Open Access
Research (Published online: 06-03-2018)
5. Androctonus genus species in arid regions: Ecological niche models, geographical distributions, and envenomation risk
Moulay Abdelmonaim El Hidan, Oulaid Touloun, Abdellah Bouazza, Mehdi Ait Laaradia and Ali Boumezzough
Veterinary World, 11(3): 286-292

Moulay Abdelmonaim El Hidan: Department of Biology, Laboratory of Ecology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, PO Box 2390, Morocco.
Oulaid Touloun: Department of Biology, Laboratory of Ecology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, PO Box 2390, Morocco; Department of Biology, Polyvalent Laboratory of Research & Development LPVRD, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, PO Box 23023, Morocco.
Abdellah Bouazza: Faculty of Sciences, Biodiversity and Ecosystem Dynamics Laboratory, B.P. 2390, Cadi Ayyad University, Marrakech 40000, Morocco.
Mehdi Ait Laaradia: Department of Biology, Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakesh, Morocco.
Ali Boumezzough: Department of Biology, Laboratory of Ecology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, PO Box 2390, Morocco.

doi: 10.14202/vetworld.2018.286-292

Share this article on [Facebook] [LinkedIn]

Article history: Received: 24-09-2017, Accepted: 02-02-2018, Published online: 06-03-2018

Corresponding author: Moulay Abdelmonaim El Hidan


Citation: El Hidan MA, Touloun O, Bouazza A, Laaradia MA, Boumezzough A (2018) Androctonus genus species in arid regions: Ecological niche models, geographical distributions, and envenomation risk, Veterinary World, 11(3): 286-292.

Aim: The objective of this study was to establish environmental factors related to scorpion species occurrence and their current potential geographic distributions in Morocco, to produce a current envenomation risk map and also to assess the human population at risk of envenomation.

Materials and Methods: In this study, 71 georeferenced points for all scorpion species and nine environmental indicators were used to generate species distribution models in Maxent (maximum entropy modeling of species geographic distributions) version 3.3.3k. The models were evaluated by the area under the curve (AUC), using the omission error and the binomial probability. With the data generated by Maxent, distribution and envenomation risk maps were produced using the "ESRI® ArcGIS 10.2.2 for Desktop" software.

Results: The models had high predictive success (AUC >0.95±0.025). Altitude, slope and five bioclimatic attributes were found to play a significant role in determining Androctonus scorpion species distribution. Ecological niche models (ENMs) showed high concordance with the known distribution of the species. Produced risk map identified broad risk areas for Androctonus scorpion envenomation, extending along Marrakech-Tensift-Al Haouz, Souss-Massa-Draa, and some areas of Doukkala-Abda and Oriental regions.

Conclusion: Considering these findings ENMs could be useful to afford important information on distributions of medically important scorpion species as well as producing scorpion envenomation risk maps.

Keywords: Androctonus genus, ecological niche models, Morocco, risk maps, scorpion envenomation.


1. Abbas, N., Gaudioso-Tyzra, C., Bonnet, C., Gabriac, M., Amsalem, M., Lonigro, A., Padilla, F., Crest, M., Martin-Eauclaire, M.F. and Delmas, P. (2013) The scorpion toxin Amm VIII induces pain hypersensitivity through gain-of-function of TTX-sensitive Na+ channels. Pain., 154: 1204-1215. [Crossref]

2. Lourenco, W.R. (2009) Reanalysis of the genus Scorpio linnaeus 1758 in sub-Saharan Africa and description of one new species from Cameroon (Scorpiones, Scorpionidae). Entomol. Mitt. Zool. Mus. Hamb., 15: 99-113.

3. Touloun, O., Slimani, T. and Boumezzough A. (2001) Epidemiological survey of scorpion envenomation in Southwestern Morocco. J. Venom. Anim. Toxins Incl. Trop. Dis., 7: 199-218. [Crossref]

4. El Hidan M.A., Touloun, O. and Boumezzough, A. (2015a) An epidemiological study of scorpion envenomation in the Zagora oases (Morocco). J Costal Life Med., 3: 704-7. [Crossref]

5. Chippaux, J.P. (2012) Emerging options for the management of scorpion stings. Drug. Des. Dev. Ther., 6:165-173. [Crossref] [PubMed] [PMC]

6. Ya-ez-Arenas, C., Peterson, A.T., Mokondoko, P., Rojas-Soto, O. and Martinez-Meyer, E. (2014) The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican state of Veracruz. PLoS One, 9: e100957. [Crossref] [PubMed] [PMC]

7. Nori, J., Carrasco, P.A. and Leynaud, G.C. (2014) Venomous snakes and climate change: Ophidism as a dynamic problem. Clim. Chang., 122: 67-80. [Crossref]

8. Saupe, E.E., Papes, M., Selden, P.A. and Vetter, R.S. (2011) Tracking a medically important spider: Climate change, ecological niche modeling, and the brown recluse (Loxosceles reclusa). PLoS One, 6: e17731. [Crossref]

9. Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H. and Guisan, A. (2008) NCEAS predicting species distributions working group. Effects of sample size on the performance of species distribution models. Divers. Distrib., 14: 763-773. [Crossref]

10. Vachon, M. (1949) Etude sur les scorpions. Ibid, 27: 66-100.

11. Lourenco, W.R. and Geniez, P. (2005) A new scorpion species of the genus Buthus leach, 1815 (Scorpiones, Buthidae) from Morocco. Euscorpius, 19: 1-6.

12. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25: 1965-1978. [Crossref]

13. Pearson, R.G., Dawson, T.P., Berry, P.M. and Harrison, P.A. (2002) Species: A spatial evaluation of climate impact on the envelope of species. Ecol. Model., 154: 289-300. [Crossref]

14. Kumar, S., Neven, L.G., Zhu, H. and Zhang, R. (2015) Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and max ent niche models. Behav. Ecol., 108: 1708-1719.

15. Chalghaf, B., Chlif, S., Mayala, B., Ghawar, W., Bettaieb, J., Harrabi, M., Benie, G.B., Michael, E. and Ben, S.A. (2017) Ecological niche modeling for the prediction of the geographic distribution of Cutaneous leishmaniasis in Tunisia. Am. J. Trop. Med. Hyg., 94: 844-851. [Crossref] [PubMed] [PMC]

16. Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecol. Model., 190: 231-259. [Crossref]

17. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Over-Ton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams S., Wisz, M.S. and Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29: 129-151. [Crossref]

18. Sor, R., Young-Seuk, P., Boets, P., Goethals, P.L.M. and Lek, S. (2017) Effects of species prevalence on the performance of predictive models. Ecol. Mod., 354: 11-19. [Crossref]

19. Nogues-Bravo, D. (2009) Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr., 18: 521-531. [Crossref]

20. Fielding, A.H. and Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv., 24: 38-49. [Crossref]

21. Center for International Earth Science Information Network - CIESIN - Columbia University. (2016) Gridded Population of the World, Version 4 (GPWv4): Population Count. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Available from: Accessed on 05.07.2017.

22. Peterson, A.T., Sanchez-Cordero, V., Beard, C.B. and Ramsey, J.M. (2002) Ecologic niche modeling and potential reservoirs for chagas disease, Mexico. Emerg. Infect. Dis., 8: 662-667. [Crossref] [PubMed] [PMC]

23. Ya-ez-Arenas, C., Townsend, P.A., Rodriguez-Medina, K. and Barve, N. (2016) Mapping current and future potential snakebite risk in the new world. Clim. Chang., 134: 697-711. [Crossref]

24. Prendini, L. (2005) Scorpion diversity and distribution in southern Africa: Pattern and process. In: Huber, B.A., Sinclair, B.J., Lampe, K.H., editors. African Biodiversity: Molecules, Organisms, Ecosystems. Proceedings of the 5th International Symposium on Tropical Biology, Museum Alexander Koenig. Springer Verlag, New York. p25-68. [Crossref]

25. Warburg, M.R., Goldenberg, S. and Ben-Horin, A. (1980) Scorpion species diversity and distribution within the Mediterranean and arid regions of northern Israel. J. Arid Environ., 3: 205-213.

26. Koch, L.E. (1981) The scorpions of Australia: Aspects of their ecology and zoogeography. In: Keast, A., editor. Ecological Biogeography of Australia. Junk, The Hague. p875-884.

27. Husemann, M., Schmitt, T., Stathi, I. and Habel J.C. (2012) Evolution and radiation in the scorpion Buthus elmoutaouakili lourenco and Qi 2006 (Scorpiones: Buthidae) at the foothills of the Atlas Mountains (North Africa). J. Hered., 103: 221-229. [Crossref]

28. El Hidan, M.A., Touloun, O., El Hiba, O. and Boumezzough, A. (2015b) Pathophysiological and neurobehavioral injuries in mice experimentally envenomed with androctonus liouvillei (Pallary, 1928) scorpion venom. Exp. Toxicol. Pathol., 68: 133-141. [Crossref] [PubMed]

29. Aboumaad, B., Tiger, A., Khattabi, A., Soulaymani, R., Lahssaini, M., Benhassain, S.M. and Iba, N. (2014) Cardiac involvement and its complications about three cases of severe scorpion envenomation. Toxicon, 78: 78-82. [Crossref] [PubMed]

30. El Hidan, M.A., Touloun, O., El Oufir, R. and Boumezzough, A. (2016) Epidemiological and spatial analysis of scorpion stings in two regions of Morocco: Marrakesh-tensift-Al haouz and souss-massa-draa. J. Coast. Life Med., 4: 299-304. [Crossref]

31. El Hidan, M.A., Touloun, O., El Hiba, O., Chait, A., Hafid, J.E. and Boumezzough, A. (2015c) Behavioral, histopathological and biochemical impairments observed in mice envenomed by the scorpion: Hottentotta gentili (Pallary, 1924). Toxicon, 103: 19-29. [Crossref] [PubMed]