Open Access
Review (Published online: 15-02-2018)
17. Antimicrobial peptides of buffalo and their role in host defenses
Khangembam Victoria Chanu, Dimpal Thakuria and Satish Kumar
Veterinary World, 11(2): 192-200

Khangembam Victoria Chanu: ICAR-Directorate of Coldwater Fisheries Research, Bhimtal - 263 136, Uttarakhand, India.
Dimpal Thakuria: ICAR-Directorate of Coldwater Fisheries Research, Bhimtal - 263 136, Uttarakhand, India.
Satish Kumar: ICAR-Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India.

doi: 10.14202/vetworld.2018.192-200

Share this article on [Facebook] [LinkedIn]

Article history: Received: 07-10-2017, Accepted: 16-01-2018, Published online: 15-02-2018

Corresponding author: Dimpal Thakuria


Citation: Chanu KV, Thakuria D, Kumar S (2018) Antimicrobial peptides of buffalo and their role in host defenses, Veterinary World, 11(2): 192-200.

Antimicrobial peptides (AMPs) are highly conserved components of the innate immune system found among all classes of life. Buffalo (Bubalus bubalis), an important livestock for milk and meat production, is known to have a better resistance to many diseases as compared to cattle. They are found to express many AMPs such as defensins, cathelicidins, and hepcidin which play an important role in neutralizing the invading pathogens. Buffalo AMPs exhibit broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria. Similar to its natural form, synthetic analogs of buffalo AMPs are also antimicrobial against bacteria and even fungus making them a good target for the development of therapeutic antimicrobials. In addition to its antimicrobial effect, AMPs have been demonstrated to have a number of immunomodulatory functions, and their genes are responsive to infections. Further, induction of their gene expression by external factors may help in preventing infectious diseases. This review briefly discusses the AMPs of buffalo identified to date and their possible role in innate immunity.

Keywords: antimicrobial peptides, Bubalus bubalis, cathelicidins, defensin, hepcidin.


1. Singh, V.K., More, T. and Kumar, S. (2004) Separation of cationic proteins and antibiotic peptides from buffalo polymorphonuclear cells. Buffalo J., 2: 173-182.

2. Yang, S.C., Lin, C.H., Sung, C.T. and Fang, J.Y. (2014) Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front Microbiol., 5: 241. [PubMed] [PMC]

3. Chugh, J.K. and Wallace, B.A. (2001) Peptaibols: Models for ion channels. Biochem. Soc. Trans., 29: 565-570. [Crossref] [PubMed]

4. Boman, H.G., Faye, I., Lee, J.Y., Gudmundsson, G.H. and Lidholm, D.A. (1991) Cell-free immunity in Cecropia. A model system for antibacterial proteins. Eur. J. Biochem., 201: 23-31. [Crossref] [PubMed]

5. Masso-Silva, J.A. and Diamond, G. (2014) Antimicrobial peptides from fish. Pharmaceuticals (Basel), 7: 265-310. [Crossref] [PubMed] [PMC]

6. Zasloff, M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 84: 5449-5453.

7. Amiche, M., Seon, A.A., Pierre, T.N. and Nicolas, P. (1999) The dermaseptin precursors: A protein family with a common preproregion and a variable C-terminal antimicrobial domain. FEBS Lett., 456: 352-356. [Crossref]

8. Zhang, G. and Sunkara, L.T. (2014) Avian antimicrobial host defense peptides: From biology to therapeutic applications. Pharmaceuticals, 7: 220-246. [Crossref] [PubMed] [PMC]

9. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature, 415: 389-395. [Crossref] [PubMed]

10. Schauber, J. and Gallo, R.L. (2008) Antimicrobial peptides and the skin immune defense system. J. Allergy Clin. Immunol., 122: 261-266. [Crossref] [PubMed] [PMC]

11. Malmsten, M. (2016) Interactions of antimicrobial peptides with bacterial membranes and membrane components. Curr. Top. Med. Chem., 16: 16-24. [Crossref] [PubMed]

12. Hancock, R.E.W., Haney, E.F. and Gill, E.E. (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat. Rev. Immunol., 16: 321-334. [Crossref] [PubMed]

13. Buck, C.B., Day, P.M., Thompson, C.D., Lubkowski, J., Lu, W., Lowy, D.R. and Schiller, J.T. (2006) Human alpha-defensins block papillomavirus infection. Proc. Natl. Acad. Sci. U S A., 103: 1516-1521. [Crossref] [PubMed] [PMC]

14. Currie, S.M., Findlay, E.G., McFarlane, A.J., Fitch, P.M., Bottcher, B., Colegrave, N., Paras, A., Jozwik, A., Chiu, C., Schwarze, J. and Davidson, D.J. (2016) Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J. Immunol., 196: 2699-2710. [Crossref]

15. Rozek, T., Wegener, K.L., Bowie, J.H., Olver, I.N., Carver, J.A., Wallace, J.C. and Tyler, M.J. (2000) The antibiotic and anticancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2. Eur. J. Biochem., 267: 5330-5341. [Crossref] [PubMed]

16. Gaspar, D., Freire, J.M., Pacheco, T.R., Barata, J.T. and Castanho, M.A.R.B. (2015) Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics. Biochim. Biophys. Acta Mol. Cell Res., 1853: 308-316. [Crossref] [PubMed]

17. Cunliffe, R.N. and Mahida, Y.R. (2004) Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J. Leukocyte Biol., 75: 49-58. [Crossref] [PubMed]

18. Nguyen, T.X., Cole, A.M. and Lehrer, R.I. (2003) Evolution of primate theta-defensins: A serpentine path to sweet tooth. Peptides, 24: 1647-1654. [Crossref] [PubMed]

19. Lehrer, R.I. and Lu, W. (2012) Alpha-defensins in human innate immunity. Immunol. Rev., 245: 84-112. [Crossref] [PubMed]

20. Li, D., Zhang, L., Yin, H., Xu, H., Satkoski, T.J., Smith, D.G., Li, Y., Yang, M. and Zhu, Q. (2014) Evolution of primate a and ? defensins revealed by analysis of genomes. Mol. Biol. Rep., 41: 3859-3866. [Crossref] [PubMed]

21. Ganz, T. and Lehrer, R.I. (1994) Defensins. Curr. Opin. Immunol., 6: 584-589. [Crossref]

22. Diamond, G., Zasloff, M., Eck, H., Brasseur, M., Maloy, W.L. and Bevins, C.L. (1991) Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: Peptide isolation and cloning of cDNA. Proc. Natl. Acad. Sci. U S A, 88: 3952-6. [Crossref]

23. Sandeep, K., More, T. and Renu (2006) Biochemical characterization of antimicrobial peptides buffalo tracheal epithelium. J. Immunol. Immunopathol., 8: 30-34.

24. Hiemstra, P.S. (2001) Epithelial antimicrobial peptides and proteins: Their role in host defence and inflammation. Paediatr. Respir. Rev., 2: 306-310. [Crossref] [PubMed]

25. Newhouse, M.T. and Bienenstock, J. (1989) Respiratory tract defense mechanisms. In: Baum, G.L., Wolinsky, E., editors. Textbook of Pulmonary Disease. Little, Brown & Co. Boston, Mass. p21-47.

26. Mossallam, A.A.A., Soheir, M., Nahas, E., Sabry, N.M., Mahfouz, E.R. and Hassan, A.A. (2011) Partial characterization of three-defensin gene transcripts in river buffalo and cattle. Afr. J. Biotechnol., 10: 11388-11396.

27. Das, H. and More, T. (2007) Tracheal Antimicrobial Peptide (Bubalus bubalis). NCBI Accession Number: Abn72272.

28. Das, H., Lateef, A., Desai, M.C., Chandel, B.S. and Parsani, H.R. (2014) Tracheal Antimicrobial Peptide (Bubalus bubalis). NCBI Accession Number: AIU56269.

29. Stolzenberg, E.D., Anderson, G.M., Ackermann, M.R. and Whitlock, R.H. (1997) Epithelial antibiotic induced in states of disease. Proc. Natl. Acad. Sci., 94: 8686-8690. [Crossref] [PubMed] [PMC]

30. Schonwetter, B.S., Stolzenberg, E.D. and Zasloff, M.A. (1995) Epithelial antibiotics induced at sites of inflammation. Science, 267: 1645-1648. [Crossref] [PubMed]

31. Isobe, N., Hosoda, K. and Yoshimura, Y. (2009) Immunolocalization of lingual antimicrobial peptide (LAP) in the bovine mammary gland. Anim. Sci. J., 80: 446-450. [Crossref] [PubMed]

32. Das, H., Lateef, A., Chandel, B.S., Desai, M.C. and Parsani, H.R. (2014) Lingual Antimicrobial Peptide (Bubalus bubalis). NCBI Accession Number: AIU56268.

33. Das, H. and More, T. (2016) Lingual Antimicrobial Peptide Precursor (Bubalus bubalis). NCBI Accession Number: LAP_BUBBU.

34. Anbu, K.A., More, T. and Kumar, A. (2002) Characterization of cationic proteins and peptides from buffalo tongue epithelium. Buffalo J., 2: 211-216.

35. Kalita, D.J. and Kumar, A. (2009) Molecular cloning and characterization of lingual antimicrobial peptide cDNA of Bubalus bubalis. Res. Vet. Sci., 86: 91-97. [Crossref] [PubMed]

36. Das, H., Ahmed, S.U., Thakuria, D., Pathan, M.M., Latif, A., Roy, S.K. and More, T. (2009) Lingual antimicrobial peptide expresses in buffalo mammary gland. Anim. Biotechnol., 20: 75-79. [Crossref] [PubMed]

37. Joseph, D. and More, T. (2011) Molecular characterization of lingual antimicrobial peptide in the female reproductive tract of Buffalo. Vet. World, 4: 120-123.

38. Lehrer, R.I., Rosenman, M., Harwig, S.S.S.L., Jackson, R. and Eisenhauer, P. (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods, 137: 67-173. [Crossref]

39. Ganz, T. (2003) The role of antimicrobial peptides in innate immunity. Integr. Comp. Biol., 43: 300-304. [Crossref] [PubMed]

40. Graf, M., Mardirossian, M., Nguyen, F., Seefeldt, A.C., Guichard, G., Scocchi, M., Innis, C.A. and Wilson, D.N. (2017) Proline-rich antimicrobial peptides targeting protein synthesis. Nat. Prod. Rep., 34: 702-711. [Crossref] [PubMed]

41. Gennaro, R., Zanetti, M., Benincasa, M., Podda, E. and Miani, M. (2002) Pro-rich antimicrobial peptides from animals: Structure, biological functions and mechanism of action. Curr. Pharm. Des., 8: 763-778. [Crossref] [PubMed]

42. Suh, J.Y., Lee, Y.T., Park, C.B., Lee, K.H., Kim, S.C. and Choi, B.S. (1999) Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. Eur. J. Biochem., 266: 665-674. [Crossref] [PubMed]

43. Park, S.H., Kim, H.E., Kim, C.M., Yun, R.P., Choi, E.C. and Lee, B.J. (2002) Role of proline cysteine and a disulphide bridge in the structure and activity of the antimicrobial peptide gaegurin 5. Biochem. J., 368: 171-182. [Crossref] [PubMed] [PMC]

44. Kalita, D.J., Kumar, A. and Kumar, S. (2009) Structure-function studies of Bubalus bubalis lingual antimicrobial peptide analogs. Vet. Res. Commun., 33: 49-161. [Crossref] [PubMed]

45. Das, H., Ahmed, S.U., Shukla, S.K., Shukla, S., Latif, A. and Sharma, D. (2010) Two β defensin cationic peptides from mastitic milk of Bubalus bubalis. Asian J. Anim. Sci., 4: 1-12. [Crossref]

46. Bera, B.C., Chaudhury, P., Bhattacharya, D., Bera, A.K. and Das, S.K. (2007) Cloning, sequencing and expression of cDNA of bovine neutrophil β-defensin from water buffalo (Bubalus bubalis). Int. J. Immunogenet., 34: 173-179. [Crossref] [PubMed]

47. Das, D.K., Sharma, B., Mitra, A. and Kumar, A. (2005) Molecular cloning and characterization of β-β cDNA expressed in distal ileum of buffalo (Bubalus bubalis). DNA Seq., 16: 16-20. [Crossref] [PubMed]

48. Tarver, A.P., Clark, D.P., Diamond, G., Russell, J.P., Erdjument-Bromage, H., Tempst, P., Cohen, K.S., Jones, D.E., Sweeney, R.W., Wines, M., Hwang, S. and Bevins, C.L. (1998) Enteric β-defensin: Molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infect. Immun., 66: 1045-1056. [PubMed] [PMC]

49. Kosciuczuk, E.M., Lisowski, P., Jarczak, J., Strzalkowska, N., Jozwik, A., Horbanczuk, J., Krzyzewski, J., Zwierzchowski, L. And Bagnicka, E. (2012) Cathelicidins: Family of antimicrobial peptides. A review. Mol. Biol. Rep., 39: 10957-10970. [Crossref] [PubMed] [PMC]

50. Zanetti, M., Gennaro, R. and Romeo, D. (1995) Cathelicidins: A novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett., 374: 1-5. [Crossref]

51. Ritonja, A., Kopitar, M., Jerala, R. and Turk, V. (1989) Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Lett., 255: 211-214. [Crossref]

52. Brogden, K.A. (2005) Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 3: 238-250. [Crossref] [PubMed]

53. Hsu, C.H., Chen, C., Jou, M.L., Lee, A.Y., Lin, Y.C., Yu, Y.P., Huang, W.T. and Wu, S.H. (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res., 33: 4053-4064. [Crossref]

54. Marchand, C., Krajewski, K., Lee, H.F., Antony, S., Johnson, A.A., Amin, R., Roller, P., Kvaratskhelia, M. and Pommier, Y. (2006) Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res., 34: 5157-5165. [Crossref] [PubMed] [PMC]

55. Silva, T. and Gomes, M.S. (2017) Immuno-stimulatory peptides as a potential adjunct therapy against intra-macrophagic pathogens. Molecules, 22: 1297. [Crossref] [PubMed]

56. Gennaro, R., Skerlavaj, B. and Romeo, D. (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun., 57: 3142-3146. [PubMed] [PMC]

57. Das, H., Sharma, B. and Kumar, A. (2007) Identification and molecular characterization of cathelin-like prepro region from Bubalus bubalis. J. Appl. Anim. Res., 31: 213-221. [Crossref]

58. Kalita, D.J. (2015). Characterization of cathelicidin gene from buffalo (Bubalus bubalis). Afr. J. Biotechnol., 14: 758-763. [Crossref]

59. Brahma, B., Patra, M.C., Karri, S., Chopra, M., Mishra, P., De, B.C., Kumar, S., Mahanty, M., Thakur, K., Poluri, K.M., Datta, T.K. and De, S. (2015) Diversity, antimicrobial action and structure activity relationship of Buffalo cathelicidins. PLoS One, 10(12): e0144741. [Crossref]

60. Das, H., Sharma, B. and Kumar, A. (2006) Cloning and characterization of novel cathelicidin cDNA sequence of Bubalus bubalis homologous to Bos taurus cathelicidin-4. DNA Seq., 17: 407-414. [Crossref] [PubMed]

61. Das, H., Ahmed, S.U. and More, T. (2008) Molecular characterization of cDNA encoding B. taurus cathelicidin-7 like antibiotic peptide from bone marrow cells of Bubalus bubalis. DNA Seq., 19: 347-356. [Crossref] [PubMed]

62. Panicker, V.P. and George, S. (2013) Identification of three novel myeloid cathelicidin cDNAs and their predicted peptides in buffalo (Bubalus bubalis). Indian J. Biochem. Biophys. 50: 273-277. [PubMed]

63. Panicker, V.P. and George, S. (2016) Chemistry and antimicrobial potential of the buffalo myeloid cathelicidin, BuMAP-34. Int. J. Pept. Res. Ther., 22: 413-420. [Crossref]

64. Hussain, S., Mukhopadhyay, C.S., Kumar, B.V.S. and Kaur, S. (2016) Phylogenetic characterization of novel cathelicidin from Indian water buffalo. Indian J. Biotech., 15: 495-506.

65. Brahma, B., Karri, S., Chopra, M., Patra, M.C., Kumar, S., De, B.C., Mahanty, S., Datta, T.K. and De, S. (2015) Cathelicidin-1 (Bubalus bubalis). NCBI Accession Number: AJA90930.

66. Brahma, B., Karri, S., Chopra, M., Patra, M.C., Kumar, S., De, B.C., Mahanty, S., Datta, T.K. and De, S. (2015) Cathelicidin-2 (Bubalus bubalis). NCBI Accession No. AJA90931.

67. Hussain, S. and Mukhopadhyay, C.S. (2014) Cathelicidin (Bubalus bubalis). NCBI Accession Number: BAO56917.

68. Varuna, P.P., Sisilamma, G., Uma, R., Abraham, P., Jayavardhanan, K.K. and Chinnu, M.V. (2013) Cathelicidin-5 (Bubalus bubalis). NCBI Accession Number: AGA63735.

69. Varuna, P.P., Sisilamma, G., Uma, R., Pellissery, A.J., Jayavardhanan, K.K., Divya, P.D. and Ciby, S. (2014) Cathelicidin-6 (Bubalus bubalis). NCBI Accession Number: AGA63736.

70. Varuna, P.P., Sisilamma, G., Uma, R., Pellissery, A.J. and Jayavardhanan, K.K. (2013) Cathelicidin-7 (Bubalus bubalis). NCBI Accession No. AGB56852.

71. Brahma, B., Karri, S., Chopra, M., Patra, M.C., Kumar, S., De, B.C., Mahanty, S., Datta, T.K. and De, S. (2015) Cathelicidin-4 (Bubalus bubalis). NCBI Accession Number: AIZ93892.

72. Mossallam, A.A.A., El Nahas, S.M. and Sabry, N.M. (2016) Cathelicidin-4, Partial (Bubalus bubalis). NCBI Accession Number: ACT82508.

73. Brahma, B., Karri, S., Chopra, M., Patra, M.C., Kumar, S., De, B.C., Mahanty, S., Datta, T.K. and De, S. (2015) Cathelicidin-4 (Bubalus bubalis). NCBI Accession Number: AIZ93882.

74. Krause, A., Neitz, S., Magert, H.J., Schulz, A., Forssmann, W.G., Schulz-Knappe, P. and Adermann, K. (2000) LEAP-1, a novel highly disulphide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett., 480: 147-150. [Crossref]

75. Park, C.H., Valore, E.V., Waring, A.J. and Ganz, T. (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem., 276: 7806-7810. [Crossref] [PubMed]

76. Hunter, H.N., Fulton, D.B., Ganz, T. and Vogel, H.J. (2002) The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J. Biol. Chem., 277: 37597-37603. [Crossref]

77. Khangembam, V.C. and Kumar, A. (2011) Buffalo hepcidin: Characterization of cDNA and study of antimicrobial property. Vet. Res. Commun., 35: 79-87. [Crossref] [PubMed]

78. Chanu, K.V., Kumar, A. and Kumar, S. (2011) Structure activity relationship of buffalo antibacterial hepcidin analogs. Indian J. Biochem. Biophys., 48: 325-330. [PubMed]

79. Hollmann, A., Martinez, M., Noguera, M.E., Augusto, M.T., Disalvo, A., Santos, N.C., Semorile, L. and Maffia, P.C. (2016) Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Colloids Surf. B. Biointerfaces, 141: 528-536. [Crossref] [PubMed]

80. Son, M., Lee, Y., Hwang, H., Hyun, S. and Yu, J. (2013) Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of a-helical amphipathic peptides. Chem. Med. Chem., 8: 1638-1642. [Crossref]

81. Nemeth, E., Tuttle, M.S., Powelson, J., Vaughn, M.B., Donovan, A., Ward, D.M., Ganz, T. and Kaplan, J. (2004) Hepcidin regulates cellular Iron efflux by binding to ferroportin and inducing its internalization. Science, 306: 2090-2093. [Crossref] [PubMed]

82. Mansour, SC., Pena, O.M. and Hancock, R.E. (2014) Host defense peptides: Frontline immunomodulators. Trends Immunol., 35: 443-450. [Crossref] [PubMed]

83. Otvos, L. Jr. (2016) Immunomodulatory effects of anti-microbial peptides. Acta Microbiol. Immunol. Hung., 63: 257-277. [Crossref] [PubMed]

84. Rohrl, J., Yang, D., Oppenheim, J.J. and Hehlgans, T. (2010) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J. Immunol., 184: 6688-6694. [Crossref] [PubMed]

85. Barabas, N., Rohrl, J., Holler, E. and Hehlgans, T. (2013) Beta-defensins activate macrophages and synergize in pro-inflammatory cytokine expression induced by TLR ligands. Immunobiology, 218: 1005-1011. [Crossref] [PubMed]

86. Mookherjee, N., Brown, K.L., Bowdish, D.M., Doria, S., Falsafi, R., Hokamp, K., Roche, F.M., Mu, R., Doho, G.H., Pistolic, J., Powers, J.P., Bryan, J., Brinkman, F.S. and Hancock, R.E. (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol., 176: 2455-2464. [Crossref] [PubMed]

87. Tripathi, S., Wang, G., White, M., Rynkiewicz, M., Seaton, B. and Hartshorn, K. (2015) Identifying the critical domain of LL-37 involved in mediating neutrophil activation in the presence of influenza virus: Functional and structural analysis. PLoS One, 10: e0133454. [Crossref]

88. Elssner, A., Duncan, M., Gavrilin, M. and Wewers, M.D. (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 processing and release. J. Immunol., 172: 4987-4994. [Crossref] [PubMed]

89. Kang, H.K., Kim, C., Seo, C.H. and Park, Y. (2017) The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol., 55: 1-12. [Crossref]

90. Conlon, J.M. (2004) The therapeutic potential of antimicrobial peptides from frog skin. Rev. Med. Microbiol., 15: 17-25. [Crossref]

91. Falanga, A., Nigro, E., De Biasi, M.G., Daniele, A., Morelli, C., Galdiero, S. and Scudiero, O. (2017) Cyclic peptides as novel therapeutic microbicides: Engineering of human defensin mimetics. Molecules, 22: 1217. [Crossref] [PubMed]

92. Stange, E., Schroeder, B. and Wehkamp, J. (2015) Antimicrobial Peptides. WO2013132005A1.

93. Mahlapuu, M., Hakansson, J., Ringstad, L. and Bjorn, C. (2016) Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 6: 194. [Crossref] [PubMed] [PMC]

94. Lee, P.H., Chen, M.Y., Lai, Y.L., Lee, S.Y. and Chen, H.L. (2017) Human beta-defensin-2 and -3 mitigate the negative effects of bacterial contamination on bone healing in rat calvarial defect. Tissue Eng.Part A. [Crossref]

95. Li, J., Koh, J.J., Liu, S., Lakshminarayanan, R., Verma, C.S. and Beuerman, R.W. (2017) Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 11: 73. [Crossref] [PubMed] [PMC]

96. Lee, D.K., Bhunia, A., Kotler, S.A. and Ramamoorthy, A. (2015) Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: A solid-state nuclear magnetic resonance study. Biochemistry, 54: 1897-1907. [Crossref] [PubMed]

97. Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33: 1870-1874. [Crossref] [PubMed]

98. Thevenet, P., Shen, Y., Maupetit, J., Guyon, F., Derreumaux, P. and Tuffery. P. (2012) PEP-FOLD: An updated denovo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res., 40: W288-W293. [Crossref]

99. Jmol. (2010) Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. Available from: Last accessed on 11-12-2017.

100. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783-791. [Crossref] [PubMed]

101. Saitou, N. and Nei, M. (1987) The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425. [PubMed]