Open Access
Research (Published online: 07-06-2018)
5. The immunomodulatory effect of green tea (Camellia sinensis) leaves extract on immunocompromised Wistar rats infected by Candida albicans
Retno P. Rahayu, Remita A. Prasetyo, Djoko A. Purwanto, Utari Kresnoadi, Regina P. D. Iskandar and Muhammad Rubianto
Veterinary World, 11(6): 765-770

Retno P. Rahayu: Department of Oral and Maxillofacial Pathology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
Remita A. Prasetyo: Installation of Oral and Dental Health, Dr. Soetomo Hospital, Surabaya, Indonesia.
Djoko A. Purwanto: Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
Utari Kresnoadi: Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
Regina P. D. Iskandar: Student of Immunology, Postgraduate School, Universitas Airlangga, Surabaya, Indonesia.
Muhammad Rubianto: Department of Periodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

doi: 10.14202/vetworld.2018.765-770

Share this article on [Facebook] [LinkedIn]

Article history: Received: 03-01-2018, Accepted: 02-05-2018, Published online: 07-06-2018

Corresponding author: Retno P. Rahayu


Citation: Rahayu RP, Prasetyo RA, Purwanto DA, Kresnoadi U, Iskandar RPD, Rubianto M (2018) The immunomodulatory effect of green tea (Camellia sinensis) leaves extract on immunocompromised Wistar rats infected by Candida albicans, Veterinary World, 11(6): 765-770.

Background and Aim: The immunocompromised condition is considered a defect in the immune system. This condition tends to increase the risk of oral candidiasis, due to the inability of the immune system to eliminate the adhesion of Candida albicans and leads to systemic candidiasis with a mortality rate of 60%. Green tea (Camellia sinensis) contains potential antioxidant and immunomodulatory which acts as anticancer, antifungal, and antivirus agent. The aim of this study was to invent herbal-based medicine, which acts as an immunomodulator and antifungal agent to treat fungal infection in immunocompromised patients.

Materials and Methods: Thirty-five immunocompromised Wistar rats induced with C. albicans were divided into 7 groups (n=5): Control group (C+); treated for 4 days with green tea extract 1.25% (GT 4), epigallocatechin gallate (EGCG) 1% (EGCG 4), EGC 1% (EGC 4); and treated for 7 days with green tea extract 1.25% (GT 7), EGCG 1% (EGCG 7), and EGC 1% (EGC 7). Tongue tissue was collected and analyzed with immunohistochemistry staining using monoclonal antibody; interleukin (IL)-17A, IL-8, and human beta-defensin 2 (HBD)-2. Data were analyzed using analysis of variance test and Tukey honest significant differences test.

Results: The expression of IL-17A, IL-8, and HBD-2 was significantly increased (p=0.000) after green tea extract administration in 7 days, whereas in 7 days, the expression of IL-8, IL-17A, and HBD-2 after EGCG and EGC administration did not give a significant result (p>0.005).

Conclusion: Within the limits of this study, green tea extract has the ability as an immunomodulatory agent in an immunocompromised patient infected by C. albicans through expression augmentation of IL-8, IL-17A, and HBD-2 compared to EGCG and EGC.

Keywords: epigallocatechin gallate, epigallocatechin, green tea extract, immunocompromised, oral candidiasis.


1. Sganga, G. (2011) Fungal infections in immunocompromised patients. Mycoses, 54(4): 1-3. [Crossref]

2. Gow, N.A. and Hube, B. (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol., 15(4): 406-412. [Crossref] [PubMed]

3. Fidel, P.L. Jr. (2011) Candida-host interactions in HIV disease: Implications for oropharyngeal candidiasis. Adv. Dent. Res., 23(1): 45-49. [Crossref] [PubMed] [PMC]

4. Williams, D. and Lewis, M. (2011) Pathogenesis and treatment of oral candidosis. J. Oral Microbiol., 3(57): 71-82. [Crossref]

5. Mayer, F.L., Duncan, W.D. and Hube, B. (2013) Candida albicans pathogenicity mechanisms. Virulence, 4(2): 119-128. [Crossref] [PubMed] [PMC]

6. Smeekens, S.P., van de Veerdonk, F.L., Kullberg, B.J. and Netea, M.G. (2013) Genetic susceptibility to Candida infections. EMBO Mol. Med., 5(6): 1-9. [Crossref] [PubMed] [PMC]

7. Hernandez-Santos, N. and Gaffen, S.L. (2012) Th17 cells in immunity to Candida albicans. Cell Host Microbe, 11(5): 425-435. [Crossref] [PubMed] [PMC]

8. Abdel-Rahman, A., Anyangwe, N., Carlacci, L., Casper, S., Danam, R.P., Enongene, E., Erives, G., Fabricant, D., Gudi, R., Hilmas, C.J. and Hines, F. (2011) The safety and regulation of natural products used as foods and food ingredients. Toxicol. Sci., 123(2): 333-348. [Crossref] [PubMed]

9. Tanaka, T., Matsuo, Y. and Kouno, I. (2013) Biochemical and physicochemical characteristics of green tea polyphenols. In: Juneja, L.R., Kapoor, M.P., Okubo, T. and Rao, T.P., editors. Green Tea Polyphenols, Nutraceuticals of Modern Life. CRC Press, Boca Raton. p19-29.

10. Wu, D., Wang, J., Pae, M. and Meydani, S.N. (2012) Green tea EGCG, T cells, and T cell-mediated autoimmune diseases. Mol. Aspects Med., 33(1): 107-118. [Crossref] [PubMed]

11. Di Lorenzo, C., Dell'Agli, M., Sangiovanni, E., Dos Santos, A., Uberti, F., Moro, E., Bosisio, E. and Restani, P. (2013) Correlation between catechin content and NF-kB inhibition by infusions of green and black tea. Plant Foods Hum. Nutr., 68(2): 149-154. [Crossref] [PubMed]

12. Kumar, V. and Sharma, A. (2010) Neutrophils: Cinderella of innate immune system. Int. Immunopharmacol.,10: 1325-1334. [Crossref] [PubMed]

13. Pan, S.Y., Zhou, S.F., Gao, S.H., Yu, Z.L., Zhang, S.F., Tang, M.K., Sun, J.N., Ma, D.L., Han, Y.F., Fong, W.F. and Ko, K.M. (2013) New perspectives on how to discover drugs from herbal medicines: Cam's outstanding contribution to modern therapeutics. Evid. Based Complement. Alternat. Med., 2013: 627375. [Crossref] [PubMed] [PMC]

14. Kim, H.S., Quon, M.J. and Kim, J.A. (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol.,2: 187-195. [Crossref] [PubMed] [PMC]

15. Sardi, J.C., Scorzoni, L., Bernardi, T, Fusco-Almeida, A.M. and Mendes, G.M.J. (2013) Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol., 62: 10-24. [Crossref]

16. Murata, Y., Isobe, T., Kofuji, K., Nishida, N. and Kamaguchi, R. (2013) Development of film dosage forms containing miconazole for the treatment of oral candidiasis. Pharmacol. Pharm., 4: 325-330. [Crossref]

17. Gaona-Flores, V., Quiroz-Guzman, R., Cervantes-Tovar, R.M., Alcala-Martinez, E., Sandoval-Arrieta, M.I. and Campos-Navarro, L.A. (2013) In vitro sensitivity to fluconazole through Vitek II systems, of strains of Candida spp. in patients with oropharyngeal candidiasis and HIV/AIDS. J. AIDS Clin. Res., 4(8): 230.

18. Steubesand, N., Kiehne, K., Brunke, G., Pahl, R., Reiss, K., Herzig, K.H., Schubert, S., Schreiber, S., Folsch, U.R., Rosenstiel, P. and Arlt, A. (2009) The expression of the β-defensins HBD-2 and HBD-3 is differentially regulated by NF-?B and MAPK/AP-1 pathways in an in vitro model of Candida esophagitis. BMC Immunol., 10: 36. [Crossref] [PubMed] [PMC]

19. Etzioni, A. (2011) Fungal infections: Blame the TH-17 cells. Isr. Med. Assoc. J., 13(9): 561-563. [PubMed]

20. Dejima, T., Shibata, K., Yamada, H., Hara, H., Iwakura, Y., Naito, S. and Yoshikai, Y. (2011) Protective role of naturally occurring interleukin-17A-producing ?d T cells in the lung at the early stage of systemic candidiasis in mice. Infect. Immun., 79(11): 4503-4510. [Crossref] [PubMed] [PMC]

21. Steinmann, J., Bauer, J., Pietschmann, T. and Steinmann, E. (2013) Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol., 168: 1059-1073. [Crossref] [PubMed] [PMC]

22. Masatomo, H. and Kazuko, T. (2014) Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob. Chemother., 53: 225-229.

23. Shibata, N., Kobayashi, H. and Suzuki, S. (2012) Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc. Jpn. Acad., Ser. B. Phys. Biol. Sci., 88(6): 250-265. [Crossref] [PMC]

24. Navarro-Martinez, M.D., Garcia-Canovas, F. and Rodriguez-Lopez, J.N. (2006) Tea polyphenol epigallocatechin-3-gallate inhibits ergosterol synthesis by disturbing folic acid metabolism in Candida albicans. J. Antimicrob. Chemother.,57: 1083-1092. [Crossref] [PubMed]

25. Miramon, P., Kasper, L. and Hube, B. (2013) Thriving within the host: Candida spp. interactions with phagocytic cells. Med. Microbiol. Immunol., 202: 183-195. [Crossref] [PubMed]