary World, 10(7): 769-773.

Aim: In Egypt as in many other countries, river water buffalo (Bubalus bubalis) is considered an important source of high-quality milk and meat supply. The objective of this study was to investigate serotypes, virulence genes, and antibiotic resistance determinants profiles of Escherichia coli isolated from buffalo at some places in Egypt; noticibly, this issue was not discussed in the country yet.

Materials and Methods: A number of 58 rectal samples were collected from diarrheic buffalo calves in different regions in Egypt, and bacteriological investigated for E. coli existence. The E. coli isolates were biochemically, serologicaly identified, tested for antibiotic susceptibility, and polymerase chain reaction (PCR) analyzed for the presence of antibiotic resistance determinants and virulence genes.

Results: Overall 14 isolates typed as E. coli (24.1%); 6 were belonged to serogroup O78 (10.3%), followed by O125 (4 isolates, 6.9%), then O158 (3 isolates, 5.2%) and one isolate O8 (1.7%), among them, there were 5 E. coli isolates showed a picture of hemolysis (35.7%). The isolates exhibited a high resistance to β lactams over 60%, followed by sulfa (50%) and aminoglucoside (42.8%) group, in the same time the isolates were sensitive to quinolone, trimethoprim-sulfamethoxazole, tetracycline (100%), and cephalosporine groups (71.4%). A multiplex PCR was applied to the 14 E. coli isolates revealed that all were carrying at least one gene, as 10 carried blaTEM (71.4%), 8 Sul1 (57.1%), and 6 aadB (42.8%), and 9 isolates could be considered multidrug resistant (MDR) by an incidence of 64.3%. A PCR survey was stratified for the most important E. coli virulence genes, and showed the presence of Shiga toxins in 9 isolates carried either one or the two Stx genes (64.3%), 5 isolates carried hylA gene (35.7%), and eae in 2 isolates only (14.3%), all isolates carried at least one virulence gene except two (85.7%).

Conclusion: The obtained data displayed that in Egypt, buffalo as well as other ruminants could be a potential source of MDR pathogenic E. coli variants which have a public health importance.

Keywords: antibiotic resistance determinants, buffalo, Egypt, Escherichia coli, virulence.


1. Stenutz, R., Weintraub A. and Widmalm G. (2006), The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol. Rev., 30: 382-403. [Crossref] [PubMed]

2. Pradel, N., Boukhors, K.Y., Forestier, C., Martin, C. and Livrelli, V. (2001) Heterogeneity of Shiga toxin-producing Escherichia coli strains isolated from hemolytic-uremic syndromepatients, cattle, and food samples in central France. Appl. Environ. Microbiol., 67: 2460-2468. [Crossref] [PubMed] [PMC]

3. Majalija, S., Segal, H., Ejobi, F. and Elisha, B. (2008) Shiga toxin gene-containing Escherichia coli from cattle and diarrheic children in the pastoral systems of southwestern Uganda. J. Clin. Microbiol., 46: 352-354. [Crossref] [PubMed] [PMC]

4. Jianyu, S., Shi, L., Liansheng, Y., Zenghuang, X., Li, X. and Shinji, Y. (2006) Analysis of integrons inclinical isolates of Escherichia coli in China during the last 6 years. FEMS Microbiol. Lett., 254: 75-80. [Crossref] [PubMed]

5. Canal, N., Meneghetti, K.L., Almeida, C.P.D., Bastos, M.D.R., Otton, L.M. and Corc, G. (2016) Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water. Braz. J. Microbiol., 4(7): 337-344. [Crossref] [PubMed] [PMC]

6. Beraldo, L.G., Borges, C.A., Maluta, R.P., Cardozo, M.V., Rigobelo, E.C. and de Avila, F.A. (2014) Detection of Shiga toxigenic (STEC) and enteropathogenic (EPEC) Escherichia coli in dairy buffalo. Vet. Microbiol., 170(1-2): 162-166. [Crossref] [PubMed]

7. Frohlicher, E., Krause, G., Zweifel, C., Beutin, L. and Stephan, R. (2008) Characterization of attaching and effacing Escherichia coli (AEEC) isolated from pigs and sheep. BMC Microbiol., 11(8): 144. [Crossref]

8. Osman, K.M., Mustafa, A.M., Aly, M.A.K. and El-Hamed, G.S.A. (2012) Serotypes, virulencegenes, and intimin types of shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli isolated from mastitic milk relevant to human health in Egypt. Vector BorneZoonotic Dis., 12(4): 297-305. [Crossref] [PubMed]

9. Galal, H.M., Hakim, A.S. and Sohad, M.D. (2013) Phenotypic and virulence genes screening of Escherichia coli strains isolated from different sources in delta Egypt. Life Sci. J., 10(2): 352.

10. Osman, K.M., Mustafa, A.M., Elhariri, M. and El-Hamed, G.S.A. (2013) The distribution of Escherichia coli serovars, virulence genes, gene association and combinations and virulence genes encoding serotypes in pathogenic E. coli recovered from diarrhoeic calves, sheep and goat. Transbound Emerg. Dis., 60(1): 69-78. [Crossref] [PubMed]

11. FAO. World Livestock. (2011) Livestock in Food Security. FAO, Rome.

12. Clinical and Laboratory Standards Institute. (2012) Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Second Informational Supplement M100-S21. CLSI, Wayne.

13. Guinee, P.A.M., Jansen, W.H., Wadstrom, T. and Sellwood, R. (1981) Escherichia coli associated with neonatal diarrhea in piglets and calves. In: Laboratory Diagnosis in Neonatal Calf and Pig Diarrhea: Current Topics in Veterinary and Animal Science. 13th ed. Martinus-Nijhoff, The Hague, Netherlands. p126-162. [Crossref]

14. Vaishnavi, C., Kaur, S., Beutin, L. and Krueger, U. (2010) Phenotypic and molecular characterization of clinically isolated Escherichia coli. Indian J. Pathol. Microbiol., 53: 503-508. [Crossref] [PubMed]

15. Frana, T.S., Carlson, S.A. and Griffith, R.W. (2001) Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype Typhimurium phage type DT104. Appl. Environ. Microbiol., 67: 445-448. [Crossref] [PubMed] [PMC]

16. Colom, K., Perez, J., Alonso, R., Fernandez-Aranguiz, A., Larino, E. and Cisterna, R. (2003) Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA-1 genes in Enterobacteriaceae. FEMS Microbiol. Lett., 223: 147-151. [Crossref]

17. Ibekwe, A.M., Murinda, S.E. and Graves, A.K. (2011) Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. PLoS One, 6(6): e20819. [Crossref]

18. Marcia, R.S., Georgio, F.V., Domingos, S.L., Jesus, B. and Tomomasa, Y. (2003) Virulence factors of Escherichia coli isolated from calves with diarrhea in Brazil. Braz. J. Microbiol., 34(3): 230-235. [Crossref]

19. Sheng H., Davis M. A. and Knecht J.(2005) Characterization of a Shiga toxin, intimin and enterotoxin hemolysin producing E. coli ONT: H25 strain commonly isolated from healthy cattle. J. Clin. Microbiol., 43: 3213-3220. [Crossref] [PubMed] [PMC]

20. Leyla, G. and Kadri, G. (2007) Virulence properties of Escherichia coli isolated from clinical bovine mastitis. Turk. J. Vet. Anim. Sci., 31(5): 361-365.

21. Islam, M.A., Mondol, A.S., de Boer, E., Beumer, R.R., Zwietering, M.H., Talukder, K.A. and Heuvelink, A.E. (2008) Prevalence and genetic characterization of shiga toxin-producing Escherichia coli isolates from slaughtered animals in Bangladesh. Appl. Environ. Microbiol., 74(17): 5414-5421. [Crossref] [PubMed] [PMC]

22. Oliveira, M.G., Brito, J.R.F., Carvalho, R.R., Guth, B.E.C., Gomes, T.A.T., Vieira, M.A.M., Kato, M A.M., Ramos, I.I., Vaz T.M.I. and Irino, K. (2007) Water buffaloes (Bubalus bubalis) identified as an important reservoir of Shiga toxin-producing Escherichia coli in Brazil. Appl. Environ. Microbiol., 73(18): 5945-5948. [Crossref] [PubMed] [PMC]

23. Borriello, G., Lucibelli, M.G., De Carlo, E., Auriemma, C., Cozza, D., Ascione, G., Scognamiglio,F., Iovane, G. and Galiero, G. (2012) Characterization of enterotoxigenic E. coli (ETEC), Shiga-toxin producing E. coli (STEC) and necrotoxigenic E. coli (NTEC) isolated from diarrhoeic Mediterranean water buffalo calves (Bubalus bubalis). Res. Vet. Sci., 93(1): 18-22. [Crossref] [PubMed]

24. Vu-Khac, H. and Cornick, N.A. (2008) Prevalence and genetic profiles of Shiga toxin-producing Escherichia coli strains isolated from buffaloes, cattle, and goats in central Vietnam. Vet. Microbiol., 126(4): 356-363. [Crossref] [PubMed]

25. Mahanti, A., Samanta, I., Bandyopadhyay, S. and Joardar, S.N. (2015) Molecular characterization and antibiotic susceptibility pattern of caprine Shiga toxin producing-Escherichia coli (STEC) isolates from India. Iran. J. Vet. Res., 16(1): 31-35. [PubMed] [PMC]

26. Gyles, C.L. (2007) Shiga toxin-producing Escherichia coli: An overview. J. Anim. Sci., 85(13): E45-E62. [Crossref] [PubMed]

27. Lorusso, V., Dambrosio, A., Quaglia, N.C, Parisi, A., La Salandra, G., Lucifora, G., Mula, G.,Virgilio, S., Carosielli, L., Rella, A., Dario, M. and Normanno, G. (2009) Verocytotoxin-producing Escherichia coli O26 in raw water buffalo (Bubalus bubalis) milk products in Italy. J. Food Prot., 72(8): 1705-1708. [Crossref]