Open Access
Research (Published online: 12-08-2018)
14. Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels
Hend H. A. M. Abdullah, Eman E. El-Shanawany, Sobhy Abdel-Shafy, Hala A. A. Abou-Zeina and Eman H. Abdel-Rahman
Veterinary World, 11(8): 1109-1119

Hend H. A. M. Abdullah: Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
Eman E. El-Shanawany: Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
Sobhy Abdel-Shafy: Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
Hala A. A. Abou-Zeina: Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
Eman H. Abdel-Rahman: Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.

doi: 10.14202/vetworld.2018.1109-1119

Share this article on [Facebook] [LinkedIn]

Article history: Received: 01-06-2018, Accepted: 05-07-2018, Published online: 12-08-2018

Corresponding author: Sobhy Abdel-Shafy


Citation: Abdullah HHAM, El-Shanawany EE, Abdel-Shafy S, Abou-Zeina HAA, Abdel-Rahman EH (2018) Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels, Veterinary World, 11(8):1109-1119.

Background and Aim: Q fever Coxiella burnetii is a worldwide zoonotic disease, and C. burnetii was detected in mammals and ticks. Ticks play an important role in the spread of C. burnetii in the environment. Therefore, the aims of this study were to detect Q fever C. burnetii in camels and ixodid ticks by molecular tools and identification of Hyalomma dromedarii and Hyalomma excavatum using molecular and immunological assays.

Materials and Methods: A total of 113 blood samples from camels and 190 adult ticks were investigated for the infection with C. burnetii by polymerase chain reaction (PCR) and sequencing the targeting IS30A spacer. The two tick species H. dromedarii and H. excavatum were characterized molecularly by PCR and sequencing of 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit-1 (CO1) genes and immunologically by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot.

Results: A total of 52 camels (46%) were positive for Q fever infection. Only 10 adult ticks of H. dromedarii were infected with C. burnetii. The IS30A sequence was around 200 bp in length for C. burnetii in H. dromedarii ticks with a similarity of 99% when compared with reference data in GenBank records. The length of 16S rDNA and CO1 was 440 and 850 bp, respectively, for both H. dromedarii and H. excavatum. The phylogenetic status of H. dromedarii was distant from that of H. excavatum. SDS-PAGE revealed seven different bands in the adult antigens of either H. dromedarii or H. excavatum with molecular weights ranged from 132.9 to 17.7 KDa. In western blot analyses, the sera obtained from either infested camel by H. dromedarii or infested cattle by H. excavatum recognized four immunogenic bands (100.7, 49.7, 43.9, and 39.6 kDa) in H. dromedarii antigen. However, the infested camel sera identified two immunogenic bands (117 and 61.4 kDa) in H. excavatum antigen. Furthermore, the sera collected from cattle infested by H. excavatum recognized three immunogenic bands (61.4, 47.3, and 35 kDa) in H. excavatum antigen.

Conclusion: Molecular analyses indicated that both camels and ticks could be sources for infection of animals and humans with Q fever. Furthermore, the molecular analyses are more accurate tools for discriminating H. dromedarii and H. excavatum than immunological tools.

Keywords: 16S ribosomal DNA, Coxiella burnetii, cytochrome oxidase subunit-1, hard ticks, phylogeny, polymerase chain reaction, sequence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, western blot.


1. Chmielewski, T. and Tylewska-Weirzbanowska, S. (2012) Q fever at the turn of the century. Polish. J. Microbiol., 61: 81-93. [PubMed]

2. Georgiev, M., Afonso, A., Neubauer, H., Needham, H., Thiery, R., Rodolakis, A., Roest, H.J., Sterk, K.D., Stegeman, J.A., Vellema, P., van der Hoek, W. and More, S.J. (2013) Q fever in humans and farm animals in four European countries, 1982 to 2010. Euro. Surveill., 18: 20407. [PubMed]

3. Berri, M., Arricau-Bouvery, N. and Rodolakis, A. (2003) PCR-based detection of Coxiella burnetii from clinical samples. In: Sachse, K. and Frey, J., editors. Methods in Molecular Biology. Humana Press Inc., Totowa. p153-161. [PubMed]

4. Wernery, U. and Kaaden, O.R. (2002) Infectious Diseases of Camelids. Blackwell Science, Berlin.

5. Horton, K.C., Wasfy, M., Samaha, H., Abdel-Rahman, B., Safwat, S., Abdel Fadeel, M., Mohareb, E. and Dueger, E. (2014) Serosurvey for zoonotic viral and bacterial pathogens among slaughtered livestock in Egypt. Vector Borne Zoonotic Dis., 14: 633-639. [Crossref] [PubMed] [PMC]

6. Guatteo, R., Seegers, H., Taurel, A.F., Joly, A. and Beaudeau, F. (2011) Prevalence of Coxiella burnetii infection in domestic ruminants: A critical review. Vet. Microbiol., 149: 1-16. [Crossref]

7. Fenollar, F., Fournier, P., Carrrieri, M.P., Habib, G., Messana, T. and Roult, D. (2001) Risk factors and prevention of Q fever endocarditis. Clin. Infect. Dis., 33: 312-316. [Crossref] [PubMed]

8. Hartzell, J.D., Wood-Morris, R.N., Martinez, L.J. and Trotta, R.F. (2008) Q fever: Epidemiology, diagnosis, and treatment. Mayo. Clin. Proc., 83: 574-579. [Crossref]

9. Weisburg, W.G., Dobson, M.E., Samuel, J.E., Dasch, G.A., Mallavia, L.P., Baca, O., Mandelco, L., Sechrest, J.E., Weiss, E. and Woese, C.R. (1989) Phylogenetic diversity of the Rickettsiae. J. Bacteriol., 171: 4202-4206. [Crossref] [PubMed] [PMC]

10. Tan, C.K. and Owens, L. (2000) Infectivity, transmission and 16S rRNA sequencing of a Rickettsia, Coxiella cheraxi sp. nov., from the freshwater crayfish Cherax quadricarinatus. Dis. Aquat. Organ., 41: 115-122. [Crossref] [PubMed]

11. Duron, O., Jourdain, E. and McCoy, K.D. (2014) Diversity and global distribution of the Coxiella intracellular bacterium in seabird ticks. Ticks Tick Borne Dis., 5: 557-563. [Crossref] [PubMed]

12. Almeida, A.P., Marcili, A., Leite, R.C., Nieri-Bastos, F.A., Domingues, L.N., Ricardo Martins, J., Martins, J.R. and Labruna, M.B. (2012) Coxiella symbiont in the tick Ornithodoros rostratus (Acari: Argasidae). Ticks Tick Borne Dis., 3: 203-206. [Crossref] [PubMed]

13. Smith, T.A., Driscoll, T., Gillespie, J.J. and Raghavan, R.A. (2015) Coxiella-like endosymbiont is a potential vitamin source for the Lone Star Tick. Genome Biol. Evol., 7: 831-838. [Crossref] [PubMed] [PMC]

14. Duron, O., Noel, V., McCoy, K.D., Bonazzi, M., Sidi-Boumedine, K., Morel, O., Vavre, F., Zenner, L., Jourdain, E., Durand, P., Arnathau, C., Renaud, F., Trape, J.F., Biguezoton, A.S., Cremaschi, J., Dietrich, M., Leger, E., Appelgren, A., Dupraz, M., Gomez-Diaz, E., Diatta, G., Dayo, G.K., Adakal, H., Zoungrana, S., Vial, L. and Chevillon, C. (2015) The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Pathog., 11: e1004892. [Crossref]

15. Madariaga, M.G., Rezai, K., Trenholme, G.M. and Weinstein, R.A. (2003) Q fever: A biological weapon in your backyard. Lancet Infect. Dis., 3: 709-721. [Crossref]

16. Bewley, K.R. (2013) Animal models of Q fever (Coxiella burnetii). Comp. Med., 63: 469-476. [PubMed] [PMC]

17. van Schaik, E.J., Chen, C., Mertens, K., Weber, M.M. and Samuel, J.E. (2013) Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat. Rev. Microbiol., 11: 561-573. [Crossref] [PubMed] [PMC]

18. Cutler, S.J., Bouzid, M. and Cutler, R.R. (2007) Q fever. J. Infect., 54: 313-318. [Crossref] [PubMed]

19. Maurin, M. and Raoult D. (1999) Q fever. Clin. Microbiol. Rev., 12: 518-553. [PubMed] [PMC]

20. Angelakis, E. and Raoult, D. (2010) Q- fever. Vet. Microbiol., 140: 297-309. [Crossref] [PubMed]

21. Mediannikov, O., Fenollar, F., Socolovschi, C., Diatta, G., Bassene, H., Molez, J.F., Sokhna, C., Trape, J.F. and Raoult, D. (2010) Coxiella burnetii in humans and ticks in rural Senegal. PLoS Negl. Trop. Dis., 4: e654. [Crossref]

22. Apanaskevich, D.A., Schuster, A.L. and Horak, I.G. (2008) The genus Hyalomma: VII. Redescription of all parasitic stages of H. (Euhyalomma) dromedarii and H. (E.) schulzei (Acari: Ixodidae). J. Med. Entomol., 45: 817-831. [Crossref]

23. Walker, A.R., Bouattour, A., Camicas, J.L., Estrada-Pena, A., Horak, I.G., Latif, A.A., Pegram, R.G. and Preston, P.M. (2003) Ticks of Domestic Animals in Africa: a Guide to Identification of Species. Bioscience Reports, Edinburgh, United Kingdom.

24. El Kammah, K.M., Oyoun, L.M., El Kady, G.A. and Abdel-Shafy, S.A. (2001) Investigation of blood parasites in livestock infested with argasid and ixodid ticks in Egypt. J. Egypt. Soci. Parasitol., 31: 365-371.

25. Abdullah, H.H.A.M., El-Molla, A., Salib, F.A., Allam, N.A.T., Ghazy, A.A. and Abdel-Shafy, S. (2016) Morphological and molecular identification of the brown dog tick Rhipicephalus sanguineus and the camel tick Hyalomma dromedarii (Acari: Ixodidae) vectors of Rickettsioses in Egypt. Vet. World, 9: 1087-1101. [Crossref]

26. Alsarraf, M., Mierzejewska, E.J., Mohallal, E.M.E., Behnke, J.M. and Bajer, A. (2017) Genetic and phylogenetic analysis of the ticks from the Sinai Massif, Egypt, and their possible role in the transmission of Babesia behnkei. Exp. Appl. Acarol., 72: 415-427. [Crossref]

27. Youssef, S.Y., Yasien, S., Mousa, W.M.A., Nasr, S.M., El-Kelesh, E.A.M., Mahran, K.M. and Abd-El-Rahman, A.H. (2015) Vector identification and clinical, hematological, biochemical, and parasitological characteristics of camel (Camelus dromedarius) theileriosis in Egypt. Trop. Anim. Health. Prod., 47: 649-656. [Crossref] [PubMed]

28. Hassan, M.I., Gabr, H.S.M., Abdel-Shafy, S., Hammad, K.M. and Mokhtar, M.M. (2017) Prevalence of tick-vectors of Theileria annulata infesting the one-humped camels in Giza, Egypt. J. Egypt. Soc. Parasitol., 47: 425-432.

29. Abdel-Shafy, S., Allam, N.A.T., Mediannikov, O., Parola, P. and Raoult, D. (2012) Molecular detection of spotted fever group Rickettsiae associated with ixodid ticks in Egypt. Vector Borne Zoonotic Dis., 12: 346-359. [Crossref] [PubMed]

30. Kleinerman, G., Baneth, G., Mumcuoglu, K.Y., Van Straten, M., Berlin, D., Apanaskevich, D.A., Abdeen, Z., Nasereddin, A. and Harrus, S. (2013) Molecular detection of Rickettsia africae, Rickettsia aeschlimannii, and Rickettsia sibirica mongolitimonae in camels and Hyalomma spp. ticks from Israel. Vector Borne Zoonotic Dis., 13: 851-856. [Crossref] [PubMed]

31. Ghoneim, N.H., Abdel-Moein, K.A. and Zaher, H.M. (2017) Molecular detection of Francisella spp. among ticks attached to camels in Egypt. Vector Borne Zoonotic Dis., 17: 384-387. [Crossref] [PubMed]

32. Loftis, A.D., Reeves, W.K., Szumlas, D.E., Abbassy, M.M., Helmy, I.M., Moririaty, J.R. and Dasch, G.A. (2006) Rickettsial agents in Egyptian ticks collected from domestic animals. Exp. Appl. Acarol., 40: 67-81. [Crossref] [PubMed]

33. Abdel-Shafy, S. and Allam, N.A.T. (2013) Quantitative real-time RT-PCR detection of flaviviruses associated with camel ticks in Egypt. Glob. Vet., 10: 394-402.

34. Hoogstraal, H. (1956) African Ixodoidea, Ticks of the Sudan. NAMRU-3, Cairo, Egypt. p1101. [Crossref]

35. Apanaskevich, D.A. (2004) Host-parasite relationships of the genus Hyalomma Koch, 1844 (Acari, Ixodidae) and their connection with microevolutionary process. Parazitologiya, 38: 515-523.

36. Estrada-Pena, A., Bouattour, A., Camicas, J.L. and Walker, A.R. (2004) Ticks of Domestic Animals in the Mediterranean Region. A guide to Identification of Species. 1st ed. p131.

37. Friedhoff, K.T. (1997) Tick-borne diseases of sheep and goats caused by Babesia, Theileria or Anaplasma spp. Parasitologia, 39: 99-109.

38. Sayin, F., Karaer, Z., Dincer, S., Cakmak, A., Inci, A., Yukabi, B.A., Eren, H., Vatansever, Z., Nalbantoglu, S. and Melrose, T.R. (2003) A comparison of susceptibilities to infection of four species of Hyalomma ticks with Theileria annulata. Vet. Parasitol., 113: 115-121. [Crossref]

39. Aktas, M., Dumanli, N. and Angin, M., (2004) Cattle infestation by Hyalomma ticks and prevalence of Theileria in Hyalomma species in the East of Turkey. Vet. Parasitol. 119: 1-8. [Crossref] [PubMed]

40. Khan, A.S., Maupin, G.O., Rollin, P.E., Noor, A.M., Shurie, H.H.M., Shalabi, A.G.A., Wasef, S., Haddad, Y.M.A., Sadek, R., Ijaz, K., Peters, C.J. and Ksiazek, T.G. (1997) An outbreak of Crimean-Congo hemorrhagic fever in the United Arab Emirates, 1994-1995. Amer. J. Trap. Med. Hyg., 57: 519-525. [Crossref] [PubMed]

41. Caporale, D.A., Rich, S.M., Spielman, A., Telford, S.R. and Kocher, T.D. (1995) Discriminating between Ixodes ticks by means of mitochondrial DNA sequences. Mol. Phylogenet. Evol., 4: 361-365. [Crossref] [PubMed]

42. Guglielmone, A.A., Venzal, J.M., Gonzaleh, Z., Acu-a, D., Nava, S., Hinojosa, A. and Mangold, A.J. (2006) The phylogenetic position of Ixodes stilesi Neumann 1911 (Acari: Ixodidae): Morphological and preliminary molecular evidences from 16S rDNA sequences. Syst. Parasitol., 65: 1-11. [Crossref]

43. Abdel-Shafy, S. (2008) Scanning electron microscopy and comparative morphology of Hyalomma anatolicum excavatum, H. dromedarii and H. marginatum (Acari: Ixodidae) based on larvae. Acarologia, 48: 127-139.

44. Zilberman, N., Reikhav, S., Hulata, G. and Ron, M. (2006) High-throughput genomic DNA extraction protocol from Tilapia Fine Tissue. Aquacult., 255: 597-599. [Crossref]

45. Chitimia, L., Lin, R., Cosoroaba, I., Wu, X., Song, H., Yuan, Z. and Zhu, X. (2010) Genetic characterization of ticks from southwestern Romania by sequences of mitochondrial cox1 and nad5 genes. Exp. Appl. Acarol., 52: 305-311. [Crossref] [PubMed]

46. Lv, J., Wu, S., Zhang, Y., Zhang, T., Feng, C., Jia, G. and Lin, X. (2014) Development of a DNA barcoding system for the Ixodida (Acari: Ixodida). Mitochond. DNA, 25: 142-149. [Crossref]

47. Dessen, P., Fondrat, C., Valencien, C. and Bisance, A. (1990) A French service for access to biomolecular databases. CABIOS, 6: 355-356. [PubMed]

48. Saitou, N. and Nei, M. (1987) The neighbor-joining method: A new method for sequences. J. Mol. Biol., 16: 111-120.

49. Dawyndt, P., Demeyer, H. and De Baets, B. (2006) UPGMA clustering revisited: A weight-driven approach to transitive approximation. Inter. J. Appr. Reas., 42: 174-191. [Crossref]

50. Tamura, K., Nei, M. and Kumar, S. (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA., 101: 11030-11035. [Crossref] [PubMed] [PMC]

51. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution., 39: 783-791. [Crossref] [PubMed]

52. Felsenstein, J. (2004) Inferring Phylogenies. 1. Sinauer Associates Inc., Sunderland, MA.

53. Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596-1599. [Crossref] [PubMed]

54. Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randael, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biologic. Chemist., 193: 265-275.

55. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685. [Crossref] [PubMed]

56. Wray, W., Boulikas, T., Wray, V.P. and Hancock, R. (1981) Silver staining of proteins in polyacrylamide gels. Anal. Biochem., 118: 197-203. [Crossref]

57. Towbin, H., Stachelin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Nat. Acad. Sci. USA, 176: 4350-4354. [Crossref]

58. Dantas-Torres, F., Chomel, B.B. and Otranto, D. (2012) Ticks and tick-borne diseases: A one health perspective. TREPAR, 1138: 1-10. [Crossref]

59. Parola, P., Paddock, D.C., Socolovschi, C., Labruna, B.M., Mediannikov, O., Kernif, T., Abdad, Y.M., Stenos, J., Bitam, I., Fournier, P. and Raoult, D. (2013) Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev., 26: 657-702. [Crossref] [PubMed] [PMC]

60. Eldin, C., Melenotte, C., Mediannikov, O., Ghigo, E., Million, M., Edouard, S., Mege, J., Maurin, M. and Raoult, D. (2017) From Q Fever to Coxiella burnetii infection: A paradigm change. Clin. Microbiol. Rev., 30: 115-190. [Crossref] [PubMed] [PMC]

61. Schelling, E., Diguimbaye, C., Daoud, S., Nicolet, J. and Zinsstag, J. (2004) Seroprevalences of zoonotic diseases in nomads and their livestock in Chari-Baguirmi, Chad. Medecine tropicale: revue du Corps de sante colonial, 64: 474-477.

62. Afzal, M. and Sakkir, M. (1994) Survey of antibodies against various infectious disease agents in racing camels in Abu Dhabi, United Arab Emirates. OIE Revue Scientifique et Technique, 13: 787-792. [Crossref]

63. Mentaberre, G., Gutierrez, C., Rodriguez, N.F., Joseph, S., Gonzalez-Barrio, D., Cabezon, O., de la Fuente, J., Gortazar, C. and Boadella, M. (2013) A transversal study on antibodies against selected pathogens in dromedary camels in the Canary Islands, Spain. Vet. Microbiol., 167: 468-473. [Crossref] [PubMed]

64. Hussein, M.F., Alshaikh, M.A., Al-Jumaah, R.S., GarelNabi, A., Al-Khalifa, I. and Mohammed, O.B. (2015) The Arabian camel (Camelus dromedarius) as a major reservoir of Q fever in Saudi Arabia. Comp. Clin. Path., 24: 887-892. [Crossref]

65. Mohabbati, M.A., Bagheri, A.F. and Esmaeili, S. (2017) Seroprevalence of Q fever among human and animal in Iran; A systematic review and meta-analysis. PLoS Negl. Trop. Dis., 11(4): e0005521. [Crossref]

66. Browne, A.S., Fevre, E.M., Kinnaird, M., Muloi, D.M., Wang, C.A., Larsen, P.S., O'Brien, T. and Deem, S.L. (2017) Serosurvey of Coxiella burnetii (Q fever) in Dromedary Camels (Camelus dromedarius) in Laikipia County, Kenya. Zoonoses Public Health, 64: 543-549. [Crossref] [PubMed] [PMC]

67. Soliman, A.K., Botros, B.A.M. and Watts, D.M. (1992) Evaluation of a competitive enzyme immunoassay for detection of Coxiella burnetii antibody in animal sera. J. Clin. Microbiol., 30: 1595-1597. [PubMed] [PMC]

68. Mazyad, S.A. and Hafez, A.O. (2007) Q fever (Coxiella burnetii) among man and farm animals in North Sinai, Egypt. J. Egypt. Soc. Parasitol., 37: 135-142. [PubMed]

69. Doosti, A., Arshi, A. and Sadeghi, M. (2014) Investigation of Coxiella burnetii in Iranian camels. Comp. Clin. Path., 23: 43-46. [Crossref]

70. Toledo, A., Jado, I., Olmeda, A.S., Casado-Nistal, M.A., Gil, H., Escudero, R. and Anda P. (2009) Detection of Coxiella burnetii in ticks collected from central Spain. Vector Borne Zoonotic Dis., 9: 465-468. [Crossref] [PubMed]

71. Bola-os-Rivero, M., Carranza-Rodriguez, C., Rodriguez, N.F., Gutierrez, C. and Perez-Arellano, J.L. (2017) Detection of Coxiella burnetii DNA in peridomestic and wild animals and ticks in an endemic region (Canary Islands, Spain. Vector Borne Zoonotic Dis., 17: 630-634. [Crossref] [PubMed]

72. Mohammed, O.B., Jarelnabi, A.A., Aljumaah, R.S., Alshaikh, M.A., Bakhiet, A.O., Omer, S.A., Alagaili, A.N. and Hussein, M.F. (2014) Coxiella burnetii, the causative agent of Q fever in Saudi Arabia: Molecular detection from camel and other domestic livestock. Asian Pac. J. Trop. Med., 7: 715-719. [Crossref]

73. Siroky, P., Kubelova, M., Modry, D., Erhart, J., Literak, I., Spitalska, E. and Kocianova, E. (2010) Tortoise tick Hyalomma aegyptium as long-term carrier of Q fever agent Coxiella burnetii-evidence from experimental infection. Parasitol. Res., 107: 1515-1520. [Crossref] [PubMed]

74. Altay, C.G., Emre, Z., Canpolat, S., Vatansever, Y. and Duzgun, A. (2013) Detection of Coxiella burnetii from ticks by polymerase chain reaction and restriction fragment length polymorphism. Ankara Universitesi Veteriner Fakultesi Dergisi, 60(4), 263-268. [Crossref]

75. Estrada-Pe-a, A., D'Amico, G., Palomar, A.M., Dupraz, M., Fonville, M., Heylen, D., Habela, M.A., Hornok, S., Lempereur, L., Madder, M., Nuncio, M.S., Otranto, D., Pfaffle, M., Plantard, O., Santos-Silva, M.M., Sprong, H., Vatansever, Z., Vial, L. and Mihalca, A.D. (2017) A comparative test of ixodid tick identification by a network of European researchers. Ticks Tick Borne Dis., 8: 540-546. [Crossref] [PubMed]

76. Hekimoglu, O. and Ozer, A.N. (2017) Distribution and phylogeny of Hyalomma ticks (Acari: Ixodidae) in Turkey. Exp. Appl. Acarol., 73: 501-519. [Crossref] [PubMed]

77. Sands, A.F., Apanaskevich, D.A., Matthee, S., Horak, I.G., Harrison, A., Karim, S., Mohammad, M.K., Mumcuoglu, K.Y., Rajakaruna, R.S., Santos-Silva, M.M. and Matthee, C.A. (2017) Effects of tectonics and large-scale climatic changes on the evolutionary history of Hyalomma ticks. Mol. Phylogenet. Evol., 114: 153-165. [Crossref] [PubMed]

78. Sivakumar, G., Swami, S.K., Nagarajan, G., Mehta, S.C., Tuteja, F.C., Ashraf, M. and Patil, N.V. (2018) Molecular characterization of Hyalomma dromedarii from North Western Region of India based on the gene sequences encoding calreticulin and internally transcribed spacer region 2. Gene Reports, 10: 141-148. [Crossref]