Open Access
Research (Published online: 20-06-2018)
14. Antiviral activity of Acanthaster planci phospholipase A2 against human immunodeficiency virus
Anondho Wijanarko, Kenny Lischer, Heri Hermansyah, Diah Kartika Pratami and Muhamad Sahlan
Veterinary World, 11(6): 824-829

Anondho Wijanarko: Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia.
Kenny Lischer: Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia.
Heri Hermansyah: Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia.
Diah Kartika Pratami: Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Indonesia.
Muhamad Sahlan: Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia; Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia.

doi: 10.14202/vetworld.2018.824-829

Share this article on [Facebook] [LinkedIn]

Article history: Received: 18-02-2018, Accepted: 14-05-2018, Published online: 20-06-2018

Corresponding author: Muhamad Sahlan

E-mail: sahlan@che.ui.ac.id

Citation: Wijanarko A, Lischer K, Hermansyah H, Pratami DK, Sahlan M (2018) Antiviral activity of Acanthaster planci phospholipase A2 against human immunodeficiency virus, Veterinary World, 11(6): 824-829.
Abstract

Aim: Investigation of antiviral activity of Acanthaster planci phospholipase A2 (AP-PLA2) from moluccas to human immunodeficiency virus (HIV).

Materials and Methods: Crude venom (CV) and F20 (PLA2 with 20% fractioned by ammonium sulfate) as a sample of PLA 2 obtained from A. planci's extract were used. Enzymatic activity of PLA2 was determined using the degradation of phosphatidylcholine (PC). Activity test was performed using in vitro method using coculture of phytohemagglutinin-stimulated peripheral blood mononuclear cell (PBMC) from a blood donor and PBMC from HIV patient. Toxicity test of AP-PLA2 was done using lethal concentration required to kill 50% of the population (LC50).

Results: AP-PLA2 F20 had activity and purity by 15.66 times bigger than CV. The test showed that the LC50 of AP-PLA2 is 1.638 mg/ml. Antiviral analysis of AP-PLA2 in vitro showed the inhibition of HIV infection to PBMC. HIV culture with AP-PLA2 and without AP-PLA2 has shown the number of infected PBMC (0.299±0.212% and 9.718±0.802%). Subsequently, RNA amplification of HIV using reverse transcriptase-polymerase chain reaction resulted in the decrease of band intensity in gag gene of HIV.

Conclusion: This research suggests that AP-PLA2 has the potential to develop as an antiviral agent because in vitro experiment showed its ability to decrease HIV infection in PBMC and the number of HIV ribonucleic acid in culture.

Keywords: Acanthaster planci, antiviral activity, human immunodeficiency virus, Indonesia, phospholipase.

References

1. Houk, P., Bograd, A. and Woesik, R. (2007) The transition zone chlorophyll front can trigger Acanthaster planci outbreaks in the Pacific Ocean: Historical confirmation. J. Oceanogr., 63(1): 149-154. [Crossref]

2. Baird, A.H., Pratchett, M.S., Hoey, A.S., Herdiana, Y. and Campbell, S.J. (2013) Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs, 32(3): 803-812. [Crossref]

3. Roche, R.C., Pratchett, M.S., Carr, P., Turner, J.R., Wagner, D., Head, C. and Sheppard, C.R.R. (2015) Localized outbreaks of Acanthaster planci at an isolated and unpopulated reef atoll in the Chagos Archipelago. Mar. Biol., 162(8): 1695-1704. [Crossref]

4. Haszprunar, G., Vogler, C. and Worheide, G. (2017) Persistent gaps of knowledge for naming and distinguishing multiple species of crown-of-thorns-seastar in the Acanthaster planci species complex. Diversity, 9(2): 1-10. [Crossref]

5. Hoey, J., Campbell, M., Hewitt, C., Gould, B. and Bird, R. (2016) Acanthaster planci invasions: Applying biosecurity practices to manage a native boom and bust coral pest in Australia. Manag. Biol. Invasions, 7(3): 213-220. [Crossref]

6. Chak, S.T.C., Dumont, C.P., Adzis, K.A.A. and Yewdall, K. (2018) Effectiveness of the removal of coral-eating predator Acanthaster planci in Pulau Tioman marine park, Malaysia. J. Mar. Biol. Assoc. United Kingdom, 98(1): 183-189. [Crossref]

7. Lee, C.C., Hsieh, H.J., Hsieh, C.H. and Hwang, D.F. (2015) Plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) induces oxidative and endoplasmic reticulum stress associated cytotoxicity in A375.S2 cells. Exp. Mol. Pathol., 99(1): 7-15. [Crossref] [PubMed]

8. Lee, C.C., Hsieh, H.J., Hsieh, C.H. and Hwang, D.F. (2014) Spine venom of crown-of-thorns starfish (Acanthaster planci) induces antiproliferation and apoptosis of human melanoma cells (A375.S2). Toxicon, 91: 126-134. [Crossref] [PubMed]

9. Wijanarko, A., Ginting, M.J. and Sahlan, M. (2017) Saponin isolation as main ingredients of insecticide and collagen type i from crown of-starfish (Acanthaster planci). IOP Conf. Ser. Earth Environ. Sci., 89(12032): 1-20. [Crossref]

10. Ibrahim, F., Widhyastuti, N., Savitri, I.K.E., Sahlan, M. and Wijanarko, A. (2013) Antibacterial investigated of phospholipase A2 from the spines venom of crown of thorns starfish Acanthaster planci. Int. J. Pharma Biosci., 4(2): 1-5.

11. Ota, E., Nagai, H., Nagashima, Y. and Shiomi, K. (2006) Molecular cloning of two toxic phospholipases A2from the crown-of-thorns starfish Acanthaster planci venom. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 143(1): 54-60. [Crossref] [PubMed]

12. Koyama, T., Noguchi, K., Aniya, Y. and Sakanashi, M. (1998) Analysis for sites of anticoagulant action of plancinin, a new anticoagulant peptide isolated from the starfish Acanthaster planci, in the blood coagulation cascade. Gen. Pharmacol., 31(2): 277-282. [Crossref]

13. Shiomi, K.A., Kazama, A., Shimakura, K. and Nagashima, Y. (1998) Purification and properties of phospholipases A2 from the crown-of-thorns starfish (Acanthaster planci) venom. Toxicon, 36(4): 589-599. [Crossref]

14. Savitri, I. K. E., Ibrahim, F., Sahlan, M., and Wijanarko, A. (2011) Rapid and Efficient Purification Method of Phospholipase A2 from Acanthaster planci. Int. J. Pharma. Bio. Sci., 2(2): 401-406.

15. Savitri, I. K. E., Sahlan, M., Ibrahim, F., and Wijanarko, A. (2012) Isolation and characterization of phospholipase A2 From the spines venom of the crown-of-thorns starfish isolated from Papua island. Int. J. Pharma. Bio. Sci., 3(4): 603-608.

16. da Mata, E.C.G., Mourao, C.B.F., Rangel, M. and Schwartz, E.F. (2017) Antiviral activity of animal venom peptides and related compounds. J. Venom. Anim. Toxins Incl. Trop. Dis., 23(1): 1-12. [Crossref]

17. Rivero, J.V.R., de Castro, F.O.F., Stival, A.S., Magalhaes, M.R., Carmo Filho, J.R. and Pfrimer, I.A.H. (2011) Mechanisms of virus resistance and antiviral activity of snake venoms. J. Venom. Anim. Toxins Incl. Trop. Dis., 17(4): 387-393.

18. Fenard, D., Lambeau, G., Maurin, T., Lefebvre, J.C. and Doglio, A. (2001) A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor. Mol Pharmacol., 60(2): 341-347. [Crossref]

19. Marinetti, G.V. (1965) The action of phospholipase A on lipoproteins. Biochim. Biophys. Acta Lipids Lipid Metab., 98(3): 554-565. [Crossref]

20. Kiptoo, M.K., Mpoke, S.S. and Ng'ang'a, Z.W. (2004) New indirect immunofluorescence assay as a confirmatory test for human immunodeficiency virus type 1. East Afr. Med. J., 81(5): 222-225. [Crossref]

21. Livak, K.J., Flood, S.J., Marmaro, J., Livak, K.J., Flood, S.J.A., Marmaro, J., Giusti, W. and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at system useful for detecting PCR product and nucleic acid hybridization. Genome Res., 4: 357-362. [Crossref]

22. Akcay, A. (2013) The calculation of LD50 using probit analysis. FASEB J., 27(1 suppl): 1217-1228.

23. Eze, O.B.L., Nwodo, O.F.C. and Ogugua, V.N. (2016) Therapeutic effect of honey bee venom. J. Pharm. Chem. Biolsci., 4(1): 48-53.

24. Hood, J.L., Jallouk, A.P., Campbell, N., Ratner, L. and Wickline, S.A. (2013) Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir. Ther., 18(1): 95-103. [Crossref] [PubMed]

25. Kim, J.O., Chakrabarti, B.K., Guha-Niyogi, A., Louder, M.K., Mascola, J.R., Ganesh, L. and Nabel, G.J. (2007) Lysis of human immunodeficiency virus Type 1 by a specific secreted human phospholipase A2. J. Virol., 81(3): 1444-1450. [Crossref] [PubMed] [PMC]