Open Access
Research (Published online: 19-01-2018)
8. Milk amyloid A as a biomarker for diagnosis of subclinical mastitis in cattle
Hany Ahmed Hussein, Khaled Abd El-Hamid Abd El-Razik, Alaa Mohamed Gomaa, Mohamed Karam Elbayoumy, Khaled A. Abdelrahman and H. I. Hosein
Veterinary World, 11(1): 34-41

Hany Ahmed Hussein: Department of Animal Reproduction and AI, Veterinary Division, National Research Centre, Dokki, Giza, Egypt.
Khaled Abd El-Hamid Abd El-Razik: Department of Animal Reproduction and AI, Veterinary Division, National Research Centre, Dokki, Giza, Egypt.
Alaa Mohamed Gomaa: Department of Mastitis and Neonatal Diseases, Animal Reproduction Research Institute, Agriculture Research Center, Giza, Egypt.
Mohamed Karam Elbayoumy: Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Giza, Egypt.
Khaled A. Abdelrahman: Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Giza, Egypt.
H. I. Hosein: Department of Veterinary Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt.

doi: 10.14202/vetworld.2018.34-41

Share this article on [Facebook] [LinkedIn]

Article history: Received: 04-10-2017, Accepted: 13-12-2017, Published online: 19-01-2018

Corresponding author: Hany Ahmed Hussein


Citation: Hussein HA, Abd El-Razik KA, Gomaa AM, Elbayoumy MK, Abdelrahman KA, Hosein HI (2018) Milk amyloid A as a biomarker for diagnosis of subclinical mastitis in cattle, Veterinary World, 11(1): 34-41.

Background and Aim: Mastitis is one of the most vital noteworthy monetary risks to dairy ranchers and affects reproductive performance in dairy cattle. However, subclinical mastitis (SCM) negatively affects milk quality and quantity and associated with economic losses as clinical mastitis. It is recognizable only by additional testing. Somatic cell count (SCC) is currently used worldwide for the screening of intramammary infection (IMI) infections. However, somatic cells (SC) are affected by numerous factors and not always correlate with infection of the udder. Therefore, the aim of the present study was to evaluate the milk amyloid A (MAA) in the milk of normal and SCM cows and compare the sensitivity of both MAA secretion and SCC in response to mammary gland bacterial infection.

Materials and Methods: A total of 272 quarter milk samples collected from 68 Friesian cows after clinical examination for detection of clinical mastitis were employed in this study. All quarter milk samples (272) were subjected to bacteriological examination, while SCs were assessed in samples (220). Following SCC estimation and bacteriological examination, the apparently normal quarter milk samples were categorized into 7 groups and MAA concentration was estimated in normal and subclinical mastitic milk samples.

Results: Prevalence of clinical mastitis was 19.12 % (52 quarters), while 80.88 % (220 quarters) were clinically healthy with normal milk secretion. Of those 220 clinically healthy quarter milk samples, 72 (32.73%) showed SCM as detected by SCC (SCC ≥500,000 cells/ml). The most prevalent bacteria detected in this study were streptococci (48.53%), Staphylococcus aureus (29.41%), Escherichia coli (36.76%), and coagulase-negative staphylococci (11.76%). Results of MAA estimation revealed a strong correlation between MAA secretion level and SCC in agreement with the bacteriological examination. Interestingly, there was a prompt increase in MAA concentration in Group III (G III) (group of milk samples had SCC ≤200,000 cells/ml and bacteriologically positive) than Group I (G I) (group of milk samples with SCC ≤500,000 cells/ml and bacteriologically negative), as MAA concentration in G III was about 4 times its concentration in G I.

Conclusion: Our study provides a strong evidence for the significance of MAA measurement in milk during SCM, and MAA is more sensitive to IMI than SCC. This can be attributed to rapid and sensitive marker of inflammation. The advantage of MAA over other diagnostic markers of SCM is attributed the minute or even undetectable level of MAA in the milk of healthy animals, it is not influenced by factors other than mastitis, and could be estimated in preserved samples. Therefore, we recommend that estimation of MAA concentration in milk is a more useful diagnostic tool than SCC to detect SCM and to monitor the udder health in dairy cattle.

Keywords: biomarkers, milk amyloid A, somatic cell count, subclinical mastitis.


1. Sharma, N., Gautam, A., Upadhyay, S.R., Hussain, K., Soodan, J.S. and Gupta, S.K. (2007) Role of antioxidants in udder health: A review. Indian J. Field. Vet., 8(2): 284-295.

2. Keefe, G. (2012) Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet. Clin. North Am. Food Anim. Pract., 28(2): 203-216. [Crossref] [PubMed]

3. de Vliegher, S., Fox, L.K., Piepers, S., McDougall, S. and Barkema, H.W. (2012) Invited review: Mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. J. Dairy Sci., 95(3): 1025-1040. [Crossref] [PubMed]

4. Radostitis, O.M., Blood, D.C. and Gay, C.C. (1995) Veterinary Medicine. 8th ed. ELBS-Bailiere Tindal, London.

5. Kadariya, J., Smith, T.C. and Thapaliya, D. (2014) Staphylococcus aureus and staphylococcal food - Borne disease: an ongoing challenge in public health. Biomed. Res. Int., 2014: 827965. [Crossref] [PubMed] [PMC]

6. Ibrahim, H.M.M., Ahmed, A.M., El-seedy, Y.Y. and El-Khodery, S.A. (2015) Distribution of multidrug-resistant gram-negative bacteria causing clinical mastitis in dairy cows. Glob. Vet., 15: 268-277.

7. Yang, F.L., Li, X.S., Yang, B.Z., Zhang, Y., Zhang, X.F., Qin, G.S. and Liang, X.W. (2012) Clinical mastitis from calving to next conception negatively affected reproductive performance of dairy cows in Nanning, China. Afr. J. Biotechnol., 11(10): 2574-2580. [Crossref]

8. Roth, Z., Dvir, A., Kalo, D., Lavon, Y., Krifucks, O., Wolfenson, D. and Leitner, G. (2013) Naturally occurring mastitis disrupts developmental competence of bovine oocytes. J. Dairy Sci., 96: 6499-6505. [Crossref] [PubMed]

9. Asaf, S., Leitner, G., Furman, O., Lavon, Y., Kalo, D., Wolfenson, D. and Roth, Z. (2014) Effects of Escherichia coli-and Staphylococcus aureus-induced mastitis in lactating cows on oocyte developmental competence. Reproduction, 147(1): 33-43. [Crossref] [PubMed]

10. Boujenane, I., El Aimani, J. and By, K. (2015) Effects of clinical mastitis on reproductive and milk performance of Holstein cows in Morocco. Trop. Anim. Health Prod., 47(1): 207-211. [Crossref] [PubMed]

11. Kumar, N., Manimaran, A., Kumaresan, A., Jeyakumar, S., Sreela, L., Mooventhan, P. and Sivaram, M. (2017) Mastitis effects on reproductive performance in dairy cattle: A review. Trop. Anim. Health Prod., 49(4):663-673. [Crossref] [PubMed]

12. Seegers, H., Fourichon, C. and Beaudeau, F. (2003) Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res., 34: 475-491. [Crossref] [PubMed]

13. Haque, M.E. (2014) Rapid detection of subclinical mastitis in dairy cow. J. Fisheries Livest. Prod., 3: 128. [Crossref]

14. Singh, M., Sharma, A., Sharma, R., Mittal, D., Yadav, P. and Charaya, G. (2015) Estimation of acute phase proteins as early biomarkers of buffalo subclinical mastitis. Asian J. Anim. Vet. Adv., 10(12): 894-902. [Crossref]

15. Prabhu, K.N., Isloor, S., Hegde, R., Rathnamma, D., Veeregowda, B.M., Narasimha, M.H.N., Shome, R. and Suryanarayana, V.V.S. (2013) Development of polymerase chain reaction for detection of predominant streptococcal isolates causing subclinical bovine mastitis. Indian J. Biotechnol., 12: 208-212.

16. Bandyopadhyay, S., Samanta, I., Bhattacharyya, D., Nanda, P.K., Kar, D., Chowdhury, J., Dandapat, P., Das, A.K., Batul, N., Mondal, B., Dutta, T.K., Das, G., Das, B.C., Naskar, S., Bandyopadhyay, U.K., Das, S.C. and Bandyopadhyay, S. (2015) Co-infection of methicillin-resistant Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus and extended spectrum β-lactamase producing Escherichia coli in bovine mastitis - Three cases reported from India. Vet. Q., 35: 56-61. [Crossref] [PubMed]

17. Dohoo, I.R., Smith, J., Andersen, S., Kelton, D.F. and Godden, S. (2011) Diagnosing intramammary infections: Evaluation of definitions based on a single milk sample. J. Dairy Sci., 94: 250-261. [Crossref]

18. Wellnitz, O. and Bruckmaier, R.M. (2012) The innate immune response of the bovine mammary gland to bacterial infection. Vet. J., 192: 148-152. [Crossref] [PubMed]

19. Hamann, J. and Kromker, V. (1997) Potential of specific milk composition variables for cow health management. Livestock Prod. Sci., 48: 201-208. [Crossref]

20. Sandholm, M., Honkanen-Buzalski, T., Kaartinen, L. and Pyorala, S. (1995) The bovine udder and mastitis. Gummerus Kirjapaino Oy, Jyvaskyla, Finland. pp89-104.

21. Schukken, Y.H., Wilson, D.J., Welcome, F., Garrison-Tinofsky, L. and Gonzales, R.N. (2003) Monitoring udder health and milk quality using somatic cell counts. Vet. Res., 34: 579-596. [Crossref] [PubMed]

22. Pyorala, S. (2003) Indicators of inflammation in the diagnosis of mastitis. Vet. Res., 34: 565-578. [Crossref] [PubMed]

23. Lakic, B., Wredle, E., Svennersten-Sjaunja, K. and Ostensson, K. (2009) Is there a special mechanism behind the changes in somatic cell and polymorphonuclear leukocyte counts, and composition of milk after a single prolonged milking interval in cows? Acta Vet. Scand., 51: 4. [Crossref]

24. Boehmer, J.L. (2011) Proteomic analyses of host and pathogen responses during bovine mastitis. J. Mammary Gland Biol. Neoplasia, 16: 323-338. [Crossref] [PubMed] [PMC]

25. Alonso-Fauste, I., Andres, M., Iturralde, M., Lampreave, F., Gallart, J. and Alava, M.A. (2012) Proteomic characterization by 2-DE in bovine serum and whey from healthy and mastitis affected farm animals. J. Proteomics, 75(10): 3015-3030. [Crossref] [PubMed]

26. Viguier, C., Arora, S., Gilmartin, N., Welbeck, K. and O'Kennedy, R. (2009) Mastitis detection: Current trends and future perspectives. Trends Biotechnol., 27(8): 486-493. [Crossref] [PubMed]

27. Rainard, P. and Riollet, C. (2006) Innate immunity of the bovine mammary gland. Vet. Res., 37(3): 369-400. [Crossref] [PubMed]

28. Kawai, K., Akamatsu, H., Obayashi, T., Nagahata, H., Higuchi, H., Iwano, H., Oshida, T., Yoshimura, Y. and Isobe, N. (2013) Relationship between concentration of lingual antimicrobial peptide and somatic cell count in milk of dairy cows. Vet. Immunol. Immunopathol., 153(3-4): 298-301. [Crossref] [PubMed]

29. Kosciuczuk, E.M., Lisowski, P., Jarczak, J., Krzyzewski, J., Zwierzchowski, L. and Bagnicka, E. (2014) Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative staphylococci. BMC Vet. Res., 10: 246. [Crossref]

30. Jin, D., Chang, G., Zhang, K., Gua, J., Xu, T. and Shen, X. (2016) Rumen-derived lipopolysaccharide enhances the expression of lingual antimicrobial peptide in mammary glands of dairy cows fed a high-concentrate diet. BMC Vet. Res., 12: 128. [Crossref]

31. Gurao, A., Kashyap, S.K. and Singh, R. (2017) β-defensins: An innate defense for bovine mastitis. Vet. World, 10(8): 990-998. [Crossref] [PubMed] [PMC]

32. Lee, J.W., Bannerman, D.D., Paape, M.J., Huang, M.K. and Zhao, X. (2006) Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR. Vet. Res., 37(2): 219-229. [Crossref] [PubMed]

33. Pareek, R., Wellnitz, O., van Dorp, R., Burton, J. and Kerr, D. (2005) Immunorelevant gene expression in LPS-challenged bovine mammary epithelial cells. J. Appl. Genet., 46(2): 171-177. [PubMed]

34. Wyble, C.W., Hynes, K.L., Kuchibhotla, J., Marcus, B.C., Hallahan, D. and Gewertz, B.L. (1997) TNF alpha and IL-1 upregulate membrane-bound and soluble E-selectin through a common pathway. J. Surg. Res., 73(2): 107-112. [Crossref] [PubMed]

35. Eckersall, P.D. (2004) The time is right for acute phase protein assays. Vet. J., 168(1): 3-5. [Crossref]

36. Ceciliani, F., Ceron, J.J., Eckersall, P.D. and Sauerwein, H. (2012) Acute phase proteins in ruminants. J. Proteomics, 75(14): 4207-4231. [Crossref] [PubMed]

37. Tothova, C., Nagy, O. and Kovac, G. (2014) Changes in the concentrations of selected acute phase proteins and variables of energetic profile in dairy cows after parturition. Appl. Anim. Res., 42(3): 278-283. [Crossref]

38. Chalmeh, A., Badiei, K., Poujafar, M. and Nazifi, S. (2013) Acute phase response in experimentally Escherichia coli serotype O55:B5 induced endotoxemia and its comparative treatment with dexamethasone and flunixin in Iranian fat-tailed sheep. Vet. Arhiv.,83(3): 301-312.

39. El-Deeb, W.M. (2012) Novel biomarkers for pregnancy toxemia in ewes: Acute phase proteins and pro-inflammatory cytokines. Open Access Sci. Rep., 1(4), 243.

40. Eckersall, P.D. (2010) Acute phase proteins: From research laboratory to clinic. Vet. Clin. Pathol., 39(1): 1-2. [Crossref]

41. Tothova, C., Nagy, O. and Kovac, G. (2014) Acute phase proteins and their use in the diagnosis of diseases in ruminants: A review. Vet. Med. (Praha), 59(4): 163-180.

42. Sharifiyazdia, H., Nazifi, S., Nikseresht, K. and Shahriari, R. (2012) Evaluation of serum amyloid A and haptoglobin in dairy cows naturally infected with brucellosis. J. Bacteriol. Parasitol., 3: 157. [Crossref]

43. Tothova, C., Nagy, O., Seidel, H. and Kovac, G. (2012) Acute phase proteins in relation to various inflammatory diseases of calves. Comp. Clin. Pathol., 21(5): 1037-1042. [Crossref]

44. Eckersall, P.D., Young, F.J., McComb, C., Hogarth, C.J.M., Safi, S., Weber, A., McDonald, T., Nolan, A.M. and Fitzpatrick, J.L. (2001) Acute phase proteins in serum and milk from dairy cows with clinical mastitis. Vet. Rec., 148(2): 35-41. [Crossref]

45. Uhlar, C.M. and Whitehead, A.S. (1999) Serum amyloid a, the major vertebrate acute-phase reactant. Eur. J. Biochem., 265(2): 501-523. [Crossref]

46. O'Mahony, M.C., Healy, A.M., Harte, D., Walshe, K.G., Torgerson, P.R. and Doherty, M.L. (2006) Milk amyloid A: correlation with cellular indices of mammary inflammation in cows with normal and raised serum amyloid A. Res. Vet. Sci., 80(2): 155-161. [Crossref] [PubMed]

47. Akerstedt, M., Waller, K.P. and Sternesjo, A. (2007) Haptoglobin and serum amyloid A in relation to the somatic cell count in quarter, cow composite and bulk tank milk samples. J. Dairy Res., 74(2): 198-203. [Crossref] [PubMed]

48. Kelly, W.G. (1984) Veterinary Clinical Diagnosis. 3rd ed. Bailliere Tindall, London.

49. Malinowski, E. and Klossowska, A. (2002) Diagnostyka Zakazen Wymienia. Wyd. PIWet,Pulawy.

50. McDonald, T.L., Weber, A. and Smith, J.W. (1991) A monoclonal antibody sandwich immunoassay for serum amyloid A (SAA) protein. J. Immunol. Methods, 144(2): 149-155. [Crossref]

51. SPSS. (2007) Statistical Package for the Social Sciences (SPSS® Statistical Software Version 16 Inc., IL for Windows, Chicago.

52. Fogsgaard, K.K., Bennedsgaard, T.W. and Herskin, M.S. (2015) Behavioral changes in freestall-housed dairy cows with naturally occurring clinical mastitis. J. Dairy Sci., 98(3): 1730-1738. [Crossref] [PubMed]

53. Rice, D.N. and Bodman, G.R. (1993) The Somatic Cell Count and Milk Quality: Neb Guide"G93-1151 University of Nebraska-Lincoln Extension. NebGuide. p489.

54. Bytyqi, H., Zaugg, U., Sherifi, K., Hamidi, A., Gjonbalaj, M., NMuji, S. and Mehmeti. H. (2010) Influence of management and physiological factors on somatic cell count in raw milk in Kosova. Vet. Archiv., 80(2):173-183.

55. Moroni, P., Sgoifo, R.C., Pisoni, G., Bronzo, V., Castiglioni, B. and Boettcher, P.J. (2006) Relationships between somatic cell count and intramammary infection in buffaloes. J. Dairy Sci., 89(3): 998-1003. [Crossref]

56. Petersson-Wolfe, C.S., Tholen, A.R., Currin, J. and Leslie K.E. (2013) Practical methods for mastitis control. WCDS Adv. Dairy Technol., 25: 341-358.

57. Sharma, N. and Maiti, S.K. (2010) Incidence, etiology and antibiogram of subclinical mastitis in cows in Durg, Chhattisgarh. Indian J. Vet. Res., 19: 45-54.

58. Sztachanska, M., Baranski, W., Janowski, T., Pogorzelska, J. and Zdunczyk, S. (2016) Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. Pol. J. Vet. Sci., 19(1): 119-124. [Crossref]

59. Elhaig, M.M. and Selim, A. (2015) Molecular and bacteriological investigation of subclinical mastitis caused by Staphylococcus aureus and Streptococcus agalactiae in domestic bovids from Ismailia, Egypt. Trop. Anim. Health Prod., 47(2): 271-276. [Crossref] [PubMed]

60. Tenhagen, B., Koster, G., Wallmann, J., Heuwieser, W. (2006) Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J. Dairy Sci., 89(7): 2542-2551. [Crossref]

61. Kalmus, P., Aasmae, B., Karssin, A., Orro, T. and Kask, K. (2011) Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia. Acta Vet. Scand., 53: 4. [Crossref] [PubMed] [PMC]

62. Jacobsen, S., Niewold, T.A., Kornalijnslijper, E., Toussaint, M.J.M. and Gruys, E. (2005) Kinetics of local and systemic isoforms of serum amyloid A in bovine mastitic milk. Vet. Immunol. Immunopathol., 104(1-2): 21-31. [Crossref] [PubMed]

63. Tao, J., Guo, Y., Feng, L., Zhao, G., Wu, Q., Cao, Y., Li, Y. and Cao, F, (2012) Comparative proteomic studies on serum of brucellosis dairy cows and health dairy cows. J. Anim. Vet. Adv., 11(11): 1864-1867.

64. Jain, S., Gautam, V. and Naseem, S. (2011) Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied Sci., 3(1): 118-127. [Crossref] [PubMed] [PMC]

65. Eckersall, P.D., Young, F.J., Nolan, A.M., Knight, C.H., McComb, C., Waterston, M.M., Hogarth, C.J., Scott, E.M. and Fitzpatrick, J.L. (2006) Acute phase proteins in bovine milk in an experimental model of Staphylococcus aureus subclinical mastitis. J. Dairy Sci., 89(5): 1488-1501. [Crossref]

66. Hari-Dass, R., Shah, C., Meyer, J.D. and Raynes, G.J. (2005) Serum amyloid a protein binds to outer membrane protein a of gram-negative bacteria. J. Biol. Chem., 280(19): 18562-18567. [Crossref] [PubMed]

67. Larson, M.A., Weber, A., Weber, A.T. and McDonald, T.L. (2005) Differential expression and secretion of bovine serum amyloid A3 (SAA3) by mammary epithelial cells stimulated with prolactin or lipopolysaccharide. Vet. Immunol. Immunopathol., 107(3-4): 255-264. [Crossref] [PubMed]

68. Safi, S., Khoshvaghti, A., Jafarzadeh, S.R., Bolourchi, M. and Nowrouzian, I. (2009) Acute phase proteins in the diagnosis of bovine subclinical mastitis. Vet. Clin. Pathol., 38(4): 471-476. [Crossref] [PubMed]

69. Pyorala, S., Hovinen, M., Simojoki, H., Fitzpatrick, J., Eckersall, P.D. and Orro, T. (2011) Acute phase proteins in milk in naturally acquired bovine mastitis caused by different pathogens. Vet. Rec., 168(20): 535. [Crossref] [PubMed]