Open Access
Research (Published online: 26-03-2018)
16. Isolation and identification of bacteria causing mastitis in small ruminants and their susceptibility to antibiotics, honey, essential oils, and plant extracts
Abeer Mostafa Abdalhamed, Gamil Sayed Gamil Zeedan and Hala Abdoula Ahmed Abou Zeina
Veterinary World, 11(3): 355-362

Abeer Mostafa Abdalhamed: Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, 12622, Giza, Egypt.
Gamil Sayed Gamil Zeedan: Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, 12622, Giza, Egypt.
Hala Abdoula Ahmed Abou Zeina: Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, 12622, Giza, Egypt.

doi: 10.14202/vetworld.2018.355-362

Share this article on [Facebook] [LinkedIn]

Article history: Received: 29-11-2017, Accepted: 14-02-2018, Published online: 26-03-2018

Corresponding author: Gamil Sayed Gamil Zeedan


Citation: Abdalhamed AM, Zeedan GSG, Abou Zeina HAA (2018) Isolation and identification of bacteria causing mastitis in small ruminants and their susceptibility to antibiotics, honey, essential oils, and plant extracts, Veterinary World, 11(3): 355-362.

Aim: The present work aims to isolate and identify bacteria that cause mastitis in small ruminants and evaluates the antibacterial activity of some antibiotics, honey, essential oils, and plant extracts.

Materials and Methods: A total of 289 milk samples were collected from udder secretions of sheep (n=189) and goat (n=100) from El-Fayoum, Beni-Suef, and Giza governorates. Screening subclinical mastitis (SCM) was done using California Mastitis Test (CMT); identification of the isolates was achieved using Gram's staining, hemolytic pattern, colony morphology, and biochemical tests using Analytical Profile Index.

Results: On clinical examination, the incidence of clinical mastitis (CM) was found to be 5.88% and 7% in sheep and goat, respectively. On CMT, SCM was found to be 25 (13.23%) and 11 (10%) in sheep and goat, respectively. Bacteriological examination of all milk samples found the presence of Staphylococcus aureus (SA) (31.1%), coagulase-negative staphylococci (CNS) (19.5%), Escherichia coli (EC) (8.3%), Streptococcus spp. (5.6%), Klebsiella spp. (3.77%), and Pseudomonas spp. (1.89%), while no bacteria were cultured from 81.66% of the samples. Identification of 9 isolates of CNS was achieved by using API staph test to Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus cohnii, and Staphylococcus saprophyticus. The highest bacterial resistance was found in EC (67.14%) followed by Kp (45.28%) and SA (26.57%).

Conclusion: Onion and black cumin essential oils followed by Egyptian honey showed strong antibacterial effects against multidrug-resistant bacteria. Finally, our study proved that Egyptian honey, onion, and black cumin essential oils have a marked strong antibacterial effect against bacteria isolated from small ruminant mastitis, but still further extensive studies are needed to discover the therapeutic properties of these plant extracts and honey.

Keywords: black cumin, essential oil, honey, mastitis, onion, small ruminants, Staphylococcus aureus.


1. Haenlein, G.F.W. (2004) Nutritional value of dairy products of ewe and goat milk. Int. J. Dairy Sci., 4: 159-178.

2. Islam, M.R., Ahmad, M.S., Alam, M.S., Rahman, M.S., Sultan, T., Roh Y.S. and Kim, B. (2012) Identification and antibiotic sensitivity of the causative organisms of sub-clinical mastitis in sheep and goats. Pak. Vet. J., 32: 179-182.

3. Monsang, S.W., Pal, S.K., Kumar, M., Roy J., Sharma, C.S. and Norjit, S.M.N. (2014) Bilateral mastectomy for successful management of chronic suppurative mastitis in a black Bengal doe (Capra hircus). J. Anim. Health Prod., 2: 28-30. [Crossref]

4. Virdis, S., Christian, S., Francesca, C., Vincenzo S., Carlo, S., Enrico, P. and Luigi, D.S. (2010) Antibiotic resistance in Staphylococcus aureus and coagulase negative staphylococci isolated from sar goats with subclinical mastitis. Vet. Med. Int., 111: 404-412.

5. Zamin, A., Muhammad, G., Ahmad, T., Khan, R., Naz, S., Anwar, H., Farooqi, F.A, Manzoor, M.N. and Usama, A.R. (2010) Prevalence of caprine sub-clinical mastitis its etiological agents and their sensitivity to antibiotics in indigenous breeds of Kohat, Pakistan. Pak. J. Life Soc. Sci., 8: 63-67.

6. Chovanova, R., Mikulasova, M. and Vaverkova, S. (2013) In vitro antibacterial and antibiotic resistance modifying effect of bioactive plant extracts on methicillin-resistant Staphylococcus epidermidis. Int. J. Microbiol., 10: 760-969.

7. Manyi-Loh, C.E., Clarke, A.M. and Ndip, R.N. (2011) An overview of honey: Therapeutic properties and contribution in nutrition and human health. Afr. J. Microbiol. Res., 5: 844-852.

8. Carnwath, R., Graham, E.M., Reynolds, K. and Pollock, P.J. (2014) The antimicrobial activity of honey against common equine wound bacterial isolates. Vet. J., 199: 110-114. [Crossref] [PubMed]

9. Gheldof, N., Wang, X.H. and Engeseth, N.J. (2002) Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem., 50: 5870-5877. [Crossref] [PubMed]

10. Hadjazi, D., Larbi, D.K., Reffas, F.Z.I., Benine, M.L. and Abbouni, B. (2015) Antibacterial activity of the essential oils of Nigella sativa L. against pathogens bacteria. Glob. J. Biotechnol. Biochem. Res., 10: 100-105.

11. Hasan, C.M., Ahsan, M. and Islam, S.N. (1989) In-vitro antimicrobial screening of the oils of Nigella sativa seeds. Bangladesh J. Bot., 18: 172-174.

12. Al-Masaudi, S. and Al-Bureikan, M.O. (2012) Antimicrobial activity of onion juice (Allium cepa), honey, and onion-honey mixture on some sensitive and multi-resistant microorganisms. J. Biol. Life Sci., 9: 880-885.

13. Irish, J., Blair, S. and Carter, D.A. (2011) The antibacterial activity of honey derived from Australian flora. PLoS One, 6: e18229. [Crossref]

14. Fidaleo, M., Zuorro, A. and Lavecchia, R. (2011) Antimicrobial activity of some Italian honeys against pathogenic bacteria. Chem. Eng. Trans., 24: 1015-1020.

15. Voidarou, C., Alexopoulos, A., Plessas, S., Karapanou, A., Mantzourani, I., Stavropoulou, E., Fotou, K., Tzora, A., Skoufos, I. and Bezirtzoglou, E. (2011) Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe, 17: 375-379. [Crossref] [PubMed]

16. Escuredo, L.R., Silva, O., Valentao, P., Seijo, M.C. and Andrade, P.B. (2012) Assessing rubus honey value: Pollen and phenolic compounds content an antibacterial capacity. Food Chem., 130: 671-678. [Crossref]

17. Perez-Martin, R.A., Vela-Hortiguela, L., Lorenzo-Lozano, P., Rojo-Cortina, M.D. and Lorenzo-Carretero, C.D. (2008) In vitro antioxidant and antimicrobial activities of Spanish honeys. Int. J. Food Properties, 11: 727-737. [Crossref]

18. Merces, M.D., Peralta, E.D., Uetanabaro, A.P.T. and Lucchese, A.M. (2013) Antimicrobial activity of honey from five species of Brazilian stingless bees. Ciencia Rural, 43: 1678-4596.

19. Aggad, H. and Guemour, D. (2014) Honey antibacterial activity. Med. Aromat. Plants, 3: 152. [Crossref]

20. Hamouda, H.M. and Marzouk, D.S. (2011) Antibacterial activity of Egyptian honey from different sources. Int. J. Microbiol. Res., 2: 149-155.

21. Othman, A.S. (2016) Determination of the antibacterial effect of some natural products against some gram-positive and gram-negative bacteria. Egypt Pharmaceut. J., 15: 10-16.

22. Hegazi, A.G., Al Guthami, F.M., Al Gethami, A.F.M., AbdAllah, F.M., Saleh, A.A. and Fouad, E.A. (2017) Potential antibacterial activity of some Saudi Arabia honey. Vet. World, 10: 233-237. [Crossref] [PubMed] [PMC]

23. Ayaad, T.H., Shaker, G.H. and Almuhnaa, A.M. (2009) Isolation of antibacterial peptides from Saudi Arabian honeybees and investigating the antimicrobial properties of natural honey samples. Egypt. Acad. J. Biol. Sci., 2: 23-34.

24. Almasaudi, S.B., Al-Nahari, A.A.M., Abd El-Ghany, E.S.M., Barbour, E., Al Muhayawi, S.M., Al-Jaouni, S., Azhar, E., Qari, M., Qari, Y.A. and Harakeh, S. (2017) Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J. Biol. Sci., 24: 1255-1261. [Crossref] [PubMed] [PMC]

25. Pascual-Mate, A., Oses, S.M., Fernandez-Mui-o, M.A. and Sancho, M.T. (2018) Methods of analysis of honey. J. Apicult. Res., 57: 38-74. [Crossref]

26. Lu, J., Dee, A., Turnbull, C.L., Rosendale, D., Hedderley, D., Stephens, J., Gannabathula, S.G.S., Schlothauer, R.C., Whitchurch, C.B. and Harry, E.J. (2013) The effect of new Zealand Kanuka, Manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species. PLoS One, 8: e55898. [Crossref]

27. Sohail, M.N., Karim, A., Sarwar, M. and Alhasin, A.M. (2011) Onion (Allium cepa L.): An alternate medicine for Pakistani population. Int. J. Pharmacol., 7: 736-744. [Crossref]

28. Nelson, C.A., Reginald, A.O., Okoro, N. and Janet, K. (2007) Antibacterial activity of Allium cepa (Onions) and Zingiber officinale (Ginger) on Staphylococcus aureus and Pseudomonas aeruginosa isolated from high vaginal swab. Int. J. Trop. Med., 3: 1-5.

29. McDougall, S., Supre, K., De Vliegher, S., Haesebrouck, F., Hussein, H., Clausen, L. and Prosser, C. (2010) Diagnosis and treatment of subclinical mastitis in early lactation in dairy goats. J. Dairy Sci., 93: 4710-3324. [Crossref] [PubMed]

30. CLSI. (Clinical and Laboratory Standard Institute). (2011) Performance Standards for Antimicrobial Susceptibility Testing, Twenty-First Informational Supplement. CLSI Document M100-S21. Clinical and Laboratory Standards Institute, Wayne, Pa, USA. p14.

31. National Mastitis Council (NMC). (2004) Microbiological Procedures for the Diagnosis of Udder Infection. 3rd ed. National Mastitis Council Inc., Arlington.

32. Zeedan, G.S.G., Abdalhamed, A.M., Ottai, M.E., Abdelshafy, S. and Abdeen, E. (2014) Antimicrobial, antiviral activity and GC-MS analysis of essential oil extracted from Achillea fragrantissima plant growing in Sinai peninsula, Egypt. J. Microb. Biochem. Technol., S8: 6.

33. Taponen, S., Simojoki, H., Haveri, M., Larsen, H.D. and Pyorala, S. (2006) Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Vet. Microbial., 115: 199-207. [Crossref]

34. Lopez-Malo, A., Vigil, E., Palou, M.E. and Parish, P.M. (2005) In: Davidson, P.M., Sofos, N.J. and Branene, A.L., editors. Davidson, Methods for Activity Assay and Evaluation of Results. Antimicrobials in Food, Taylor and Francis Group, Boca Raton, FL, USA. p659-680.

35. CLSI, Clinical and Laboratory Standards Institute. (2006) Methods for Dilution Antimicrobial Susceptibility Tests of Bacteria Isolated form Aquatic Animal; Approved Guideline M49-A. CLSI, Waune, PA, USA.

36. Perez, C., Pauli, M. and Bazerque, P. (1990) An antibiotic assay by agar-well diffusion method. Acta Biol. Med. Exp., 15: 113-115.

37. CLSI. (Clinical and Laboratory Standard Institute). (2003) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard. 6th ed. CLSI, Pennsylvania.

38. Miranda, G.C., Lama, D.L. and Mattiello, S. (2010) The importance of social behaviour for goat welfare in livestock farming. Small Rumin. Res., 90: 1-2, 1-10.

39. Boscos, C., Stefanakis, A., Alexopoulos, C. and Samartzi, F. (1996) Prevalence of subclinical mastitis and influence of breed, parity, stage of lactation and mammary bacteriological status on coulter counter counts and California mastitis test in the milk of Saanen and autochthonous Greek goats. Small Rumin. Res., 21: 139-147. [Crossref]

40. Byeng, R.M., Grant, T. and Steve, P.H. (2007) Effect of subclinical intra-mammary infection on somatic cell counts and chemical composition of goats'. J. Dairy Res., 74: 204-210. [Crossref] [PubMed]

41. Ergun, Y., Aslantas, O. and Dogruer, G. (2009) Prevalence and etiology of subclinical mastitis in Awassi dairy ewes in southern Turkey. Turk. J. Vet. Anim. Sci., 33: 477-483.

42. Reza, N.S., Mahdavi, A. and Moezifar, M. (2007) Clinical mastitis in ewes; Bacteriology, epidemiology and clinical features. Acta Vet. Scand., 49: 23. [Crossref] [PubMed] [PMC]

43. Wilson, D.J., Gonzalez, R.N., Case, K.L., Garrison, L.L. and Grohn, Y.T. (1999) Comparison of seven antibiotic treatments with no treatment for bacteriological efficacy against bovine mastitis pathogens. Int. J. Dairy Sci., 82: 1664-1670. [Crossref]

44. Oliveira, A.A., Melo, C.B., Seixas, L., Azevedo, H.C., Teixeira, K.M., Melo, P.O., Emidio, K.S., Oliveira, S.S. and McManus, C. (2013) Mastitis and milk composition in first partum Santa Ines ewes. J. Vet. Adv., 3: 220-231. [Crossref]

45. Fthenakis, G.C. (1994) Prevalence and aetiology of subclinical mastitis in ewes of Southern Greece. Small Rumin. Res, 13: 293-300. [Crossref]

46. Contreras, A., Corrales, J.C., Sierra, D. and Marco, J. (1995). Prevalence and Aetiology of Non-Clinical Intramammary Infection in Murciano-Granadina Goats. Small Rumin. Res., 17: 71-78. [Crossref]

47. El-Jakee, J.K., Aref, N.E., Gomaa, A., El-Hariri, M.D., Galal, H.M., Omar, S.A. and Samir, A. (2013) Emerging of coagulase negative staphylococci as a cause of mastitis in dairy animals: An environmental hazard. Int. J. Vet. Sci. Med., 1: 74-78. [Crossref]

48. Burriel, A.R. (1997) Dynamics of intramammary infection in the sheep caused by coagulase-negative staphylococci and its influence on udder tissue and milk composition. Vet. Rec., 140: 419-423. [Crossref]

49. Onnasch, H., Healy, A.M., Brophy, P.O., Kinsella, A. and Doherty, M.L. (2002) A study of mastitis in sheep. Res. Vet. Sci., 72: 42. [Crossref]

50. Thorberg, B.M., Danielsson-Tham, M.L., Emanuelson, U. and Persson, W.K. (2009) Subclinical mastitis caused by different types of coagulase-negative staphylococci. J. Dairy Sci., 92: 4962-4970. [Crossref] [PubMed]

51. Piessens, V., Van Coillie, E., Verbist, B., Supre, K., Braem, G. and Van Nuffel, A. (2011) Distribution of coagulase-negative Staphylococcus species from milk and environment of dairy cows differs between herds. J. Dairy Sci., 94: 2933-2944. [Crossref] [PubMed]

52. Mishra, A.K., Shalini, S.N., Kumar, A. and Shivasharanappa, N. (2014) Prevalence of subclinical mastitis in different breeds of goats. Vet. Pract., 15: 140-141.

53. Bindyo, C.M., Gitao, C.G. and Bebor, L. (2014) A cross-sectional study on the prevalence of subclinical mastitis and antimicrobial susceptibility patterns of the bacterial isolates in milk samples of smallholder dairy goats in Kenya. Am. J. Health Res., 2: 30-51.

54. Aumeeruddy-Elalfi, Z., Gurib-Fakim, A. and Mahomoodally, F. (2015) Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind. Crop. Prod., 5: 197-204. [Crossref]

55. Aurongzeb, M. and Azim, M.K. (2011) Antimicrobial properties of natural honey: A review of literature. Pak. J. Biochem. Mol. Biol., 44: 118-124.

56. Eja, M.E., Arikpo, E., Enyi-Idoh, K.H. and Ikpeme, E.M. (2011) An evaluation of the antimicrobial synergy of garlic (Allium sativum) and utazi (Gongronema latifolium) on Escherichia coli and Staphylococcus aureus. Malays. J. Microbiol., 7: 45-49.

57. Patel, R.V., Thaker, V.T. and Patel, V.K. (2011) Antimicrobial activity of ginger and honey on isolates of extracted carious teeth during orthodontic treatment. Asian Pac. J. Trop. Biomed., 1: S58-S61. [Crossref]

58. Saad, B., AL Masaudi, M.O. and Bureikan, A. (2013) Antimicrobial activity of garlic juice (Allium sativum), honey, and garlic-honey mixture on some sensitive and multi-resistant microorganisms. J. Biol. Life Sci., 10: 2429-2435.

59. Hegazi, A.G. (2011) Antimicrobial activity of different Egyptian honeys as comparison of Saudi Arabia hone. Res. J. Microbiol., 6: 488-495. [Crossref]

60. Lemos, M.S., Venturieri, G.C., Dantas, F.H.A., Dantas, K.G.F. (2018) Evaluation of the physicochemical parameters and inorganic constituents of honeys from the Amazon region. J. Apicult. Res., 57: 135-144. [Crossref]