Open Access
Research (Published online: 01-09-2017)
1. Acute toxicity of commercial atrazine in Piaractus mesopotamicus: Histopathological, ultrastructural, molecular, and genotoxic evaluation
Paula Pereira de Paiva, Mariana Cruz Delcorso, Valquiria Aparecida Matheus, Sonia Claudia do Nascimento de Queiroz, Carla Beatriz Collares-Buzato and Sarah Arana
Veterinary World, 10(9): 1008-1019

Paula Pereira de Paiva: Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Po. Box 6109, 13083-970, Campinas, SP, Brazil.
Mariana Cruz Delcorso: Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Po. Box 6109, 13083-970, Campinas, SP, Brazil.
Valquiria Aparecida Matheus: Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Po. Box 6109, 13083-970, Campinas, SP, Brazil.
Sonia Claudia do Nascimento de Queiroz: Laboratory of Residues and Contaminants, Embrapa Environment, Jaguariuna, SP, Brazil.
Carla Beatriz Collares-Buzato: Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Po. Box 6109, 13083-970, Campinas, SP, Brazil.
Sarah Arana: Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Po. Box 6109, 13083-970, Campinas, SP, Brazil.

doi: 10.14202/vetworld.2017.1008-1019

Share this article on [Facebook] [LinkedIn]

Article history: Received: 07-02-2017, Accepted: 01-08-2017, Published online: 01-09-2017

Corresponding author: Sarah Arana


Citation: de Paiva PP, Delcorso MC, Matheus VA, de Queiroz SCN, Collares-Buzato CB, Arana S (2017) Acute toxicity of commercial atrazine in Piaractus mesopotamicus: Histopathological, ultrastructural, molecular, and genotoxic evaluation, Veterinary World, 10(9): 1008-1019.

Aim: The aim of this work was to evaluate the sensitivity of Pacu fingerlings (Piaractus mesopotamicus) by measuring the effects of median lethal concentration (LC50) of atrazine (ATZ - 28.58 mg/L) after acute exposure (up to 96 h).

Materials and Methods: The fish were exposed to the LC50 of ATZ for 96 h (28.58 mg/L) in a static system. During the experiment, the fingerlings were randomly distributed in four glass tanks (50 L) containing dechlorinated water. Four glass tanks were for the control group, and four were for the ATZ-exposed group (n=4 per glass tank), given a total number of 16 animals tested per group. The genotoxicity was evaluated by micronucleus (MN) test in erythrocytes from peripheral blood. Qualitative and semi-quantitative histopathological analyses, and also ultrastructural study, were applied in liver and kidney samples. Finally, the content of heat shock protein (Hsp70) in the liver was evaluated by the western blotting method.

Results: The morphological alterations in the liver, which was associated with increased expression of Hsp70, included nuclear and cytoplasmic vacuolization, cytoplasmic hyaline inclusions, and necrosis. The kidney presented edema and tubular cell degeneration with cytoplasmic hyaline inclusion. The semi-quantitative histopathological analyses indicated that the liver was more sensitive than kidney to ATZ-induced damage. Ultrastructural analysis showed that ATZ caused membrane alterations in several organelles and increased the number of lysosomes in hepatocytes and kidney proximal tubular cells. Nevertheless, no significant difference was observed in MN frequency in erythrocytes comparing treated and control groups.

Conclusion: These results indicated that ATZ-induced damage to the kidney and liver function, ATZ at the concentration tested did not induce a significant difference in MN frequency in Pacu erythrocytes comparing treated and control groups, and also that Pacu fingerlings may be a good bioindicator for testing freshwater contamination.

Keywords: Brazilian ichthyofauna, kidney lesions, liver lesions, micronucleus test, oxidative stress.


1. European Commission. (2004) Commission decision of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance, 2004/248/EC. Off. J. Eur. Union, L78: 53-55.

2. Corvi, M.M., Stanley, K.A., Peterson, T.S., Kent, M.L., Feist, S.W., La Du, J.K., Volz, D.C., Hosmer, A.J. and Tanguay, R.L. (2012) Investigating the impact of chronic atrazine exposure on sexual development in zebrafish. Birth Defects Res. B Reprod. Toxicol., 95(4): 276-288. [Crossref] [PubMed] [PMC]

3. Bedmar, F., Daniel, P.E., Costa, J. L. and Gimenez, D. (2011) Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina. Environ. Toxicol. Chem., 30(9): 1990-1996. [Crossref] [PubMed]

4. Conama, the National Environment Council. (2005). Conama establishes provisions for the classification of water bodies as well as environmental directives for their framework, establishes conditions and standards for effluent releases and makes other provisions. Resolution Conama no. 357, on March 17, 2005. Ministry of the Environment. Available from: Accessed on 10-02-2017.

5. Bortoluzzi, E.C., Rheinheimer, D.S., Goncalves, C.S., Pellegrini, J.B.R., Maroneze, A.M., Kurz, M.H.S., Bacar, N.M. and Zanella, R. (2007) Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim. N., 30(8): 1872-1876. [Crossref]

6. Chicati, M.L., Nanni, M.R. and Cezar, E. (2012) Chemical contamination of water in irrigated rice on Parana State, Brazil. Semin. Cienc. Agrarias, 33(4): 1455-1462. [Crossref]

7. Machado, C.S., Fregonesi, B.M., Alves, R.I.S., Tonani, K.A.A., Sierra, J., Martinis, B.S., Celere, B.S., Mari, M., Schuhmacher, M., Nadal, M., Domingo, J.L. and Segura-Mu-oz, S. (2017) Health risks of environmental exposure to metals and herbicides in the Pardo River, Brazil. Environ. Sci. Pollut. Res. Int.,1-13. [Crossref]

8. Armas, E.D., Monteiro, R.T.R., Antune, P.M., Santos, M.A.P.F., Camargo, P.B. and Abakerli, R.B. (2007) Spatial-temporal diagnostic of herbicide occurrence in surface waters and sediments of Corumbatai River and main affluents. Quim. N., 30(5): 1119-1127. [Crossref]

9. Santos, E.A., Cruz, C., Carraschi, S.P., Silva, J.R.M., Botelho, R.G., Velini, E.D. and Pitelli, R.A. (2015) Atrazine levels in the Jaboticabal water stream (Sao Paulo State, Brazil) and its toxicological effects on the pacu fish Piaractus mesopotamicus. Arh. Hyg. Rada. Toksikol., 66(1): 73-82. [Crossref] [PubMed]

10. Sousa, A.S., Duavi, W.C., Cavalcante, R.M., Milhome, M.A.L. and Nascimento, R.F. (2016) Estimated levels of environmental contamination and health risk assessment for herbicides and insecticides in surface water of Ceara, Brazil. Bull. Environ. Contam. Toxicol., 96: 90-95. [Crossref] [PubMed]

11. Nogueira, E.N., Dores, E.F.G., Pinto, A.A., Amorim, R.S.S., Ribeiro, M.L. and Lourencetti, C. (2012) Currently used pesticides in water matrices in central-western Brazil. J. Braz. Chem. Soc., 23: 1476-1487. [Crossref]

12. Lopes, R.B., Paraiba, L.C., Ceccarelli, P.S. and Tornisielo, V.L. (2006) Bioconcentration of trichlorfon insecticide in pacu (Piaractus mesopotamicus). Chemosphere, 64(1): 56-62. [Crossref] [PubMed]

13. Cericato, L., Neto, J.G.M., Kreutz, L.C., Quevedo, R.M., Rosa, J.G.S., Koakoski, G., Centenaro, L., Pottker, E., Marqueze, A. and Barcellos, J.G. (2009) Responsiveness of the interrenal tissue of Jundia (Rhamdia quelen) to an in vivo ACTH test following acute exposure to sublethal concentrations of agrichemicals. Comp. Biochem. Physiol. C, 149(3): 363-367. [Crossref]

14. Kreutz, L.C., Barcellos, L.J.G., Marteninghe, A., Santos, E.D. and Zanatta, R. (2010) Exposure to sublethal concentration of glyphosate or atrazine-based herbicides alters the phagocytic function and increases the susceptibility of silver catfish fingerlings (Rhamdia quelen) to Aeromonas hydrophila challenge. Fish Shellfish Immunol., 29(4): 694-697. [Crossref] [PubMed]

15. Santos, T.G. and Martinez, C.B.R. (2012) Atrazine promotes biochemical changes and DNA damage in a Neotropical fish species. Chemosphere, 89(9): 1118-1125. [Crossref] [PubMed]

16. Oulmi, Y., Negele, R.D. and Braunbeck, T. (1995) Segment specificity of the cytological response in rainbow trout (Oncorhynchus mykiss) renal tubules following prolonged exposure to sublethal concentrations of atrazina. Ecotoxicol. Environ. Saf., 32(1): 39-50. [Crossref] [PubMed]

17. Xing, H., Li, Z., Wang, X., Gao, S., Xu, S. and Wang, X. (2012) Oxidative stress response and histopathological changes due to atrazine and chlorpyrifos exposure in common carp. Pestic. Biochem. Physiol., 103(1): 74-80. [Crossref]

18. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S. and Wang, X. (2012) Histopathological changes and antioxidant response in brain kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere, 8(4): 377-383. [Crossref] [PubMed]

19. Blahova, J., Modra, H., Sevcikova, M., Marsalek, P., Zelnickova, L., Skoric M. and Svobodova, Z. (2014) Evaluation of biochemical, haematological, and histopathological responses and recovery ability of common carp (Cyprinus carpio L.) after acute exposure to atrazine herbicide. Biomed. Res. Int., 2014: Article ID: 980948, 8.

20. Khoshnood, Z. (2015) Histopathological alterations in the kidney of caspian kutum, Rutilus frisii kutum, larvae and fingerlings exposed to sublethal concentration of atrazine. Bull. Environ. Contam. Toxicol., 94(2): 158-163. [Crossref] [PubMed]

21. Segnini de Bravo, M.I., Medina, J., Marcano, S., Finol, H.J. and Boada-Sucr, A. (2005) Effects of herbicide on the kidney of two Venezuelan cultured fish: Caquetaia kraussii and Colossoma macropomum (Pisces: Ciclidae and Characeae). Rev. Biol. Trop., 53: 55-59.

22. Paulino, M.G., Souza, N.E.S. and Fernandes, M.N. (2012) Subchronic exposure to atrazine induces biochemical and histopathological changes in the gills of a Neotropical freshwater fish, Prochilodus lineatus. Ecotoxicol. Environ. Saf., 80: 6-13. [Crossref] [PubMed]

23. Mela, M., Guiloski, I.C., Doria, H.B., Randi, M.A.F., Oliveira, R.C.A., Pereira, L., Maraschi, A.C., Prodicimo, V., Freire, C.A. and Silva de Assis, H.C. (2013) Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen). Ecotoxicol. Environ. Saf., 93: 13-21. [Crossref] [PubMed]

24. Salaberria, I., Hansen, B.H., Asensio, V., Olsvik, P.A., Andersen, R.A. and Jenssen, B.M. (2009) Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss). Toxicol. Appl. Pharmacol., 234(1): 98-106. [Crossref] [PubMed]

25. Nwani, C.D., Lakra, W.S., Nagpure, N.S., Kumar, R., Kushwaha, B. and Srivastava, S.K. (2010) Toxicity of the herbicide atrazine: Effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch). Int. J. Environ. Res. Public Health, 7(8): 3298-3312. [Crossref] [PubMed] [PMC]

26. Nascimento, C.R., Souza, M.M. and Martinez, C.B. (2012) Copper and the herbicide atrazine impair the stress response of the freshwater fish Prochilodus lineatus. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 155(3): 456-461. [Crossref] [PubMed]

27. Yang, L., Zhan, J., Zhang, X., Li, W., Li, Z. and Wang, Z. (2010) Alterations in mRNA expression of steroid receptors and heat shock proteins in the liver of rare minnow (Gobiocypris rarus) exposed to atrazine and p,p'-DDE. Aquat. Toxicol., 98(4): 381-387. [Crossref] [PubMed]

28. Xing, H., Wang, Z., Wu, H., Zhao, X., Liu, T., Li, S. and Xu, S. (2015) Assessment of pesticide residues and gene expression in common carp exposed to atrazine and chlorpyrifos: Health risk assessments. Ecotoxicol. Environ. Saf., 113: 491-498. [Crossref]

29. Mukhopadhyay, I., Nazir, A., Saxena, D.K. and Chowdhuri, D.K. (2003) Heat shock response: Hsp70 in environmental monitoring. J. Biochem. Mol. Toxicol., 17(5): 249-254. [Crossref] [PubMed]

30. Zeljezic, D., Garaj-Vrhovac, V. and Perkovic, P. (2006) Evaluation of DNA damage induced by atrazine and atrazine-based herbicide in human lymphocytes in vitro using a comet and DNA diffusion assay. Toxicol. In Vitro, 20(6): 923-935. [Crossref] [PubMed]

31. Cavas, T. (2011) In vivo genotoxicity evaluation of atrazine and atrazine-based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food Chem. Toxicol., 49(6): 1431-1435. [Crossref] [PubMed]

32. Peterlini, M.F. (2012) Morphological assessment in gills and skin as biomarkers of acute toxicity induced by atrazine in pacu fingerlings, Piaractus mesopotamicus Masters Dissertation, Universidade Estadual de Campinas, Campinas, Brazil. p68.

33. Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P. and Wahli, T. (1999) Histopathology in fish: Proposal for a protocol to assess aquatic pollution. J. Fish Dis., 22(1): 25-34. [Crossref]

34. Costa, P.M., Caeiro, S., Lobo, J., Martins, M., Ferreira, A.M., Caetano, M., Vale, C., DelValls, A. and Costa, M.H. (2011) Estuarine ecological risk based on hepatic histopathological indices from laboratory and in situ tested fish. Mar. Pollut. Bull., 62(1): 55-65. [Crossref] [PubMed]

35. Poleksic, V. and Mitrovic-Tutundzic, V. (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. In: Muller, R. and Lloyd, R., editors. Sublethal and Chronic Effects of Pollutants on Freshwater Fish. Vol. 13. Fishing News Books, Oxford, England. p339-352.

36. Falcao, V.T., Maschio, D.A., de Fontes, C.C., Oliveira, R.B., Santos-Silva, J.C., Almeida, A.C., Vanzela, E.C., Cartaxo, M.T., Carvalho, C.P. and Collares-Buzato, C.B. (2016) Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem. Cell Biol., 146(1): 13-31. [Crossref] [PubMed]

37. Carrasco, K.R., Tilbury, K.L. and Myers, M.S. (1990) Assessment of the piscine micronucleus test as an in situ biological indicator contaminant effects. Can. J. Fish Aquat. Sci., 47(11): 2123-2136. [Crossref]

38. Nwani, C.D., Nagpure, N.S., Kumar, R., Kushwaha, B., Kumar, P. and Lakra, W.S. (2014) Induction of micronuclei and nuclear lesions in Channa punctatus following exposure to carbosulfan, glyphosate and atrazine. Drug Chem. Toxicol., 37(4): 370-377. [Crossref] [PubMed]

39. Brito, I.A., Freire, C.A., Yamamoto, F.Y., Assis, H.C.S., Souza-Bastos, L.R., Cestari, M.M., Ghisi, N.C., Prodocimo, V., Neto, F.F. and Ribeiro, C.A.O. (2012) Monitoring water quality in reservoirs for human supply through multi-biomarker evaluation in tropical fish. J. Environ. Monit., 14(2): 615-625. [Crossref] [PubMed]

40. Wan, M.T., Buday, C., Schroeder, G., Kuo, J. and Pasternak, J. (2006) Toxicity to Daphnia magna, Hyalella azteca, Oncorhynchus kisutch, Oncorhynchus mykiss, Oncorhynchus tshawytscha, and Rana catesbeiana of atrazine, metolachlor, simazine, and their formulated products. Bull. Environ. Contam. Toxicol., 76(1): 52-58. [Crossref] [PubMed]

41. Khoshnood, Z., Jamili, S. and Khodabandeh, S. (2015) Histopathological effects of atrazine on gills of Caspian kutum Rutilus frisii kutum fingerlings. Dis. Aquat. Org., 113(3): 227-234. [Crossref] [PubMed]

42. Segnini de Bravo, M.I., Medina, J., Marcano, S. and Finol, H.J. (2009) Ultrastructural alterations of hepatocytes in Caquetaia kraussii (pisces: Cichlidae) due to atrazine. Acta Microsc., 18: 81-84.

43. Wolf, J.C., Baumgartner, W.A., Blazer, V.S., Camus, A.C., Engelhardt, J.A., Fournie, J.W., Frasca, S.Jr., Groman, D.B., Kent, M.L., Khoo, L.H., Law, J.M., Lombardini, E.D., Ruehl-Fehlert, C., Helmut, E., Segner, H.E., Smith, S.A., Spitsbergen, J.M., Weber, K. and Wolfe, M.J. (2015) Nonlesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathology studies: A guide for investigators, authors, reviewers, and readers. Toxicol. Pathol., 43(3): 297-325. [Crossref] [PubMed]

44. Velisek, J., Svobodova, Z., Piackova, V., Novotny, L., Blahova, J., Sudova, E. and Maly, V. (2008) Effects of metribuzin on rainbow trout (Oncorynchus mykiss). Vet. Med., 53(6): 324-332.

45. Marchand, M.J., van Dyk, J.C., Pieterse, G.M., Barnhoorn, I.E. and Bornman, M.S. (2009) Histopathological alterations in the liver of the sharptooth catfish Clarias gariepinus from polluted aquatic systems in South Africa. Environ. Toxicol., 24(2): 133-147. [Crossref] [PubMed]

46. Strmac, M. and Braunbeck, T. (2002) Cytological and biochemical effects of a mixture of 20 pollutants on isolated rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicol. Environ. Saf., 53(2): 293-304. [Crossref]

47. Nonoyama, T. and Fukuda, R. (2008) Drug-induced phospholipidosis-pathological aspects and its prediction. J. Toxicol. Pathol., 21: 9-24. [Crossref]

48. Thevenod, F., Friedmann, J.M., Katsen, A.D. and Hauser, I.A. (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kB activation protects kidney proximal tubule cells from cadmium-and reactive oxygen species-induced apoptosis. J. Biol. Chem., 275(3): 1887-1896. [Crossref]

49. Crean, D., Bellwon, P., Aschauer, L., Limonciel, A., Moenks, K., Hewitt, P., Schmidt, T., Herrgen, K., Dekant, W., Lukas, A., Bois, F., Wilmes, A., Jennings, P. and Leonard, M.O. (2015) Development of an in vitro renal epithelial disease state model for xenobiotic toxicity testing. Toxicol. In Vitro, 30: 128-137. [Crossref] [PubMed]

50. Zodrow, J.M., Stegeman, J.J. and Tanguay, R. (2004) Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish. Aquat. Toxicol., 66(1): 25-38. [Crossref]

51. Agamy, E. (2012) Histopathological changes in the livers of rabbit fish (Siganus canaliculatus) following exposure to crude oil and dispersed oil. Toxicol. Pathol., 40(8): 1128-1140. [Crossref] [PubMed]

52. Salamat, N., Soleimani, Z., Safahieh, A., Savari, A. and Ronagh, M.T. (2013) Using histopathological changes as a biomarker to trace contamination loading of Musa Creeks (Persian Gulf). Toxicol. Pathol., 41(6): 913-920. [Crossref] [PubMed]

53. Dane, H. and Sisman, T. (2015) Histopathological changes in gill and liver of Capoeta capoeta living in the Karasu river, Erzurum. Environ. Toxicol., 30(8): 904-917. [Crossref] [PubMed]

54. Vickers, A.E.M. (2009) Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol. Pathol., 37(1): 78-88. [Crossref] [PubMed]

55. Strmac, M. and Braunbeck, T. (2000) Isolated hepatocytes of rainbow trout (Oncorhynchus mykiss) as a tool to discriminate between differently contaminated small river systems. Toxicol. In Vitro, 14(4): 361-377. [Crossref]

56. Banerjee, B.D., Seth, V. and Bhattacharya, A. (1999) Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol. Lett., 107(1-3): 33-47. [Crossref]

57. Deavall, D.G., Martin, E.A., Horner, J.M. and Roberts, R. (2012) Drug-induced oxidative stress and toxicity. J. Toxicol., 2012: Article ID: 645460, 13.

58. Liu, X.M., Shao, J.Z., Xiang, L.X. and Chen, X.Y. (2005) Cytotoxic effects and apoptosis induction of atrazine in a grass carp (Ctenopharyngodon idellus) cell line. Environ. Toxicol., 21(1): 80-89. [Crossref] [PubMed]

59. Benard, G. and Rossignol, R. (2008) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid. Redox Signal., 10(8): 1313-1342. [Crossref] [PubMed]

60. Padmini, E. and Rani, M.U. (2011) Mitochondrial membrane potential is a suitable candidate for assessing pollution toxicity in fish. Sci. Total Environ., 409(19): 3687-3700. [Crossref] [PubMed]

61. Dua, R., Sunkaria, A., Kumar, V. and Gill, K.D. (2010) Impaired mitochondrial energy metabolism and kinetic properties of cytochrome oxidase following acute aluminium phosphide exposure in rat liver. Food Chem. Toxicol., 48(1): 53-60. [Crossref] [PubMed]

62. Czerniczyniec, A., Lanza, E.M., Karadayian, A.G., Bustamante, J. and Lores-Arnaiz, S. (2015) Impairment of striatal mitochondrial function by acute paraquat poisoning. J. Bioenerg. Biomembr., 47(5): 395-408. [Crossref] [PubMed]

63. Kalmar, B. and Greensmith, L. (2009) Induction of heat shock proteins for protection against oxidative stress. Adv. Drug Deliv. Rev., 61(4): 310-318. [Crossref] [PubMed]

64. Xing, H., Li, S., Wang, X., Gao, X., Xu, S. and Wan, X. (2013) Effects of atrazine and chlorpyrifos on the mRNA levels of HSP70 and HSC70 in the liver, brain, kidney and gill of common carp (Cyprinus carpio L.). Chemosphere, 90(3): 910-916. [Crossref] [PubMed]

65. IARC. (2014) Monograph on the evaluation of carcinogenic risks to humans. Internal Report 14/002. Report of the Advisory Groupto Recommend Priorities for for IARC Monographs During 2015-2019. International Agency for Research on Cancer, France. Available from: Accessed on on 02-07-2017.

66. Sato, S., Takizawa, H. and Inui, N. (1990) A comparison of micronucleus induction in 3 mouse strains with representative clastogens. Toxicol. Lett., 52(2): 215-220. [Crossref]