Open Access
Research (Published online: 27-06-2018)
20. Molecular characterization and antibiotic resistance patterns of avian fecal Escherichia coli from turkeys, geese, and ducks
Nokukhanya Dube and Joshua Mbanga
Veterinary World, 11(6): 859-867

Nokukhanya Dube: Department of Applied Biology and Biochemistry, Faculty of Applied Sciences, National University of Science and Technology, Bulawayo, Zimbabwe.
Joshua Mbanga: Department of Applied Biology and Biochemistry, Faculty of Applied Sciences, National University of Science and Technology, Bulawayo, Zimbabwe.

doi: 10.14202/vetworld.2018.859-867

Share this article on [Facebook] [LinkedIn]

Article history: Received: 30-07-2017, Accepted: 11-05-2018, Published online: 27-06-2018

Corresponding author: Nokukhanya Dube


Citation: Dube N, Mbanga J (2018) Molecular characterization and antibiotic resistance patterns of avian fecal Escherichia coli from turkeys, geese, and ducks, Veterinary World, 11(6): 859-867.

Background and Aim: Avian fecal Escherichia coli (AFEC) are considered to be the natural reservoir of pathogenic strains in extraintestinal infections as such characterization of AFEC gives insight into the spread of the potential pathogenic lineage. The aim of the study was to investigate the reservoirs of avian pathogenic E. coli (APEC) from fecal samples of healthy ducks, geese, and turkeys by determining the antibiotic resistance patterns of AFEC isolates from turkeys, geese and ducks and characterization of the isolates using virulence genes, plasmid profiles, and phylogenetic grouping.

Materials and Methods: The disc diffusion method was used to determine antibiotic resistance of 100 AFEC isolates from turkeys (9), geese (29), and ducks (62) to 8 antibiotics. Molecular characterization of the isolates was done by multiplex polymerase chain reaction to investigate the presence of 12 virulence genes, plasmid profiling, and phylogenetic grouping based on the 16S rRNA sequences.

Results: Antibiogram profiles indicated maximum resistance to cloxacillin (100%) and bacitracin (100%) for all AFEC isolates and high sensitivity to ciprofloxacin; however, all isolates exhibited multi-drug resistance. The AFEC isolates from turkeys (6) and geese (12) did not contain virulence genes. The frz (3.7%), sitD (29.6%), and fimH (92.5%) were detected in the duck isolates. None of the isolates had the KpsM, iutA, vat, sitA, hlyF, pstB, ompT, uvrY, and sopB genes. Plasmid profiling gave four plasmid profiles with the plasmids ranging from 1.5 to 55 kb. Phylogenetic analysis of 16S rRNA sequences revealed similarities between AFEC isolates from the different poultry species, as the isolates did not cluster according to avian species.

Conclusion: AFEC isolates are potential reservoirs of APEC as they contain some of the virulence genes associated with APEC. Multidrug resistance is high in AFEC isolated from healthy birds. This is a public health concern.

Keywords: antibiotic resistance, avian fecal Escherichia coli, poultry, virulence gene.


1. Leimbach, A., Hacker, J. and Dobrindt, U. (2012) E. coli as an all-rounder: The thin line between commensalism and pathogenicity. Curr. Top. Microbiol. Immunol., 358: 3-32. [Crossref] [PubMed]

2. Diard, M., Garry, L., Selva, M., Mosser, T., Denamur, E. and Matic I. (2010) Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J. Bacteriol., 192: 4885-4893. [Crossref] [PubMed] [PMC]

3. Abraham, S., Gordon, D.M., Chin, J., Brouwers, H.J.M., Njuguna, P., Grores, M.D. and Zhang, R. (2012) Molecular characterization of commensal E. coli adapted to different compartments of the porcine gastrointestinal tract. Appl. Environ. Microbiol., 78: 6799-6803. [Crossref] [PubMed] [PMC]

4. Nagarjuna, D., Mittal, G., Dhanda, R.S., Verma, P.K., Gaind, R. and Yadav, M. (2015) Fecal E. coli isolates show potential to cause endogenous infection in patients admitted to the ICU in a tertiary care hospital. New Microbes New Infect, 7: 57-66. [Crossref] [PubMed] [PMC]

5. Ostblom, A., Adlerberth, I., Wold, A.E. and Nowrouzian, F.L. (2011) Pathogenicity island markers, virulence determinants malX and usp, and the capacity of Escherichia coli to persist in infants' commensal microbiotas. Appl. Environ. Microbiol., 77: 2303-2308. [Crossref] [PubMed] [PMC]

6. Tivendale, K.A., Logue, C.M., Kariyawasam, S., Jordan, D., Hussein, A., Li, G., Wannemuehler, Y. and Nolan, L.K. (2010) Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect Immun, 78: 3412-3419. [Crossref] [PubMed] [PMC]

7. Johnson, T.J., Johnson, S.J. and Nolan, L.K. (2006) Complete DNA sequence of a ColBM plasmid from avian pathogenic Escherichia coli suggests that it evolved from closely related ColV virulence plasmids. J. Bacteriol., 188: 5975-5983. [Crossref]

8. Sabri M., Leveille, S. and Dozois, C.M.A (2006) SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology, 152: 745-758. [Crossref] [PubMed]

9. Bordeleau, E., Ghinet, M.G. and Burrus, V. (2012) Diversity of integrating conjugative elements in actinobacteria: Coexistence of two mechanistically different DNA-translocation systems. Mob. Genet. Elements, 2: 119-124. [Crossref]

10. Delicato, E.R., de Brito, B.G., Gaziri, L.C. and Vidotto, M.C. (2003) Virulence associated genes in Escherichia coli isolates from poultry with colibacillosis. Vet. Microbiol., 94: 97-103. [Crossref]

11. Ewers, C., Janssen, T., Kiessling, S., Philipp, H.C. and Wieler, L.H. (2004) Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Microbiol., 104: 91-101. [Crossref] [PubMed]

12. Mellata, M., Touchman, J.W. and Curtiss, R. 3rd. (2009) Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli x7122 (O78:K80:H9). PLoS One, 4: e4232. [Crossref] [PubMed] [PMC]

13. Mbanga, J. and Nyararai, Y.O. (2015) Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe. Onderstepoort J. Vet. Res., 82(1): 1-8. [Crossref]

14. Van de Boggard, A.E., Lorelson, N., Driessen, C. and Stobbeingh, E.E. (2001) Antibiotic resistance of fecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J. Antimicrob. Chemother., 47(6): 763-771. [Crossref]

15. Barrow, G.I. and Feltham, R.K.A. (1993) Steel's Manual for the Identification of Medical Bacteria. 3rd ed. Cambridge University Press, Cambridge. [Crossref]

16. Sambrook, J.F. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York. p2100.

17. Van der Westhuizen, A.W. and Bragg, R.R. (2012) Multiplex polymerase chain reaction for screening avian pathogenic Escherichia coli for virulence genes. Avian Pathol., 41(1): 33-40. [Crossref] [PubMed]

18. Kumar, S., Stecher, G. and Tamura K. (2015) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33(7): 1870-1874. [Crossref] [PubMed]

19. Tamura, K. and Nei, M. (1993) Estimation of the number of nucleic acid substitutions in the control region of mitochondrial DNA in humans and Chimpanzees. Mol. Biol. Evol., 10: 512-526. [PubMed]

20. Johnson, T.J., Logue, C.M., Johnson, J.R., Wannemuehler, Y., Kariyawasam, S. and Nolan, L.K. (2012) Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog. Dis., 9: 37-46. [Crossref] [PubMed] [PMC]

21. Costa, D., Vinued, L., Poeta, P., Coelhoa, A.C., Matosb, M., Saenz, Y., Somalo, S., Zarazaga, M., Rodrigues, J. and Torres, C. (2009) Prevalence of extended-spectrum beta-lactamase producing Escherichia coli isolates in faecal samples of broilers. Vet. Microbiol., 138: 339-344. [Crossref] [PubMed]

22. Beninati C., Reich F., Muscolino D., Giarratana F., Panebianco A., Klein G. and Atanassova V. (2015) ESBL-producing bacteria and MRSA isolated from Poultry and turkey products imported from Italy. Czech J. Food Sci., 33(2): 97102.

23. Sridevi, T.D., Shankar, C., Park, J., Dexilin, M., Kumar, R. and Thamavaiselvi, T. (2009) Study on acquisition of bacterial antibiotic resistance determinants in poultry litter. Poultry Sci., 88(7): 1381-1387. [Crossref] [PubMed]

24. Tabatabaei, R.R. and Nisirian, A. (2003) Isolation, Identification and antimicrobial resistance patterns of E. coli isolated from chicken flocks. Iran. J. Pharmacol. Ther., 2: 39-42.

25. Adzitey, F., Ali, G., Huda, N. and Ting, S.L.A. (2013) Antibiotic resistance and plasmid profile of Escherichia coli isolated from ducks in Malaysia. Int. Food. Res. J., 20: 1473-1478.

26. Raida, S., Kaneene, J.B, Johnson, Y. and Miller, R.A. (2005) Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic and wild animal fecal samples, Laviein septage and surface water. Appl. Environ. Microbiol., 7(3): 1394-1404.

27. Ewers, C., Antao, E.M., Diehl, I., Philipp, H.C. and Wieler, L.H. (2009) Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl. Environ. Microbiol., 75: 184-192. [Crossref] [PubMed] [PMC]

28. Adzitey, F., Liew, C.Y., Aronal, A.P. and Huda, N. (2012) Isolation of E. coli in duck related samples. Asian J. Anim. Vet. Adv., 7: 351-355. [Crossref]

29. Maturana, V.G., De Pace, F., Carlos, C., Pires, M.M., De Campos, T.A. and Nakazato, G. (2011) Subpathotypes of avian pathogenic Escherichia coli (APEC) exist as defined by their syndromes and virulence traits. Open Microbiol. J., 5: 55-64. [Crossref] [PubMed] [PMC]

30. Gyle, C. and Boerlin, P. (2014) Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet. Pathol., 51: 328-340. [Crossref] [PubMed]

31. Dziva, F. and Stevens, M.P. (2008) Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathol., 37: 355-366. [Crossref] [PubMed]

32. Rodriguez-Siek, K.E., Giddings, C.W., Doetkott, C., Johnson, T.J. and Nolan, L.K. (2005) Characterizing the APEC pathotype. Vet. Res., 36: 241-256. [Crossref] [PubMed]

33. Roussan, D.A., Zakaria, H., Khawaldeh, G. and Shaheen, I. (2014) Differentiation of avian pathogenic Escherichia coli strains from broiler chickens by multiplex polymerase chain reaction (PCR) and random amplified polymorphic DNA (RAPD). Open J. Vet. Med., 4: 211-219. [Crossref]

34. Amaechi, N., Abbey, S.D. and Achi, O.K. (2015) Plasmid profiles and antimicrobial resistance ratings of Escherichia coli isolates from pigs and poultry birds in Abia state, Nigeria. Int. J. Curr. Microbiol. Appl. Sci., 4(2): 834-842.

35. Smith, S.I., Aboaba, O.O., Odeigha, P., Shodipo, K., Adeyeye, J.A., Ibrahim, A., Adebiyi, T., Onibokun, H. and Odunukwe, N.N. (2003) Plasmid profile of Escherichia coli 0157:H7 from apparently healthy animals. Afr. J. Biotechnol., 2: 322-324. [Crossref]

36. Yadav, V., Joshi, R.K., Joshi, N. and Diwakar, R.P. (2014) Congo red binding and plasmid profile of E. coli isolates of poultry origin. J. Anim. Health Prod., 2: 3131. [Crossref]

37. Bennett, P.M. (2008) Plasmid-encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol., 153: S347-S357. [Crossref]

38. Wu, S., Dalsgaard, A. and Jensen, L.B. (2010) Prevalence and characterization of plasmids carrying sulfonamide resistance genes among E. coli from pigs, pig carcasses and humans. Acta Vet. Scand., 52: 47-55. [Crossref] [PubMed] [PMC]

39. Rajendhran, J. and Gunasekaran, P. (2011) Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond. Microbiol. Res., 166: 99-110. [Crossref]

40. Ishii, S., Meyer, K.P. and Sadowsky, M.J. (2007) Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources. Appl. Environ. Microbiol., 73(18): 5703-5710. [Crossref] [PubMed] [PMC]