Open Access
Research (Published online: 09-06-2017)
8. Effect of high and low roughage total mixed ration diets on rumen metabolites and enzymatic profiles in crossbred cattle and buffaloes
S. K. Sinha, V. B. Chaturvedi, Putan Singh, L. C. Chaudhary, Mayukh Ghosh and Swati Shivani
Veterinary World, 10(6): 616-622

S. K. Sinha: Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India; Department of Animal Nutrition, Ranchi Veterinary College, Birsa Agricultural University, Kanke, Ranchi - 834 006, Jharkhand, India.
V. B. Chaturvedi: Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
Putan Singh: Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
L. C. Chaudhary: Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
Mayukh Ghosh: Department of Veterinary Biochemistry, Ranchi Veterinary College, Birsa Agricultural University, Kanke, Ranchi - 834 006, Jharkhand, India.
Swati Shivani: Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India.

doi: 10.14202/vetworld.2017.616-622

Share this article on [Facebook] [LinkedIn]

Article history: Received: 26-11-2016, Accepted: 19-04-2017, Published online: 09-06-2017

Corresponding author: S. K. Sinha

E-mail: subodh.rvc@gmail.com

Citation: Sinha SK, Chaturvedi VB, Singh P, Chaudhary LC, Ghosh M, Shivani S (2017) Effect of high and low roughage total mixed ration diets on rumen metabolites and enzymatic profiles in crossbred cattle and buffaloes, Veterinary World, 10(6):616-622.
Abstract

Aim: A comparative study was conducted on crossbred cattle and buffaloes to investigate the effect of feeding high and low roughage total mixed ration (TMR) diets on rumen metabolites and enzymatic profiles.

Materials and Methods: Three rumen-fistulated crossbred cattle and buffalo were randomly assigned as per 3x3 switch over design for 21-days. Three TMR diets consisting of concentrate mixture, wheat straw and green maize fodder in the ratios of (T1) 60:20:20, (T2) 40:30:30, and (T3) 20:40:40, respectively, were fed to the animals ad libitum. Rumen liquor samples were collected at 0, 2, 4, 6, and 8 h post feeding for the estimation of rumen biochemical parameters on 2 consecutive days in each trial.

Results: The lactic acid concentration and pH value were comparable in both species and treatments. Feed intake (99.77±2.51 g/kg body weight), ruminal ammonia nitrogen, and total nitrogen were significantly (p<0.05) higher in buffalo and in treatment group fed with high concentrate diet. Production of total volatile fatty acids (VFAs) was non-significant (p>0.05) among treatments and significantly (p<0.05) greater in crossbred cattle than buffaloes. Molar proportions of individual VFAs propionate (C3), propionate:butyrate (C3:C4), and (acetate+butyrate):propionate ([C2+C4]:C3) ratio in both crossbred cattle and buffalo were not affected by high or low roughage diet, but percentage of acetate and butyrate varied significantly (p<0.05) among treatment groups. Activities of microbial enzymes were comparable among species and different treatment groups. A total number of rumen protozoa were significantly (p<0.05) higher in crossbred cattle than buffaloes along with significantly (p<0.05) higher population in animal fed with high concentrate diet (T1).

Conclusion: Rumen microbial population and fermentation depend on constituents of the treatment diet. However, microbial enzyme activity remains similar among species and different treatments. High concentrate diet increases number of rumen protozoa, and the number is higher in crossbred cattle than buffaloes.

Keywords: buffalo, crossbred cattle, rumen ecology, rumen metabolites.

References

1. Chanthakhoun, V., Wanapat, M., Kongmun, P. and Cherdthong, A. (2012) Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livest. Sci., 143: 172-176. [Crossref]

2. Lwin, K.O., Kondo, M., Ban-Tokuda, T., Lapitan, R.M., Del-Barrio, A.N., Fujihara, T. and Matsui, H. (2012) Ruminal fermentation and microbial ecology of buffaloes and cattle fed the same diet. Anim. Sci. J., 83: 767-776. [Crossref] [PubMed]

3. Jabari, S., Eslami, M., Chaji, M., Mohammadabadi, T. and Bojarpour, M. (2014) Comparison digestibility and protozoa population of Khuzestan water buffalo and Holstein cow. Vet. Res. Forum, 5(4): 295-300. [PubMed] [PMC]

4. Franzolin, R. and Wright, A.G. (2016) Microorganisms in the rumen and reticulum of bu?alo (Bubalus bubalis) fed two di?erent feeding systems. BMC Res. Notes, 9: 243. [Crossref] [PubMed] [PMC]

5. Khejornsart, P., Wanapat, M. and Rowlinson, P. (2011) Diversity of anaerobic fungi and rumen fermentation characteristic in swamp buffalo and beef cattle fed on different diets. Livest. Sci., 139(3): 230-236. [Crossref]

6. Rafiei, M., Chaji, M., Mohammadabadi, T. and Sari, S. (2013) The comparison digestibility of steam treated sugarcane pith by rumen bacteria or rumen microorganisms of Holstein cow and buffalo of Khuzestan. J. Rumin. Res., 1(1): 53-75.

7. Vinh, N.T., Wanapat, M., Khejornsart, P. and Kongmun, P. (2011) Studies of diversity of rumen microorganisms and fermentation in swamp bu?alo fed di?erent diets. J. Anim. Vet. Adv., 10: 406-414. [Crossref]

8. Wright, A.D.G. and Klieve, A.V. (2011) Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim. Feed. Sci. Technol., 166: 248-253. [Crossref]

9. Chaji, M. and Mohammadabadi, T. (2011) The investigation of in vitro fermentation of sugarcane pith treated with low temperature steam and sulfuric acid by isolated rumen microbial fractions. Anim. Nutr. Feed. Technol., 11: 185-193.

10. Franzolin, R., St Pierre, B., Northwood, K. and Wright, A.D.G. (2012) Analysis of rumen methanogen diversity in water bu?aloes (Bubalus bubalis) under three di?erent diets. Microb. Ecol., 64: 131-139. [Crossref] [PubMed]

11. Wanapat, M., Pilajun, R., Polyorach, S., Cherdthong, A., Khejornsart, P. and Rowlinson, P. (2013) E?ect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp bu?aloes. Asian Aust. J. Anim. Sci., 26: 952-960. [Crossref]

12. Nathani, N.M., Patel, A.K., Dhamannapatil, P.S., Kothari, R.K., Singh, K.M. and Joshi, C.G. (2013) Comparative evaluation of rumen metagenome community using qPCR and MG RAST. AMB Expr., 3: 55. [Crossref] [PubMed] [PMC]

13. Shakarami, F., Chaji, M., Eslami, M., Mohammadabadi, T. and Bojarpour, M. (2015) The comparison of in vitro digestibility of wheat straw by rumen anaerobic fungi of Khuzestan buffalo and Holstein cattle. Iran J Apppl. Anim. Sci., 5(2): 285-292.

14. Wadhwa, M., Bakshi, M.P.S. and Makkar, H.P.S. (2016) Modifying gut microbiomes in large ruminants: Opportunities in non-intensive husbandry systems. Anim. Front., 6(2): 27-36. [Crossref]

15. Wanapat, M., Sommart, K., Wachirapakorn, C., Uriyapongson, S. and Wattanachant, C. (1994) Recent advances in swamp buffalo nutrition and feeding. In: Wanapat, M. and Sommart, K., editors. Proceeding of the 1st Asian Buffalo Association Congress. January 17-21. Khon Kaen University, Khon Kaen, Thailand.

16. Franzolin, R., Rosales, F.P. and Soares, W.V.B. (2010) Effects of dietary energy and nitrogen supplements on rumen fermentation and protozoa population in buffalo and zebu cattle. Rev. Bras. Zootec., 39: 549-555. [Crossref]

17. Wanapat, M., Phesatcha, K. and Kang, S. (2016) Rumen adaptation of swamp buffaloes (Bubalus bubalis) by high level of urea supplementation when fed on rice straw-based diet. Trop. Anim. Health Prod., 48(6): 1135-1140. [Crossref] [PubMed]

18. van Soest, P.J. (1994) Nutritional Ecology of the Ruminant. 2nd ed. Cornell University Press, Ithaca, NY.

19. Weatherburn, M.W. (1967) Phenol hypochlorite reaction for determination of ammonia. Anal. Chem., 39: 971-974. [Crossref]

20. Cottyn, B.G. and Boucque, C.V. (1968) Rapid method for the gas chromatographic determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem., 16: 105-107. [Crossref]

21. AOAC. (1995) Association of Official Analytical Chemist. 16th ed. Association of Official Analytical Chemists, Washington, DC.

22. Barker, S.B. and Summerson, W.H. (1941) The calorimetric determination of lactic acid in biological materials. J. Biol. Chem., 138: 535-554.

23. Hristov, A.N., McAllister, T.A. and Cheng, K.J. (1999) Effect of diet, digesta processing, freezing and extraction procedure on some polysaccharide degrading activities of ruminal contents. Can. J. Anim. Sci., 79: 73-81. [Crossref]

24. Miller, G.L. (1959) Modified DNS method for reducing sugars. Anal. Chem., 31: 426-428. [Crossref]

25. Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.C. (1951) Protein measurement with the folin-phenol reagent. J. Biol. Chem., 183: 265.

26. Brock, F.M., Forsberg, C.L. and Buchanan-Smith, J.G. (1982) Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl. Environ. Microbiol., 44: 561-569. [PubMed] [PMC]

27. Kamra, D.N., Sawal, R.K., Pathak, N.N., Kewalramani, N. and Agarwal, N. (1991) Diurnal variation in ciliate protozoa in the rumen of black buck (Antilope cervicapra) fed green forage. J. Appl. Microbiol., 13: 165-167. [Crossref]

28. Snedecor, G.W. and Cochran, W.G. (1994) Statistical Methods. 8th ed. Iowa State University Press, Ames.

29. Wanapat, M. and Pimpa, O. (1999) Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian Australas. J. Anim. Sci., 12: 904-907. [Crossref]

30. Baraka, T.A. (2012) Comparative studies of rumen pH, total protozoa count, generic and species composition of ciliates in camel, buffalo, cattle, sheep and goat in Egypt. J. Am. Sci., 8(2): 655-669.

31. Khajarern, S. and Khajarern, J.M. (1990) Feeding swamp buffalo for milk production. Feeding dairy cows in the tropics. FAO Anim. Prod. Health Pap., 86: 115-126.

32. Bhatia, S.K., Pradhan, K., Sangwan, D.C., Singh, S. and Sagar, V. (1995) Ruminal degradation of fibrous component of various feeds in cattle and buffalo. Indian J. Anim. Sci., 65: 208.

33. Suwanlee, S. and Wanapat, M. (1994) Effect of ruminal NH3-N on total volatile fatty acid, bacterial population and digestibility in swamp buffaloes. In: Wanapat, M. and Sommart, K., editors. Proceedings of the 1st Asian Buffalo Association Congress. Khon Kaen University, Thailand.

34. Tewatia, B.S. and Bhatia, S.K. (1998) Comparative ruminal biochemical and digestion related physiological characteristics in buffaloes and cattle fed a fibrous diet. Buffalo J., 14: 161-170.

35. Gandra, J.R., Freitas, J.E.Jr., Barletta, R.V., Filho, M.M., Gimenes, L.U., Vilela, F.G., Baruselli, P.S. and Renno, F.P. (2011) Productive performance, nutrient digestion and metabolism of Holstein (Bos taurus) and Nellore (Bos taurus indicus) cattle and Mediterranean Buffaloes (Bubalis bubalis) fed with corn-silage based diets. Livest. Sci., 140: 283-291. [Crossref]

36. Cutrignelli, M.I., D'urso, S., Tudisco, R., Grossi, M. and Piccolo, V. (2007) Effect of ruminant species (Bovine vs buffalo) and source of inoculum (rumen liquor vs faeces) on in vitro fermentation. Ital. J. Anim. Sci., 6: 295-297.

37. Franzolin, R. (1994) Feed efficiency: A comparison between cattle and buffalo. Buffalo J. Suppl., 2: 39-50.

38. Calabro, S., Moniello, G., Piccolo, V., Bovera, F., Infascelli, F., Tudisco, R. and Cutrignelli, M.I. (2008) Rumen fermentation and degradability in buffalo and cattle using the in vitro gas production technique. J. Anim. Physiol. Anim. Nutr., 92: 356-362. [Crossref] [PubMed]

39. Calabro, S., Williams, B.A., Piccolo, V., Infascelli, F. and Tamminga, S. (2004) A comparison between buffalo (Bubalus bubalis) and cow (Bos taurus) rumen fluids in terms of the in vitro fermentation characteristics of three fibrous feedstuffs. J. Sci. Food Agric., 84: 645-652. [Crossref]

40. Santra, A. and Karim, S.A. (2002) Influence of ciliate protozoa on biochemical changes and hydrolytic enzyme profile in the rumen ecosystem. J. Appl. Microbiol., 92: 801-811. [Crossref] [PubMed]

41. Hungate, R.E. (1966) The Rumen and its Microbes. Academic Press, New York. p533.

42. Hoover, W.H., Tucker, C., Harris, J., Sniffen, C.J. and de Ondarza, M.B. (2006) Effects of non-structural carbohydrate level and starch: Sugar ratio on microbial metabolism in continuous culture of rumen contents. Anim. Feed. Sci. Technol., 128: 307-319. [Crossref]

43. Ichinohe, T., Orden, E.A., Delbarrio, A.N., Lapitan, R.M., Fujihara, T., Cruz, L.C. and Kanai, Y. (2004) Comparison of voluntary feed intake, rumen passage and degradation kinetics between crossbred Brahmam cattle (Bos indicus) and swamp buffaloes (Bubalus bubalis) fed a fattening diet based on corn silage. J. Anim. Sci., 75: 533-540. [Crossref]

44. Lapitan, R.M., Del-Barrio, A.N., Katsube, O., Ban-Tokuda, T., Orden, E.A., Robles, A.Y., Kanai, L.C., Cruz, Y. and Fujihara, T. (2008) Comparison of fattening performance in Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis) fed on high roughage diet. J. Anim. Sci., 79: 76-82. [Crossref]

45. Dehority, B.A. (2003) Rumen Microbiology. Nottingham University Press, Thrumpton, p372.

46. Kurar, C.K., Gupta, B.N. and Mohini, M. (1988) Protozoal status in strained rumen liquor of cattle and buffaloes. Indian J. Anim. Sci., 58: 112-115.