Open Access
Research (Published online: 07-07-2017)
7. Repair of segmental radial defect with autologous bone marrow aspirate and hydroxyapatite in rabbit radius: A clinical and radiographic evaluation
Kalbaza Ahmed Yassine, Benchohra Mokhtar, Hemida Houari, Amara Karim, and Melizi Mohamed
Veterinary World, 10(7): 752-757

Kalbaza Ahmed Yassine: Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Regions, Ibn Khaldoun University of Tiaret, Algeria; Department of Veterinary Sciences, Institute of Agronomic and Veterinary Sciences, BATNA-1 University, Algeria.
Benchohra Mokhtar: Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Regions, Ibn Khaldoun University of Tiaret, Algeria.
Hemida Houari: Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Regions, Ibn Khaldoun University of Tiaret, Algeria.
Amara Karim: Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Regions, Ibn Khaldoun University of Tiaret, Algeria.
Melizi Mohamed: Department of Veterinary Sciences, Institute of Agronomic and Veterinary Sciences, BATNA-1 University, Algeria.

doi: 10.14202/vetworld.2017.752-757

Share this article on [Facebook] [LinkedIn]

Article history: Received: 20-02-2017, Accepted: 30-05-2017, Published online: 07-07-2017

Corresponding author: Kalbaza Ahmed Yassine


Citation: Yassine KA, Mokhtar B, Houari H, Karim A, Mohamed M (2017) Repair of segmental radial defect with autologous bone marrow aspirate and hydroxyapatite in rabbit radius: A clinical and radiographic evaluation, Veterinary World, 10(7): 752-757.

Aim: Finding an ideal bone substitute to treat large bone defects, delayed union and nonunions remain a challenge for orthopedic surgeons and researchers. Several studies have been conducted on bone regeneration; each has its own advantages and disadvantages. The aim of this study was to evaluate the effect of a combination of hydroxyapatite (HA) powder with autologous bone marrow (BM) aspirate on the repair of segmental radial defect in a rabbit model.

Materials and Methods: A total of 36 male and adult New Zealand rabbit with a mean weight of 2.25 kg were used in this study. Approximately, 5 mm defect was created in the mid-shaft of the radius to be filled with HA powder in the control group "HA" (n=18) and with a combination of HA powder and autologous BM aspirate in the test group "HA+BM" (n=18). Animals were observed daily for healing by inspection of the surgical site, and six rabbits of each group were sacrificed at 30, 60, and 90 post-operative days to perform a radiographic evaluation of defect site.

Results: Obtained results revealed a better and more rapid bone regeneration in the test group: Since the defect was rapidly and completely filled with mature bone tissue after 90 days.

Conclusion: Based on these findings, we could infer that adding a BM aspirate to HA is responsible of a better regeneration process leading to a complete filling of the defect.

Keywords: autologous bone marrow aspirate, bone regeneration, hydroxyapatite, rabbit, radial defect.


1. Salgado, A.J., Coutinho, O.P. and Reis, R.L. (2004) Bone tissue engineering: State of the art and future trends. Macromol. Biosci., 4: 743-765. [Crossref] [PubMed]

2. Rose, F.R. and Oreffo, R.O. (2002) Bone tissue engineering: Hope versus hype. Biochem. Biophys. Res. Commun., 292: 1-7. [Crossref] [PubMed]

3. Spitzer, R.S., Perka, C., Lindenhayn, K. and Zippel, H. (2002) Matrix engineering for osteogenic differentiation of rabbit periosteal cells using alpha-tricalcium phosphate particles in a three-dimensional fibrin culture. J. Biomed. Mater. Res., 59: 690-696. [Crossref] [PubMed]

4. Herberts, C.A., Kwa, M.S. and Hermsen, H.P. (2011) Risk factors in the development of stem cell therapy. J. Transl. Med., 9: 29. [Crossref] [PubMed] [PMC]

5. Dorozhkin, S. (2009) Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials, 2: 1975-2045. [Crossref]

6. Akita, S., Fukui, M., Nakagawa, H., Fujii, T. and Akino, K. (2004) Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor. Wound Repair Regen., 12: 252-259. [Crossref]

7. Hernigou, P., Mathieu, G., Poignard, A., Manicom, O., Beaujean, F. and Rouard, H. (2006) Percutaneous autologous bone-marrow grafting for non-unions. Surgical technique. J. Bone Joint Surg., 88(1): 322-327. [Crossref] [PubMed]

8. Dallari, D., Savarino, L., Stagni, C., Cenni, E., Cenacchi, A., Fornasari, P.M., Albisinni, U., Rimondi, E., Baldini, N. and Giunti, A. (2007) Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J. Bone Joint Surg., 89: 2413-2420. [Crossref]

9. Baksh, D., Zandstra, P.W. and Davies, J.E. (2007) A non-contact suspension culture approach to the culture of osteogenic cells derived from a CD49elow subpopulation of human bone marrow-derived cells. Biotechnol. Bioeng., 98: 1195-1208. [Crossref]

10. Yasuhara, S., Yasunaga, Y., Hisatome, T., Ishikawa, M., Yamasaki, T., Tabata, Y. and Ochi, M. (2010) Efficacy of bone marrow mononuclear cells to promote bone regeneration compared with isolated CD34+ cells from the same volume of aspirate. Artif. Organs., 34: 594-599. [Crossref] [PubMed]

11. Lane, J.M. and Sandhu, H.S. (1987) Current approach to experimental bone grafting. Orthop. Clin. N. Am., 18: 213-225. [PubMed]

12. Portal-Nunez, S., Lozano, D. and Esbrit, P. (2012) Role of angiogenesis on bone formation. Histol. Histopathol., 27: 559-566. [PubMed]

13. Berner, A., Reichert, J.C., Muller, M.B., Zellner, J., Pfeifer, C., Dienstknecht, T., Nerlich, M., Sommerville, S., Dickinson, I.C., Schutz, M.A. and Fuchtmeier, B. (2012) Treatment of long bone defects and non-unions: From research to clinical practice. Cell. Tissue Res., 347: 501-519. [Crossref] [PubMed]

14. Friedlaender, G.E. (1987) Bone grafts. The basic science rationale for clinical applications. J. Bone Joint Surg., 69: 786-790. [Crossref] [PubMed]

15. Shafiei-Sarvestani, Z., Bigham, A.S., Dehghani, S.N. and Nezhad, S.T. (2009) Fresh cortical autograft versus fresh cortical allograft effects on experimental bone healing in rabbits: Radiological, histopathological and biomechanical evaluation. Cell. Tissue Bank., 10: 19-26. [Crossref] [PubMed]

16. Notodihardjo, F.Z., Kakudo, N., Kushida, S., Suzuki, K. and Kusumoto, K. (2012) Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J. Craniomaxillofac. Surg., 40: 287-291. [Crossref] [PubMed]

17. Hench, L.L. (1991) Bio-ceramics: From concept to clinic. J. Am. Ceram. Soc., 74: 1487-1510. [Crossref]

18. Patka, P. (1984) Bone Replacement by Calcium Phosphate Ceramics: An Experimental Study. Ph.D. Thesis. Vrije Universiteit te Amsterdam, Amsterdam.

19. Xia, L., Lin, K., Jiang, X., Xu, Y., Zhang, M., Chang, J. and Zhang, Z. (2013) Enhanced osteogenesis through nano-structured surface design of microporous hydroxyapatite bio-ceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. J. Mater. Chem., 1: 5403-5416. [Crossref]

20. Klinge, B., Alberius, P., Isaksson, S. and Jonsson, J. (1992) Osseous response to implanted natural bone mineral and synthetic hydroxyapatite ceramic in the repair of experimental skull bone defects. J. Craniomaxillofac. Surg., 50: 241-249. [Crossref]

21. Lin, K., Chen, L. and Chang, J. (2012) Fabrication of dense hydroxyapatite nanobioceramics with enhanced mechanical properties via two-step sintering process. Int. J. Appl. Ceram. Tech., 9: 479-485. [Crossref]

22. Lin, K., Xia, L., Gan, J., Zhang, Z., Chen, H., Jiang, X. and Chang, J. (2013) Tailoring the nanostructured surfaces of hydroxyapatite bio-ceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Appl. Mater. Interfaces, 5: 8008-8017. [Crossref] [PubMed]

23. Zhang, N., Zhai, D., Chen, L., Zou, Z., Lin, K. and Chang, J. (2014) Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors. Mater. Sci. Eng. C Mater. Biol. Appl., 37: 286-291. [Crossref] [PubMed]

24. An, Y.H. and Friedman, R.J. (1999) Animal Models in Orthopedic Research. CRC Press Inc., Boca Raton, Florida.

25. Brandt, J., Henning, S., Michler, G., Hein, W., Bernstein, A. and Schulz, M. (2010) Nanocrystalline hydroxyapatite for bone repair: An animal study. J. Mater. Sci. Mater. Med., 21: 283-294. [Crossref] [PubMed]

26. Dutta, S.R., Passi, D., Singh, P. and Bhuibhar, A. (2015) Ceramic and non-ceramic hydroxyapatite as a bone graft material: A brief review. Ir. J. Med. Sci., 184(1): 101-106. [Crossref] [PubMed]

27. Kantharia, N., Naik, S., Apte, S., Kheur, M., Kheur, S. and Kale, B. (2014) Nano hydroxyapatite and its contemporary applications. J. Dent. Res. Sci. Dev., 1(1): 15-19. [Crossref]

28. Luchetti, R. (2004) Corrective osteotomy of malunited distal radius fractures using carbonated hydroxyapatite as an alternative to autogenous bone grafting. J. Hand Surg., 29: 825-834. [Crossref] [PubMed]

29. Zhou, H. and Lee, J. (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater., 7: 2769-2781. [Crossref] [PubMed]

30. Jarcho, M. (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res., 157: 259-278. [Crossref]

31. den Boer, F.C., Wippermann, B.W., Blokhuis, T.J., Patka, P., Bakker, F.C. and Haarman, H.J. (2003) Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J. Orthop. Res., 21: 521-528. [Crossref]

32. Mousavi, G. and Rezaie, A. (2011) Biomechanical effects of calcium phosphate bone cement and bone matrix gelatin mixture on healing of bone defect in rabbits. World Appl. Sci. J., 13: 2042-2046.

33. Udehiya, R.K., Amarpal, Aithal, H.P., Kinjavdekar, P., Pawde, A.M., Singh, R. and Sharma, G.T. (2013) Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. Res. Vet. Sci., 94: 743-752. [Crossref] [PubMed]

34. Bigham-Sadegh, A., Karimi, I., Shadkhast, M. and Mahdavi, M.H. (2015) Hydroxyapatite and demineralized calf fetal growth plate effects on bone healing in rabbit model. J. Orthop. Traumatol., 16: 141-149. [Crossref] [PubMed] [PMC]

35. Kim, R.W., Kim, J.H. and Moon, S.Y. (2016) Effect of hydroxyapatite on critical-sized defect. Maxillofac. Plast. Reconstr. Surg., 38(1): 26. [Crossref]

36. Ohba, S., Sumita, Y., Umebayashi, M., Yoshimura, H., Yoshida, H., Matsuda, S., Kimura, H., Asahina, I. and Sano, K. (2016) Only bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma. Arch. Oral Biol., 61: 23-27. [Crossref] [PubMed]

37. Shafiei-Sarvestani, Z., Oryan, A., Bigham, A.S. and Meimandi-Parizi, A. (2012) The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: Radiological, biomechanical, macroscopic and histopathologic evaluation. Int. J. Surg., 10: 96-101. [Crossref]

38. Yamamoto, M., Hokugo, A., Takahashi, Y., Nakano, T., Hiraoka, M. and Tabata, Y. (2015) Combination of BMP-2-releasing gelatin/b-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects. Biomaterials, 56: 18-25. [Crossref] [PubMed]

39. Masaoka, T., Yamada, T., Yuasa, M., Yoshii, T., Okawa, A., Morita, S., Kozaka, Y., Hirano, M. and Sotome, S. (2016) Biomechanical evaluation of the rabbit tibia after implantation of porous hydroxyapatite/collagen in a rabbit model. J. Orthop. Sci., 21: 230-236. [Crossref] [PubMed]

40. Dilogo, I.H., Kamal, A.F., Gunawan, B. and Rawung, R.V. (2015) Autologous mesenchymal stem cell (MSCs) transplantation for critical-sized bone defect following a wide excision of osteofibrous dysplasia. Int. J. Surg. Case Rep., 17: 106-111. [Crossref] [PubMed] [PMC]

41. Hogel, F., Hoffmann, S., Hungerer, S., Fleischacker, E., Ullamann, T., Betz, O.B. and Augat, P. (2015) Bone healing of critical size defects of the rat femur after the application of bone marrow aspirate and two different rh-BMP7 concentrations. Eur. J. Trauma. Emerg. Surg., 41: 557-563. [Crossref] [PubMed]

42. Gali, R.S., Devireddy, S.K., Rao, N.M., Kumar, R.V.K., Kanubaddy, S.R., Dasari, M., Sowjanya, K. and Pathapati, R.M. (2016) Autogenous bone marrow aspirate coated synthetic hydroxyapatite for reconstruction of maxillo-mandibular osseous defects: A prospective study. J. Maxillofac. Oral Surg., 16: 1-8.

43. Urban, V.S., Kiss, J., Kovacs, J., Gocza, E., Vas, V., Monostori, E. and Uher, F. (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells., 26: 244-253. [Crossref]

44. McGaw, W.H. and Harbin, M. (1934) The role of bone marrow and endosteum in bone regeneration. An experimental study of bone marrow and endostea transplants. J. Bone Joint Surg., 16: 816-821.

45. Jiang, X., Zou, S., Ye, B., Zhu, S., Liu, Y. and Hu, J. (2010) bFGF-modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone, 46: 1156-1161. [Crossref] [PubMed]

46. Saad, K.A., Abu-Shahba, A.G., El-Drieny, E.A. and Khedr, M.S. (2015) Evaluation of the role of autogenous bone-marrow-derived mesenchymal stem cell transplantation for the repair of mandibular bone defects in rabbits. J. Craniomaxillofac. Surg., 43: 1151-1160. [Crossref]