Open Access
Research (Published online: 16-08-2018)
16. Potency of lactic acid bacteria isolated from balinese bovine (Bos sondaicus) intestinal waste from slaughterhouse to improve nutrient content of wheat pollard as animal feedstuff by fermentation process
Widya Paramita Lokapirnasari, Adriana Monica Sahidu, Koesnoto Soepranianondo, Agus Supriyanto, Andreas Berny Yulianto and Anam Al Arif
Veterinary World, 11(8): 1127-1134

Widya Paramita Lokapirnasari: Department of Animal Husbandry, Faculty of Veterinary Medicine, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia.
Adriana Monica Sahidu: Department of Marine, Faculty of Fisheries and Marine, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia.
Koesnoto Soepranianondo: Department of Animal Husbandry, Faculty of Veterinary Medicine, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia.
Agus Supriyanto: Department of Biology, Faculty of Science and Technology, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia.
Andreas Berny Yulianto: Doctoral of Veterinary Science, Faculty of Veterinary Medicine, Jl. Mulyorejo, Campus C, Universitas Airlangga, Surabaya, Indonesia.
Anam Al Arif: Department of Animal Husbandry, Faculty of Veterinary Medicine, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia.

doi: 10.14202/vetworld.2018.1127-1134

Share this article on [Facebook] [LinkedIn]

Article history: Received: 24-04-2018, Accepted: 06-07-2018, Published online: 16-08-2018

Corresponding author: Widya Paramita Lokapirnasari

E-mail: widyaparamitalokapirnasari@gmail.com

Citation: Lokapirnasari WP, Sahidu AM, Soepranianondo K, Supriyanto A, Yulianto AB, Al Arif A (2018) Potency of lactic acid bacteria isolated from Balinese bovine (Bos sondaicus) intestinal waste from slaughterhouse to improve nutrient content of wheat pollard as animal feedstuff by fermentation process, Veterinary World, 11(8): 1127-1134.
Abstract

Aim: The purpose of this study was to know the genetic and biochemical identification of isolated lactic acid bacteria (LAB) from Balinese bovine (Bos sondaicus) intestinal waste, acidity, and ox bile salts and to inhibit the growth pathogen of Staphylococcus aureus and Escherichia coli and the potential of those isolated to improve nutrient value of wheat pollard as animal feed ingredient by fermentation process.

Materials and Methods: This research was divided into three stages. The first stage, isolated LAB were obtained from the bovine intestines at a slaughterhouse in Indonesia. Small intestinal samples were collected from 10 healthy Balinese beef cattle (B. sondaicus). The isolated LAB were identified by VITEK 2, polymerase chain reaction, and 16S rDNA. The basic local alignment search tool (BLAST) was performed to determine the phylogenetic tree. The second stage, the LAB were screened for their tolerance at pH 2, 3, and 4; bile salt, and antagonistic to enteric pathogen. In the third stage, to determine the potency of this isolate to increase nutrient content of wheat pollard by facultative anaerobe fermentation for 3 and 5 days.

Results: The result of the first stage showed that the isolate could be identified as Lactobacillus casei WPL 315. The result of the second stage showed that the isolate tolerance to low pH (pH 2, pH 3, and pH4) for 90 min and 24 h, and this isolate had viability tolerance in 0.3% bile salt. The isolate can inhibit S. aureus and E. coli. The result of the third stage by proximate analysis showed that crude protein increased by 23.08% after fermentation, while crude fiber decreased by 61.24% on the level 0.5% L. casei subsp. WPL 315 in the 3-day fermentation.

Conclusion: Based on the results, it showed that L. casei WPL 315 derived from indigenous intestinal Balinese beef cattle (B. sondaicus) has tolerant characteristic on acidity and ox bile salts, has antagonistic effect against E. coli and S. aureus, and has the ability to increase crude protein and decrease crude fiber content of wheat pollard. It would be interesting to determine whether the strain has a probiotic candidate.

Keywords: Escherichia coli, Lactobacillus casei, probiotics, Staphylococcus aureus, wheat pollard.

References

1. Waldroup, P.W., Oviedo-Rondon, E.O. and Fritts, C.A. (2003) Comparison of bio-mos and antibiotic feeding programs in broiler diets containing copper sulfate. Int. J. Poult. Sci., 2: 28-31. [Crossref]

2. Astini, W. (2014) Potential of Commercial Probiotic on Body Weight Gain, Feed Consumption, Feed Conversion Ratio. Universitas Airlangga, Surabaya.

3. Dongarra, M.L., Rizzello, V., Muccio, L., Fries, W., Cascio, A., Bonaccorsi, I. and Ferlazzo, G. (2013) Mucosal immunology and probiotics. Curr. Allergy Asthma Rep., 13(1): 19-26. [Crossref] [PubMed]

4. Besseling-van der Vaart, I., Heath, M.D., Guagnini, F. and Kramer, M.F. (2016) In vitro evidence for efficacy in food intolerance for the multispecies probiotic formulation ecologic® tolerance (SyngutTM). Benef. Microbes, 7(1): 111-118. [Crossref] [PubMed]

5. Mu-oz-Atienza, E., Gomez-Sala, B., Araujo, C., Campanero, C., Del Campo, R., Hernandez, P.E., Herranz, C. and Cintas, L.M. (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbial., 13(1): 1.

6. Amara, A.A. and Shibl, A. (2015) Role of probiotics in health improvement, infection control and disease treatment and management. Saudi Pharm. J., 23(2): 107-114. [Crossref] [PubMed] [PMC]

7. Buffie, C.G. and Pamer, E.G. (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol., 13(11): 790-801. [Crossref] [PubMed] [PMC]

8. Vuong, C.N., Chou, W.K., Hargis, B.M., Berghman, L.R. and Bielke, L.R. (2016) Role of probiotics on immune function and their relationship to antibiotic growth promoters in poultry, a brief review. Int. J. Probiotics Prebiotics, 11(1): 1-6.

9. Dicks, L.M.T. and Botes, M. (2010) Probiotic lactic acid bacteria in the gastrointestinal tract: Health benefits, safety and mode of action. Benef. Microbes, 1(1): 11-29. [Crossref] [PubMed]

10. Bidarkar, V.K., Swain, P.S., Ray, S. and Dominic, G. (2014) Probiotics: Potential alternative to antibiotics in ruminant feeding. Trends Vet. Anim. Sci., 1: 1-4.

11. Gabriel, A., Victor, N. and du Preez James, C. (2014) Cactus pear biomass, a potential lignocellulose raw material for single-cell protein production (SCP): A review. Int. J. Curr. Microbiol. Appl. Sci., 3(7): 171-197.

12. Ausubel, F.M., Brent, R., Kingston, R.E., Mppre, D.D., Seldman, J.G., Smith, J.A. and Struhl, K. (1992) Short Protocols in Molecular Biology. 2nd ed. John Willey & Sons, New York, Chichester, Brisbane, Toronto, Singapore.

13. Crowley, E., Bird, P., Fisher, K., Goetz, K., Boyle, M., Benzinger, M.J. Jr., Juenger, M., Agin, J., Goins, D. and Johnson, R. (2012) Evaluation of the VITEK 2 Gram-negative (GN) microbial identification test card: Collaborative study. J AOAC Int., 95(3): 778-785. [Crossref]

14. Succi, M., Tremonte, P., Reale, A., Sorrentino, E., Grazia, L., Pacifico, S. and Coppola, R. (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from parmigiano reggiano cheese. FEMS Microbiol. Lett., 244(1): 129-137. [Crossref] [PubMed]

15. Gilliland, S.E. and Kim, H.S. (1984) Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. J. Dairy Sci., 67(1): 1-6. [Crossref]

16. Solieri, L., Bianchi, A., Mottolese, G., Lemmetti, F. and Giudici, P. (2014) Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened parmigiano reggiano cheese by in vitro screening and principal component analysis. Food Microbiol., 38: 240-249. [Crossref]

17. Jin, L.Z., Ho, Y.W., Abdullah, N., Ali, M.A. and Jalaludin, S. (1996) Antagonistic effects of intestinal Lactobacillus isolates on pathogens of chicken. Lett. Appl. Microbiol., 23(2): 67-71. [Crossref]

18. AOAC. (1990) Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA.

19. Pincus, D.H. (2006) Microbial Identification using the BioMerieux Vitek 2 System. Encyclopedia of Rapid Microbiological Methods. Parenteral Drug Association, Bethesda, MD.

20. Surono, I.S. (2003) In vitro probiotic properties of indigenous dadih lactic acid bacteria. Asian Aust. J. Anim. Sci., 16(5): 726-731. [Crossref]

21. Fan, C., Li, S., Li, C., Ma, S., Zou, L. and Wu, Q. (2012) Isolation, identification and cellulase production of a cellulolytic bacterium from intestines of giant panda. Acta Microbial. Sin., 52(9): 1113-11121.

22. Huang, S., Sheng, P. and Zhang, H. (2012) Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int. J. Mol. Sci., 13(3): 2563-2577. [Crossref] [PubMed] [PMC]

23. Torres, A.R., Araujo, W.L., Cursino, L., Hungria, M., Plotegher, F., Mostasso, F.L. and Azevedo, J.L. (2008) Diversity of endophytic enterobacteria associated with different host plants. J. Microbiol., 46(4): 373-379. [Crossref] [PubMed]

24. Lee, H., Baek, H., Lim, S.B., Hur, J.S., Shim, S., Shin, S.Y., Han, N.S. and Seo, J.H. (2015) Development of species-specific PCR primers and polyphasic characterization of Lactobacillus sanfranciscensis isolated from Korean sourdough. Int. J. Food Microbiol., 200: 80-86. [Crossref] [PubMed]

25. Zotta, T., Ricciardi, A. and Parente, E. (2007) Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. Int. J. Food Microbiol., 115(2): 165-172. [Crossref] [PubMed]

26. Yan, T.R., Lin, Y.H. and Lin, C.L. (1998) Purification and characterization of an extracellular β-glucosidase II with high hydrolysis and transglucosylation activities from Aspergillus niger. J. Agr. Food Chem., 46(2): 431-437. [Crossref]

27. Bhatia, Y., Mishra, S. and Bisaria, V.S. (2002) Microbial β-glucosidases: Cloning, properties, and applications. Crit. Rev. Biotechnol., 22(4): 375-407. [Crossref] [PubMed]

28. Surono, I.S. (2004) Probiotik Susu Fermentasi dan Kesehatan. YAPMMI, Jakarta. p149-151.

29. Jacobsen, C.N., Nielsen, V.R., Hayford, A.E., Moller, P.L., Michaelsen, K.F., Paerregaard, A., Sandstrom, B., Tvede, M. and Jakobsen, M. (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microb., 65(11): 4949-4956. [PubMed] [PMC]

30. Dunne, C., O'Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O'Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C. and Kiely, B. (2001) In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am. J. Clin. Nutr., 73(2): 386s-392s. [Crossref] [PubMed]

31. Bernardeau, M., Vernoux, J.P, Henri-Dubernet, S. and Gueguen, M. (2008) Safety assessment of dairy microorganisms: The Lactobacillus genus. Int. J. Food Microb., 126: 278-285. [Crossref] [PubMed]

32. Massi, M.B.V.F., Federici, D. and Matteuzzi, P. (2004) Identification e based on PCR combined with automated ribotyping for tracking probiotic Lactobacillus strains colonizing the human gut and vagina. J. Appl. Microbiol., 96(4): 777-786. [Crossref]

33. Nomoto, K. (2005) Prevention of infection by probiotics. J. Biosci. Bioeng., 100: 583-592. [Crossref] [PubMed]

34. Srinu, B., Rao, T.M., Reddy, P.V.M. and Reddy, K.K. (2013) Evaluation of different lactic acid bacterial strains for probiotic characteristics. Vet. World, 6(10): 785-788. [Crossref]

35. Balasingham, K., Valli, C., Radhakrishnan, L. and Balasuramanyam, D. (2017) Probiotic characterization of lactic acid bacteria isolated from swine intestine. Vet. World, 10(7): 825-829. [Crossref] [PubMed] [PMC]

36. Hawaz, E. (2014) Isolation and identification of probiotic lactic acid bacteria from curd and in vitro evaluation of its growth inhibition activities against pathogenic bacteria. Afr. J. Microbiol. Res., 8: 1419-1425. [Crossref]

37. Musikasang, H., Tani, A., H-kittikun, A. and Maneerat, S. (2009) Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J. Microbiol. Biotechnol., 25(8): 1337-1345. [Crossref]

38. Patterson, J.A. and Burkholder, K.M. (2003) Application of prebiotics and probiotics in poultry production. Poult. Sci., 82(4): 627-631. [Crossref] [PubMed]

39. Rammelsberg, M. and Radler, F. (1990) Antibacterial polypeptides of Lactobacillus species. J. Appl. Bacteriol., 69(2): 77-184. [Crossref]

40. Klaenhammer, T.R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 12(1-3): 39-85. [Crossref]

41. Charlier, C., Even, S., Gautier, M. and Le Loir, Y. (2008) Acidification is not involved in the early inhibition of Staphylococcus aureus growth by Lactococcus lactis in milk. Int. Dairy J., 18(2): 197-203. [Crossref]

42. Lin, W.H., Hwang, C.F., Chen, L.W. and Tsen, H.Y. (2006) Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiol., 23(1): 74-81. [Crossref] [PubMed]