Open Access
Research (Published online: 30-06-2017)
23. Virulence gene profiles of Arcobacter species isolated from animals, foods of animal origin, and humans in Andhra Pradesh, India
M. Soma Sekhar, S. R. Tumati, B. K. Chinnam, V. S. Kothapalli and N. Mohammad Sharif
Veterinary World, 10(6): 716-720

M. Soma Sekhar: Department of Veterinary Public Health and Epidemiology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh, India.
S. R. Tumati: Department of Veterinary Public Health and Epidemiology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh, India.
B. K. Chinnam: Department of Veterinary Public Health and Epidemiology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh, India.
V. S. Kothapalli: Department of Veterinary Microbiology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh, India.
N. Mohammad Sharif: Department of Veterinary Microbiology, College of Veterinary Science, Tirupati, Andhra Pradesh, India.

doi: 10.14202/vetworld.2017.716-720

Share this article on [Facebook] [LinkedIn]

Article history: Received: 09-03-2017, Accepted: 12-05-2017, Published online: 30-06-2017

Corresponding author: M. Soma Sekhar

E-mail: somasekharmadupuru@gmail.com

Citation: Sekhar MS, Tumati SR, Chinnam BK, Kothapalli VS, Sharif NM (2017) Virulence gene profiles of Arcobacter species isolated from animals, foods of animal origin, and humans in Andhra Pradesh, India, Veterinary World, 10(6): 716-720.
Abstract

Aim: This study aimed to detect putative virulence genes in Arcobacter species of animal and human origin.

Materials and Methods: A total of 41 Arcobacter isolates (16 Arcobacter butzleri, 13 Arcobacter cryaerophilus, and 12 Arcobacter skirrowii) isolated from diverse sources such as fecal swabs of livestock (21), raw foods of animal origin (13), and human stool samples (7) were subjected to a set of six uniplex polymerase chain reaction assays targeting Arcobacter putative virulence genes (ciaB, pldA, tlyA, mviN, cadF, and cj1349).

Results: All the six virulence genes were detected among all the 16 A. butzleri isolates. Among the 13 A. cryaerophilus isolates, cadF, ciaB, cj1349, mviN, pldA, and tlyA genes were detected in 61.5, 84.6, 76.9, 76.9, 61.5, and 61.5% of isolates, respectively. Among the 12 A. skirrowii isolates, cadF, ciaB, cj1349, mviN, pldA, and tlyA genes were detected in 50.0, 91.6, 83.3, 66.6, 50, and 50% of isolates, respectively.

Conclusion: Putative virulence genes were detected in majority of the Arcobacter isolates examined. The results signify the potential of Arcobacter species as an emerging foodborne pathogen.

Keywords: Arcobacter, Arcobacter butzleri, Arcobacter cryaerophilus, Arcobacter skirrowii, polymerase chain reaction, virulence genes.

References

1. Vandamme, P., Vancanneyt, M., Pot, B., Mels, L., Hoste, B., Dewettinck, D., Vlaes, L., Van den Borre, C., Higgins, R., Hommez, J. and Kersters, K. (1992) Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov, an aerotolerant bacterium isolated from veterinary specimens. Int. J. Syst. Evol. Microbiol., 42(3): 344-356. [Crossref]

2. Collado, L. and Figueras, M.J. (2011) Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin. Microbiol. Rev., 24(1): 174-192. [Crossref] [PubMed] [PMC]

3. Patyal, A., Rathore, R.S., Mohan, H.V., Dhama, K. and Kumar, A. (2011) Prevalence of Arcobacter spp. in humans, animals and foods of animal origin including sea food from India. Transbound. Emerg. Dis., 58(5): 402-410. [Crossref] [PubMed]

4. Ramees, T.P., Rathore, R.S., Bagalkot, P.S., Mohan, H.V., Kumar, A. and Dhama, K. (2014) Detection of Arcobacter butzleri and Arcobacter cryaerophilus in clinical samples of humans and foods of animal origin by cultural and multiplex PCR based methods. Asian J. Anim. Vet. Adv., 9: 243-252. [Crossref]

5. Mohan, H.V., Rathore, R.S., Dhama, K., Ramees, T.P., Patyal, A., Bagalkot, P.S., Wani, M.Y., Bhilegaonkar, K.N. and Kumar, A. (2014) Prevalence of Arcobacter spp. In humans, animals and foods of animal origin in India based on cultural isolation, antibiogram, PCR and multiplex PCR detection. Asian J. Anim. Vet. Adv., 9(8): 452-466. [Crossref]

6. ICMSF. (2002) Microorganisms in foods. 7. Microbiological testing in food safety management. International Commission on Microbiological Specifications for Foods. Kluwer Academic Plenum Publishers, New York.

7. Miller, W.G., Parker, C.T., Rubenfield, M., Mendz, G.L., Wosten, M.M., Ussery, D.W., Stolz, J.F., Binnewies, T.T., Hallin, P.F., Wang, G. and Malek, J.A. (2007) The complete genome sequence and analysis of the epsilon proteobacterium Arcobacter butzleri. PLoS One, 2(12): e1358. [Crossref] [PubMed] [PMC]

8. Levican, A., Alkeskas, A., Gunter, C., Forsythe, S.J. and Figueras, M.J. (2013) Adherence to and invasion of human intestinal cells by Arcobacter species and their virulence genotypes. Appl. Environ. Microbiol., 79(16): 4951-4957. [Crossref] [PubMed] [PMC]

9. Karadas, G., Sharbati, S., Hanel, I., Messelhauber, U., Glocker, E., Alter, T. and Golz, G. (2013) Presence of virulence genes, adhesion and invasion of Arcobacter butzleri. J. Appl. Microbiol., 115(2): 583-590. [Crossref] [PubMed]

10. Vandamme, P., Dewhirst, F.E., Paster, B.J., On, S.L.W., Brenner, D.J., Kreig, N.P., Staley, J.T. and Garrity, G.M. (2005) Genus II. Arcobacter. In: Bergey's Manual of Systematic Bacteriology. Springer, New York, USA.

11. Harmon, K.M. and Wesley, I.V. (1996) Identification of Arcobacter isolates by PCR. Lett. Appl. Microbiol., 23(4): 241-244. [Crossref]

12. Houf, K., Tutenel, A., de Zutter, L., van Hoof, J. and Vandamme, P. (2000) Development of a multiplex PCR assay for the simultaneous detection and identification of Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii. FEMS Microbiol. Lett., 193(1): 89-94. [Crossref]

13. Douidah, L., de Zutter, L., Bare, J., de Vos, P., Vandamme, P., Vandenberg, O., van den Abeele, A.M. and Houf, K. (2012) Occurrence of putative virulence genes in Arcobacter species isolated from humans and animals. J. Clin. Microbiol., 50(3): 735-741. [Crossref] [PubMed] [PMC]

14. Collado, L., Jara, R., Vasquez, N. and Telsaint, C. (2014) Antimicrobial resistance and virulence genes of Arcobacter isolates recovered from edible bivalve molluscs. Food Control, 46: 508-512. [Crossref]

15. Tabatabaei, M., Aski, H.S., Shayegh, H. and Khoshbakht, R. (2014) Occurrence of six virulence-associated genes in Arcobacter species isolated from various sources in Shiraz, Southern Iran. Microb. Pathog., 66: 1-4. [Crossref] [PubMed]

16. Ferreira, S., Fraqueza, M.J., Queiroz, J.A., Domingues, F.C. and Oleastro, M. (2013) Genetic diversity, antibiotic resistance and biofilm-forming ability of Arcobacter butzleri isolated from poultry and environment from a Portuguese slaughterhouse. Int. J. Food Microbiol., 162(1): 82-88. [Crossref] [PubMed]

17. Ho, H.T., Lipman, L.J., Hendriks, H.G., Tooten, P.C., Ultee, T. and Gaastra, W. (2007) Interaction of Arcobacter spp. with human and porcine intestinal epithelial cells. FEMS Immunol. Med. Microbiol., 50(1): 51-58. [Crossref] [PubMed]

18. Bucker, R., Troeger, H., Kleer, J., Fromm, M. and Schulzke, J.D. (2009) Arcobacter butzleri induces barrier dysfunction in intestinal HT-29/B6 cells. J. Infect. Dis., 200(5): 756-764. [Crossref] [PubMed]

19. Etonsi, M.A. (2013) Studies on Arcobacter species, Their Isolation and Pathogenicity. Ph.D Thesis Submitted to Heriot-Watt University, Scotland.