Open Access
Research (Published online: 08-02-2018)
7. The analysis of hippocampus neuronal density (CA1 and CA3) after Ocimum sanctum ethanolic extract treatment on the young adulthood and middle age rat model
Dwi Liliek Kusindarta, Hevi Wihadmadyatami and Aris Haryanto
Veterinary World, 11(2): 135-140

Dwi Liliek Kusindarta: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Hevi Wihadmadyatami: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Aris Haryanto: Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.

doi: 10.14202/vetworld.2018.135-140

Share this article on [Facebook] [LinkedIn]

Article history: Received: 16-10-2017, Accepted: 26-12-2017, Published online: 08-02-2018

Corresponding author: Dwi Liliek Kusindarta


Citation: Kusindarta DL, Wihadmadyatami H, Haryanto A (2018) The analysis of hippocampus neuronal density (CA1 and CA3) after Ocimum sanctum ethanolic extract treatment on the young adulthood and middle age rat model, Veterinary World, 11(2): 135-140.

Aim: This study aimed to assess the changes in neuronal density in CA1 and CA3 regions in the hippocampus of young adulthood and middle age rat model after feeding by Ocimum sanctum ethanolic extract.

Materials and Methods: In this research, 30 male Wistar rats consist of young to middle-aged rats were divided into three groups (3, 6, and 9 months old) and treated with a different dosage of O. sanctum ethanolic extract (0, 50, and 100 mg/kg b.w.) for 45 days. Furthermore, cresyl violet staining was performed to analyze hippocampus formation mainly in CA1 and CA3 area. The concentrations of acetylcholine (Ach) in brain tissues were analyzed by enzyme-linked immunosorbent assay.

Results: In our in vivo models using rat model, we found that the administration of O. sanctum ethanolic extract with a dosage of 100 mg/kg b.w. for 45 days induced the density of pyramidal cells significantly in CA1 and CA3 of the hippocampus. These results were supported by an increase of Ach concentrations on the brain tissue.

Conclusion: The administration of O. sanctum ethanolic extract may promote the density of the pyramidal cells in the CA1 and CA3 mediated by the up-regulated concentration of Ach.

Keywords: acetylcholine, CA1, CA3, Ocimum sanctum.


1. Bishop, N.A., Lu, T. and Yankner, B.A. (2010) Neural mechanisms of ageing and cognitive decline. Nature, 464(7288): 529-535. [Crossref] [PubMed] [PMC]

2. Burke, S.N. and Barnes, C.A. (2006) Neural plasticity in the ageing brain. Nat. Rev. Neurosci., 7: 30-40. [Crossref] [PubMed]

3. Mattson, M.P., Chan, S.L. and Duan, W. (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol. Rev., 82: 637-672. [Crossref] [PubMed]

4. Shoji, H., Takao, K., Hattori, S. and Miyakawa, T. (2016) Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol. Brain, 9: 11. [Crossref] [PubMed] [PMC]

5. Kadian, R. and Parle, M. (2012) Therapeutic potential and phytopharmacology of tulsi. Int. J. Pharm. Life Sci., 3: 1858-1867.

6. Gupta, S.K., Prakash, J. and Srivastava, S. (2002) Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant. Indian J. Exp. Biol., 40: 765-773. [PubMed]

7. Ramesh, B. and Satakopan, V.N. (2010) Antioxidant activities of hydroalcoholic extract of Ocimum sanctum against cadmium induced toxicity in rats. Indian J. Clin. Biochem., 25: 307-310. [Crossref] [PubMed] [PMC]

8. Uma Devi, P. (2001) Radioprotective, anticarcinogenic and antioxidant properties of the Indian Holy Basil, Ocimum sanctum (Tulsi). Indian J. Exp. Biol., 39: 185-190. [PubMed]

9. Jagetia, G.C. (2007) Radioprotective potential of plants and herbs against the effects of ionizing radiation. J. Clin. Biochem. Nutr., 40: 74-81. [Crossref] [PubMed] [PMC]

10. Adhvaryu, M.R., Reddy, N. and Parabia, M.H. (2008) Anti-tumor activity of four ayurvedic herbs in dalton lymphoma ascites bearing mice and their short-term in vitro cytotoxicity on DLA-cell-line. Afr. J. Tradit. Complement. Altern. Med., 5: 409-418. [Crossref]

11. Kusindarta, D.L., Wihadmadyatami, H. and Haryanto, A. (2016) Ocimum sanctum Linn. stimulate the expression of choline acetyltransferase on the human cerebral microvascular endothelial cells. Vet. World, 9: 1348-1354. [Crossref] [PubMed] [PMC]

12. Dutta, S. and Sengupta, P. (2016) Men and mice: Relating their ages. Life Sci., 152: 244-248. [Crossref] [PubMed]

13. Sengupta, P. (2013) The laboratory rat: Relating its age with human's. Intl. J. Prev. Med., 4: 624-630. [PubMed] [PMC]

14. Morrison, J.H. and Hof, P.R. (1997) Life and death of neurons in the aging brain. Science, 278(5337): 412-419. [Crossref]

15. Cohen, M.M. (2014) Tulsi Ocimum sanctum: A herb for all reasons. J Ayurveda Integr. Med., 4: 251-259. [Crossref] [PubMed] [PMC]

16. Kaplan, S., Ragbetli, M.C., Canan, S., Sahin, B. and Marangoz, C. (2003) Numerical density of pyramidal neurons in the hippocampus of 4 and 20 week old male and female rats. Neurosci. Res. Comm., 32(1): 37-48. [Crossref]

17. Luine, V.N., Wallace, M.E. and Frankfurt, M. (2002) Age-related deficits in spatial memory and hippocampal Spines in virgin, female fischer 344 rats. Curr. Gerontol. Geriatr. Res., 2011: 316386.

18. Kalkan, Y., Bunyami, U., Osman, N.K. and Adem, K. (2011) Numerical analysis of age and gender-dependent neuronal cells in postnatal development of rat hippocampus. Neurol. Psy. Brain Res., 19(2013): 19-28.

19. Farovik, A., Dupont, L.M. and Eichenbaum, H. (2010). Distinct roles for dorsal CA3 and CA1 in memory for sequential nonspatial events. Learn. Mem., 1: 12-17. [Crossref] [PubMed] [PMC]

20. Bartsch, T., Juliane, D., Axel, R., Olav, J. and Gunther, D. (2011) CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proc. Natl. Acad. Sci. USA., 108(42): 17562-17567. [Crossref] [PubMed] [PMC]

21. Gruart, A. and Delgado-Garcia, J.M. (2007). Activity-dependent changes of the hippocampal CA3-CA1 synapse during the acquisition of associative learning in conscious mice. Genes. Brain. Behav., 6: 24-31. [Crossref]

22. Vasuta, C., Artinian, J., Laplante, I., Hebert-Seropian, S., Elayoubi, K. and Lacaille, J.C. (2011) Metaplastic regulation of CA1 schaffer collateral pathway plasticity by hebbian MGluR1a-mediated plasticity at excitatory synapses onto somatostatin-expressing interneurons. eNeuro, 2(4): 1-16.

23. Kril, J.J., Halliday, G.M. (2004) Clinicopathological staging of frontotemporal dementia severity: Correlation with regional atrophy. Dement Geriatr. Cogn. Disord.,17(4): 311-315. [Crossref] [PubMed]

24. Veena, J., Srikumar, B.N., Mahati, K., Raju, T.R. and Shankaranarayana, R.B.S. (2011) Oxotremorine treatment restores hippocampal neurogenesis and ameliorates depression-like behaviour in chronically stressed rats. Psychopharmacology (Berl), 217(2): 239-253. [Crossref] [PubMed]

25. Mohapel, P., Leanza, G., Kokaia, M. and Lindvall, O. (2005) Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol. Aging, 26(6): 939-946. [Crossref] [PubMed]

26. Salani, M., Anelli, T., Tocco, GA., Lucarini, E., Mozzetta, C., Poiana, G., Tata, AM. and Biagioni, S. (2009) Acetylcholine-induced neuronal differentiation: Muscarinic receptor activation regulates EGR-1 and REST expression in neuroblastoma cells. J. Neurochem., 108(3): 821-834. [Crossref] [PubMed]

27. Asrican, B., Patricia, P., Joshua, E. and Chay, T.K. (2016) Cholinergic circuit control of postnatal neurogenesis. Neurogen (Austin), 3(1): e1127310. [Crossref]

28. Ragozzino, M.E. and Choi, D. (2004) Dynamic changes in acetylcholine output in the medial striatum during place reversal learning. Learn. Mem., 11: 70-77. [Crossref] [PubMed] [PMC]

29. Rogers, J.L. and Kesner, R.P. (2003) Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol. Learn. Mem., 80(3): 332-342. [Crossref]

30. Hasselmo, M.E. (2006) The role of acetylcholine in learning and memory. Curr. Opin Neurobiol., 16(6): 710-715. [Crossref] [PubMed] [PMC]

31. Pepeu, G. and Giovannini, M.G. (2010) Cholinesterase inhibitors and memory. Chem. Biol. Interact., 187(1-3): 403-408. [Crossref] [PubMed]