Open Access
Research (Published online: 28-10-2017)
19. Virulence and extended-spectrum β-lactamase encoding genes in Escherichia coli recovered from chicken meat intended for hospitalized human consumption
Gamal A. Younis, Rasha M. Elkenany, Mohamed A. Fouda and Noura F. Mostafa
Veterinary World, 10(10): 1281-1285

Gamal A. Younis: Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Egypt.
Rasha M. Elkenany: Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Egypt.
Mohamed A. Fouda: Department of Nutrition, Gastroenterology Surgery Center, Mansoura University, Egypt.
Noura F. Mostafa: Department of Nutrition, Gastroenterology Surgery Center, Mansoura University, Egypt.

doi: 10.14202/vetworld.2017.1281-1285

Share this article on [Facebook] [LinkedIn]

Article history: Received: 16-05-2017, Accepted: 26-09-2017, Published online: 28-10-2017

Corresponding author: Rasha M. Elkenany


Citation: Younis GA, Elkenany RM, Fouda MA, Mostafa NF (2017) Virulence and extended-spectrum β-lactamase encoding genes in Escherichia coli recovered from chicken meat intended for hospitalized human consumption, Veterinary World, 10(10): 1281-1285.

Aim: This study describes the prevalence of Escherichia coli in frozen chicken meat intended for human consumption with emphasis on their virulence determinants through detection of the virulence genes and recognition of the extended-spectrum β-lactamase (ESBL) encoding genes (blaOXA and blaTEM genes).

Materials and Methods: A total of 120 frozen chicken meat samples were investigated for isolation of E. coli. All isolates were subjected to biochemical and serological tests. Eight serotypes isolated from samples were analyzed for the presence of various virulence genes (stx1, stx2, and eae A genes) using multiplex polymerase chain reaction (PCR) technique. Moreover, the strains were evaluated for the ESBL encoding genes (blaTEM and blaOXA).

Results: Overall, 11.66% (14/120) chicken meat samples carried E. coli according to cultural and biochemical properties. The most predominant serotypes were O78 and O128: H2 (21.5%, each), followed by O121: H7 and O44: H18. Molecular method detected that 2 strains (25%) harbored stx1, 3 strains (37.5%) stx2, and 3 strains (37.5%) both stx1 and stx2, while 1 (12.5%) strain carried eae A gene. Particularly, only O26 serotype had all tested virulence genes (stx1, stx2, and eae A). The results revealed that all examined 8 serotypes were Shiga toxin-producing E. coli (STEC). The ESBL encoding genes (blaTEM and blaOXA) of STEC were detected in 4 (50%) isolates by multiplex PCR. The overall incidence of blaTEM and blaOXA genes was 3 (37.5%) and 2 (25%) isolates.

Conclusion: The present study indicates the prevalence of virulent and ESBL-producing E. coli in frozen chicken meat intended for hospitalized human consumption due to poor hygienic measures and irregular use of antibiotics. Therefore, the basic instructions regarding good hygienic measures should be adapted to limit public health hazard.

Keywords: blaOXA, blaTEM, eaeA, Escherichia coli, extended-spectrum β-lactamases, stx1, stx2.


1. Trkov, M., Rupel, T., Bertok, D.A., Trontelj, S., Avgutin, G. and Avgutin, J.A. (2014) Molecular Characterization of Escherichia coli strains isolated from different food sources. Food Technol. Biotechnol., 52(2): 255-262.

2. Nataro, J.P. and Kaper, J.B. (1998) Diarrheagenic Escherichia coli. J. Clin. Microbiol. Rev., 11: 132-201.

3. Kaper, J., Nataro, J. and Mobley, H. (2004) Pathogenic Escherichia coli. Nat. Rev. Microbiol., 2: 123-140. [Crossref] [PubMed]

4. Mainil, J. (2013) Escherichia coli virulence factors. Vet. Immunol. Immunopathol., 152: 2-12. [Crossref] [PubMed]

5. Mainil, J.G. and Daube, G. (2005) Verotoxigenic Escherichia coli from animals, humans and foods: Who's who? J. Appl. Microbiol., 98: 1332-1334. [Crossref] [PubMed]

6. Melton-Celsa, A.R. and O'Brien, A.D. (1998) Structure, biology, and relative toxicity of Shiga toxin family members for cells and animals. In: Kaper, J.B. and O'Brien, A.D., editors. Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. American Society or Microbiology, Washington, DC. p121-128.

7. Law, D. (2000) Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J. Appl. Microbiol., 88: 729-745. [Crossref] [PubMed]

8. Livermore, D.M. and Woodford, N. (2006) The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol., 14: 413-420. [Crossref] [PubMed]

9. Carrer, A., Poirel, L., Yilmaz, M., Akan, O.A., Feriha, C., Cuzon, G., Matar, G., Honderlick, P. and Nordmann, P. (2010) Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob. Agents Chemother., 54: 1369-1373. [Crossref] [PubMed] [PMC]

10. Campos, C.B., Fenner, I., Wiese, N., Lensing, C., Christner, M., Rohde, H., Aepfelbacher, M., Fenner, T. and Hentschke, M. (2014) Prevalence and genotypes of extended spectrum beta-lactamases in Enterobacteriaceae isolated from human stool and chicken meat in Hamburg, Germany. Int. J. Med. Microbiol., 304(5-6): 678-684. [Crossref] [PubMed]

11. Hall, M.A.L., Dierikx, C.M., Stuart, J.C, Voets, G.M., Munckhof, M.P., Zandbergen, A.E, Platteel, T., Fluit, A.C., Bruinsma, V.S., Scharinga, J., Bonten, M.G.M., Mevius, D.J. and National ESBL Surveillance Group. (2011) Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect., 17: 873-880. [Crossref] [PubMed]

12. Kok, T., Worswich, D. and Gowans, E. (1996) Some serological techniques for microbial and viral infections. In: Collee, J., Fraser, A., Marmion, B. and Simmons, A., editors. Practical Medical Microbiology. 14th ed. Churchill Livingstone, UK, Edinburgh.

13. Shah, D., Shringi, S., Besser, T. and Call, D. (2009), In: Liu, D. editors. Molecular Detection of Foodborne Pathogens. Taylor and Francis Group, Florida, USA, CRC Press, Boca Raton. p369-389.

14. Dhanashree, B. and Mallya, S. (2008) Detection of shiga-toxigenic Escherichia coli (STEC) in diarrhoeagenic stool and meat samples in Mangalore, India. Indian J. Med. Res., 128: 271-277. [PubMed]

15. Mazaheri, S., Ahrabi, S. and Aslani, M. (2014) Shiga toxin-producing Escherichia coli isolated from lettuce samples in Tehran, Iran. Jundishapur. J. Microbiol., 7(11): 1-6. [Crossref]

16. Perez, F., Jones, H., Hanson, N. and Geyer, C. (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother., 51: 3471-3484. [Crossref] [PubMed] [PMC]

17. Ukut, I.O., Okonko, I.O., Ikpoh, I.S., Nkang, A.O., Udeze, A.O., Babalola, T.A., Mejeha, O.K. and Fajobi, E.A. (2010) Assessment of bacteriological quality of fresh meats sold in Calabar Metropolis, Nigeria. Electron. J. Environ. Agric. Food Chem., 9(1): 89-100.

18. Momtaz, H., Rahimi, E. and Moshkelani, S. (2012) Molecular detection of antimicrobial resistance genes in E. coli isolated from slaughtered commercial chickens in Iran. Vet. Med., 57(4): 193-197.

19. Rashid, M., Kotwal, S.K., Malik, M.A. and Singh, M. (2013) Prevalence, genetic profile of virulence determinants and multidrug resistance of Escherichia coli isolates from foods of animal origin. Vet. World, 6(3): 139-142. [Crossref]

20. Adeyanju, G.T. and Ishola, O. (2014) Salmonella and E. coli contamination of poultry meat from a processing plant and retail markets in Ibadan, Oyo State, Nigeria. Springerplus, 3: 139. [Crossref] [PubMed] [PMC]

21. Park, H.J., Yoon, J.W., Heo, E.J., Ko, E.K., Kim, K.Y., Kim, Y.J., Yoon, H.J., Wee, S.H., Park, Y.H. and Moon, J.S. (2015) Antibiotic resistance and virulence potentials of Shiga toxin-producing E. coli isolates from raw meats of slaughterhouses and retail markets in Korea. J. Microbiol. Biotechnol., 25(9): 1460-1466. [Crossref] [PubMed]

22. Ray, B., editor. (2004) Fundamental Food Microbiology. CRC Press, Boca Raton, Florida.

23. Ewers, C., Janssen, T., Kiessling, S., Philipp, H.C. and Wieler, L.H. (2004) Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from coli septicemia in poultry. Vet. Microbiol., 104: 91-101. [Crossref] [PubMed]

24. Pannuch, M., Sirikaew, S., Nakaguchi, Y., Nishibuchi, M. and Sukhumungoon, P. (2014) Quantification of enter pathogenic Escherichia coli from retailed meats. Int. Food Res. J., 21(2): 547-551.

25. Momtaz, H. and Jamshidi, A. (2013) Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: Serogroups, virulence factors, and antimicrobial resistance properties. Poult. Sci., 92: 1305-1313. [Crossref]

26. Schmidt, H., Beutin L. and Karch, H. (1995) Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect. Immun., 63: 1055-1061. [PubMed] [PMC]

27. Mbanga, J., Ncube, V. and Magumura, A. (2016) Detection of extended spectrum β-lactamase producing Escherichia coli in retail chicken meat and humans in Bulawayo, Zimbabwe. Am. J. Res. Commun., 4(9): 190-207.

28. Kim, T.E., Jeong, Y.W., Cho, S., Kim, S.J. and Kwon, H.J. (2007) Chronological study of antibiotic resistances and their relevant genes in Korean avian pathogenic Escherichia coli isolates. J. Clin. Microbiol., 45: 3309-3315. [Crossref] [PubMed] [PMC]

29. Bhoomika, B., Shakya, S, Patyal, A. and Gade, NE (2016) Occurrence and characteristics of extended-spectrum β-lactamases producing Escherichia coli in foods of animal origin and human clinical samples in Chhattisgarh, India. Vet. World, 9: 996-1000. [Crossref]