Open Access
Research (Published online: 13-11-2018)
8. Corynebacterium pseudotuberculosis mastitis in Egyptian dairy goats
A. M. Nabih, Hany A. Hussein, Safaa A. El-Wakeel, Khaled A. Abd El-Razik and A. M. Gomaa
Veterinary World, 11(11): 1574-1580

A. M. Nabih: Department of Mastitis and Neonatal Diseases, Animal Reproduction Research Institute, Agriculture Research Center, Giza, Egypt.
Hany A. Hussein: Department of Animal Reproduction and AI, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt; Guangdong Haid Institute of Animal Husbandry and Veterinary (GHIAHV), Guangzhou, Guangdong, China.
Safaa A. El-Wakeel: Department of Mastitis and Neonatal Diseases, Animal Reproduction Research Institute, Agriculture Research Center, Giza, Egypt.
Khaled A. Abd El-Razik: Department of Animal Reproduction and AI, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
A. M. Gomaa: Department of Mastitis and Neonatal Diseases, Animal Reproduction Research Institute, Agriculture Research Center, Giza, Egypt.

doi: 10.14202/vetworld.2018.1574-1580

Share this article on [Facebook] [LinkedIn]

Article history: Received: 24-07-2018, Accepted: 01-10-2018, Published online: 13-11-2018

Corresponding author: Hany A. Hussein

E-mail: hnyhussein2@yahoo.com

Citation: Nabih AM, Hussein HA, El-Wakeel SA, Abd El-Razik KA, Gomaa AM (2018) Corynebacterium pseudotuberculosis mastitis in Egyptian dairy goats, Veterinary World, 11(11): 1574-1580.
Abstract

Background and Aim: Mastitis is an important threat facing goat milk industry and is the most common cause of culling. Efficient control of mastitis, based on efficient diagnosis of diseased animals, would improve milk production and reproductive efficiency. In subclinical mastitis (SCM), infected goats demonstrate neither udder symptoms nor abnormal milk. Corynebacterium pseudotuberculosis is an infectious causative agent of mastitis, mostly results as an extension of infection from the supramammary lymph node, and causes financial losses in the goat industry. This study aimed to estimate the prevalence of SCM with emphasis on C. pseudotuberculosis mastitis in Egyptian dairy goats in the selected farms.

Materials and Methods: A total of 336 half milk samples were collected from 177 dairy goats of various crossbreeds, in mid-to-late lactation period, after clinical examination. All samples were examined bacteriologically, while somatic cell count (SCC) was determined only in 180 half milk samples of the clinically healthy milk samples. The isolated and identified C. pseudotuberculosis was examined for evidence of virulence genes (Phospholipase D [pld] and β-subunit of RNA polymerase [rpoB]) by polymerase chain reaction (PCR).

Results: The prevalence of clinical mastitis was 30.5%, while 69.5% of animals were apparently healthy and secreted milk was normal. Of those 180 clinically healthy half milk samples, 96 milk samples (53.33%) showed SCM as detected by SCC (SCC ≥1,000,000 cells/ml). Coagulase-negative staphylococci were the most prevalent bacteria (41.96%), then Staphylococcus aureus (37.5%) and C. pseudotuberculosis (7.14%). Molecular diagnosis of virulence genes revealed evidence of pld gene in 16 isolates (66.66%), and rpoB gene in 6 samples (25%) of the 24 bacteriologically isolated C. pseudotuberculosis. Here, we describe, for the 1st time, isolation and identification of C. pseudotuberculosis from milk of does suffering from SCM in Egypt.

Conclusion: C. pseudotuberculosis must be considered for routine bacteriological examination of milk from dairy goats, particularly herds with a history of caseous lymphadenitis. Pld gene-based PCR is more reliable than rpoB gene-based ones for the diagnosis of C. pseudotuberculosis.

Keywords: bacteriological investigation, caprine, Corynebacterium pseudotuberculosis, mastitis, phospholipase D, β-subunit of RNA polymerase.

References

1. FAO (2013) Food and agriculture organization of the United Nations statistical databases. See http://faostat.fao.org/. Last accessed on 15-09-2018.

2. Skapetas, B. and Bampidis, V. (2016) Goat production in the world: Present situation and trends. Livest. Res. Rural Dev., 28(11): http://www.lrrd.org/lrrd28/11/skap28200.html. Last accessed on 15-09-2018.

3. Zenebe, T., Ahmed, N., Kabeta, T. and Kebede, G. (2014) Review on medicinal and nutritional values of goat milk. Acad. J. Nutr., 3(3): 30-39.

4. Barron-Bravo, O.G., Gutierrez-Chavez, A.J., Angel-Sahagun, C.A., Montaldo, H.H., Shepard, L. and Valencia-Posadas, M. (2013) Losses in milk yield, fat and protein contents according to different levels of somatic cell count in dairy goats. Small Rumin. Res., 113(2-3): 421-431. [Crossref]

5. Jimenez-Granado, R., Sanchez-Rodriguez, M., Arce, C. and Rodriguez-Estevez, V. (2014) Factors affecting somatic cell count in dairy goats: A review. Span. J. Agric. Res., 12(1): 133-150. [Crossref]

6. Ceniti, C., Britti, D., Santoro, A.M.L., Musarella, R., Ciambrone, L., Casalinuovo, F. and Costanzo, N. (2017) Phenotypic antimicrobial resistance profile of isolates causing clinical mastitis in dairy animals. Ital. J. Food Saf., 6(2): 6612. [Crossref]

7. Gould, L.H., Mungai, E. and Behravesh, C.B. (2014) Outbreaks attributed to cheese: Differences between outbreaks caused by unpasteurized and pasteurized dairy products, United States, 1998-2011. Foodborne Pathog. Dis., 11(7): 545-551. [Crossref] [PubMed] [PMC]

8. Contreras, A., Sierra, D., Sanchez, A., Corrales, J.C., Marco, J.C., Paape, M.J. and Gonzalo, C. (2007) Mastitis in small ruminants. Small Rumin. Res., 68(3): 145-153. [Crossref]

9. Koop, G., van Werven, T., Schuilling, H.J. and Nielen, M. (2010) The effect of subclinical mastitis on milk yield in dairy goats. J. Dairy Sci., 93(12): 5809-5817. [Crossref] [PubMed]

10. Gelasakis, A.I., Angelidis, A.S., Giannakou, R., Filioussis, G., Kalamaki, M.S. and Arsenos, G. (2016) Bacterial subclinical mastitis and its effect on milk yield in low-input dairy goat herds. J. Dairy Sci., 99(5): 1-11. [Crossref] [PubMed]

11. Haenlein, G.F.W. (2002) Relationship of somatic cell counts in goat milk to mastitis and productivity. Small Rumin. Res., 45(2): 163-178. [Crossref]

12. Silanikove, N., Merin, U., Shapiro, F. and Leitner, G. (2014) Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality. J. Dairy Sci., 97(6): 3449-3455. [Crossref] [PubMed]

13. Persson, Y. and Olofsson, I. (2011) Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats. Acta Vet. Scand., 53(1): 15. [Crossref] [PubMed] [PMC]

14. Hristov, K., Popova, T., Pepovich, R. and Nikolov, B. (2016) Characterization of microbial causative agents of subclinical mastitis in goats in Bulgaria. Int. J. Curr. Microbiol. App. Sci., 5(8): 316-323. [Crossref]

15. Shpigel, N.Y., Elad, D., Yeruham, I., Winkler, M. and Saran, A. (1993) An outbreak of Corynebacterium pseudotuberculosis infection in an Israeli dairy herd. Vet. Rec., 133(4): 89-94. [Crossref] [PubMed]

16. Yeruham, I., Braverman, Y., Shpigel, N.Y., Chizov-Ginzburg, A., Saran, A. and Winkler, M. (1996) Mastitis in dairy cattle caused by Corynebacterium pseudotuberculosis and the feasibility of transmission by houseflies. Vet. Q., 18(3): 87-89. [Crossref] [PubMed]

17. Brown, C.C. and Olander, H.J. (1987) Caseous lymphadenitis of goats and sheep: A review. Vet. Bull., 57: 1-12.

18. Jung, B.Y., Lee, S.H., Kim, H.Y., Byun, J.W., Shin, D.H., Kim, D. and Kwak, D. (2015) Serology and clinical relevance of Corynebacterium pseudotuberculosis in native Korean goats (Capra hircus coreanae). Trop. Anim. Health Prod., 47(4): 657-661. [Crossref] [PubMed]

19. Guimaraes, A.D.S., Borges, F., Pauletti, R.B., Seyffert, N., Ribeiro, D., Lage, A.P., Heinemann, M.B., Miyoshi, A., Maria, A., Gouveia, G., Federal, U., Gerais, D.M., Av, U., Carlos, A., Postal, C., Cep, U., Horizonte, B. and Gerais, M. (2011) Caseous lymphadenities: Epidimology, diagnosis and control. IIOAB J., 2(2): 33-43.

20. Arsenault, J., Girard, C., Dubreuil, P., Daignault, D., Galarneau, J.R., Boisclair, J., Simard, C. and Belanger, D. (2003) Prevalence of and carcass condemnation from maedi-visna, paratuberculosis and caseous lymphadenitis in culled sheep from Quebec, Canada. Prev. Vet. Med., 59(1-2): 67-81. [Crossref]

21. Dorella, F.A., Pacheco, L.G.C., Oliveira, S.C., Miyoshi, A. and Azevedo, V. (2006) Corynebacterium pseudotuberculosis: Microbiology, biochemical properties pathogenesis and molecular studies of virulence. Vet. Res., 37(2): 201-218. [Crossref] [PubMed]

22. Hemond, V., Rosenstingl, S., Auriault, M.L., Galanti, M.J. and Gatfosse, M. (2009) Axillary lymphadenitis due to Corynebacterium pseudotuberculosis in a 63-year-old patient. Med. Mal. Infect., 39(2): 136-139. [Crossref] [PubMed]

23. Boschert, V., Berger, A., Konrad, R., Huber, I., Hormansdorfer, S., Zols, S., Eddicks, M., Ritzmann, M. and Sing, A. (2014) Corynebacterium species nasal carriage in pigs and their farmers in Bavaria, Germany: Implications for public health. Vet. Rec., 175(10): 248. [Crossref] [PubMed]

24. Hodgson, A.L.M., Carter, K., Tachedjian, M., Krywult, J., Corner, L.A., McColl, M. and Cameron, A. (1999) Efficacy of an ovine caseous lymphadenitis vaccine formulated using a genetically inactive form of the Corynebacterium pseudotuberculosis phospholipase D. Vaccine, 17(7-8): 802-808. [Crossref]

25. Baird, G.J. and Fontaine, M.C. (2007) Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J. Comp. Pathol., 137(4): 179-210. [Crossref] [PubMed]

26. Correa, J.I., Stocker, A., Trindade, S.C., Vale, V., Brito, T., Bastos, B., Raynal, J.T., Miranda, P.M., Alcantara, A.C., Freire, S.M., Costa, L.M. and Meyer, R. (2018) In vivo and in vitro expression of five genes involved in Corynebacterium pseudotuberculosis virulence. AMB Expr., 8(1): 89. [Crossref] [PubMed] [PMC]

27. Khamis, A., Raoult, D. and La Scola, B. (2004) rpoB gene sequencing for identification of Corynebacterium species. J. Clin. Microbiol., 42(9): 3925-3931. [Crossref] [PubMed] [PMC]

28. Pacheco, L.G.C., Pena, R.R., Castro, T.L.P., Dorella, F.A., Bahia, R.C., Carminati, R., Frota, M.N.L., Oliveira, S.C., Meyer, R., Alves, F.S.F., Miyoshi, A. and Azevedo, V. (2007) Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. J. Med. Microbiol., 56(4): 480-486. [Crossref] [PubMed]

29. Britten, A.M. (2012) The role of diagnostic microbiology in mastitis control programs. Vet. Clin. N. Am. Food Anim. Pract., 28(2): 187-202. [Crossref] [PubMed]

30. Ashraf, A. and Imran, M. (2018) Diagnosis of bovine mastitis: From laboratory to farm. Trop. Anim. Health Prod., 50(6): 1193-1202. [Crossref] [PubMed]

31. Jashari, R., Piepers, S. and De Vliegher, S. (2016) Evaluation of the composite milk somatic cell count as a predictor of intramammary infection in dairy cattle. J. Dairy Sci., 99(11): 9271-9286. [Crossref] [PubMed]

32. Schukken, Y.H., Wilson, D.J., Welcome, F., Garrison-Tinofsky, L. and Gonzales, R.N. (2003) Monitoring udder health and milk quality using somatic cell counts. Vet. Res., 34(5): 579-596. [Crossref] [PubMed]

33. Paape, M.J. and Capuco, A.V. (1997) Cellular defense mechanisms in the udder and lactation of goats. J. Anim. Sci., 75(2): 556-565. [Crossref] [PubMed]

34. Schaeren, W. and Maurer, J. (2006) Prevalence of subclinical udder infections and individual somatic cell counts in three dairy goat herds during a full lactation. Schweiz Arch. Tierheilkd, 148(12): 641-648. [Crossref] [PubMed]

35. Cantekin, Z., Ergun, Y., Dogruer, G., Saribay, M.K. and Solmaz, H. (2015) Comparison of PCR and culture methods for diagnosis of subclinical mastitis in dairy cattle. Kafkas Univ. Vet. Fak. Derg., 21(2): 277-282.

36. Charaya, G., Sharma, A., Kumar, A., Goel, P. and Singh, M. (2015) Detection of major mastitis pathogens by multiplex polymerase chain reaction assay in buffalo milk. Indian J. Anim. Sci., 85(3): 122-125.

37. Ashraf, A., Imran, M., Yaqub, T., Tayyab, M., Shehzad, W. and Thomson, P.C. (2017) A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis. Mol. Cell. Probe., 33: 57-64. [Crossref] [PubMed]

38. Kelly, W.G. (1984) Veterinary Clinical Diagnosis. 3rd ed. Bailliere Tindall, London.

39. Sztachanska, M., Baranski, W., Janowski, T., Pogorzelska, J. and Zdunczyk, S. (2016) Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. Pol. J. Vet. Sci.,19(1):119-24. [Crossref] [PubMed]

40. Reboucas, M.F., Portela, R.W., Lima, D.D., Loureiro, D., Bastos, B.L., Moura-Costa, L.F., Vale, V.L., Miyoshi, A., Azevedo, V. and Meyer, R. (2011) Corynebacterium pseudotuberculosis secreted antigen-induced specific gamma-interferon production by peripheral blood leukocytes: Potential diagnostic marker for caseous lymphadenitis in sheep and goats. J. Vet. Diagn. Invest., 23: 213-220. [Crossref] [PubMed]

41. Ilhan, Z. (2013) Detection of Corynebacterium pseudotuberculosis from sheep lymph nodes by PCR. Revue. Med. Vet., 164(2): 60-66.

42. Sammra, O., Balbutskaya, A., Hijazin, M., Nagib, S., Alber, J., Lammler, C., Abdulmawjood, A., Prenger-Berninghoff, E., Timke, M., Kostrzewa, M. and Siebert, U. (2014) Further studies on Arcanobacterium phocisimile: A novel species of genus Arcanobacterium. J. Vet. Med., 2014(3): 923592.

43. Blood, D.C. and Radostits, O.M. (1989) Veterinary Medicine. 7th ed. Saunders, San Diego, CA. p501-559.

44. Petersson-Wolfe, C.S., Tholen, A.R., Currin, J. and Leslie, K.E. (2013) Practical methods for mastitis control. WCDS Adv. Dairy Technol., 25(11): 341-358.

45. Menzies, P.I. and Ramanoon, S.Z. (2001) Mastitis of sheep and goats. Vet. Clin. N. Am. Food Anim. Pract., 17(2): 333-358. [Crossref]

46. Peixoto, R.M., Mota, R.A. and Costa, M.M. (2010) Small ruminant mastitis in Brazil. Pesq. Vet. Bras., 30(9): 754-762. [Crossref]

47. Zhao, Y., Liu, H., Zhao, X., Gao, Y., Zhang, M. and Chen, D. (2015) Prevalence and pathogens of subclinical mastitis in dairy goats in China. Trop. Anim. Health Prod., 47(2): 429-435. [Crossref] [PubMed]

48. Sreeja, S., Bineesh, P.P., Vijayakumar, K. and Saseendranath, M.R. (2013) Evaluation of California mastitis test (CMT) as a screening method for subclinical mastitis in Malabari goats. Indian J. Anim. Res., 47(6): 558-560.

49. Koop, G., De Visscher, A., Collar, C.A., Bacon, D.A., Maga, E.A., Murray, J.D., Supre, K., De Vliegher, S., Haesebrouck, F., Rowe, J.D., Nielen, M. and van Werven, T. (2012) Short communication: Identification of coagulase-negative Staphylococcus species from goat milk with the API Staph identification test and with transfer RNA-intergenic spacer PCR combined with capillary electrophoresis. J. Dairy Sci., 95(12): 7200-7205. [Crossref] [PubMed]

50. Marogna G, Pilo C, Vidili A, Tola S, Schianchi G. and Leori SG (2012) Comparison of clinical findings, microbiological results, and farming parameters in goat herds affected by recurrent infectious mastitis. Small Rumin. Res., 102(3): 74-83. [Crossref]

51. McDougall, S., Malcolm, D. and Prosser C.G. (2014) Prevalence and incidence of intramammary infections in lactating dairy goats. N. Z. Vet. J., 62(2): 136-145. [Crossref] [PubMed]

52. Contreras, A., Paape, M.J., Di Carlo, A.L., Miller, R.B. and Rainard, P. (1997) Evaluation of selected antibiotic residue screening tests for milk from individual goats. J. Dairy Sci., 80(6): 1113-1118. [Crossref]

53. Salaberry, S.R., Saidenberg, A.B., Zuniga, E., Melville, P.A., Santos, F.G., Guimaraes, E.C., Gregori, F. and Benites, N.R. (2015) Virulence factors genes of Staphylococcus spp. Isolated from caprine subclinical mastitis. Microb. Pathog., 85(85): 35-39. [Crossref] [PubMed]

54. Valli, V.E.O. and Parry, B.W. (1993) Caseous lymphadenitis. In: Jubb, K.V.F., Kennedy, P.C. and Palmer. N., (Ed.) Pathology of Domestic Animals. 4th ed., Vol. 3. Academic Press, San Diego. pp238-240.

55. Peel, M.M., Palmer, G.G., Stacpoole, A.M. and Kerr, T.G. (1997) Human lymphadenitis due to Corynebacterium pseudotuberculosis: Report of ten cases from Australia and review. Clin. Infect. Dis., 24(2): 185-191. [Crossref] [PubMed]

56. Stoops, S.G., Renshaw, H.W. and Thilsted, J.P. (1984) Ovine caseous lymphadenitis: Disease prevalence, lesion distribution, and thoracic manifestations in a population of mature culled sheep from Western United States. Am. J. Vet. Res., 45(3): 557-561. [PubMed]

57. McDougall, S., Pankey, W., Delaney, C., Barlow, J., Murdough, P.A. and Scruton, D. (2002) Prevalence and incidence of subclinical mastitis in goats and dairy ewes in Vermont, USA. Small Rumin. Res., 46(2): 115-121. [Crossref]

58. Hodgson, A.L., Bird, P. and Nisbet, I.T. (1990) Cloning, nucleotide sequence, and expression in Escherichia coli of the phospholipase D gene from Corynebacterium pseudotuberculosis. J. Bacteriol., 172(3): 1256-1261. [Crossref] [PubMed] [PMC]

59. Yozwiak, M.L. and Songer, J.G. (1993) Effect of Corynebacterium pseudotuberculosis phospholipase D on viability and chemotactic responses of ovine neutrophils. Am. J. Vet. Res., 54(3): 392-397. [PubMed]

60. Simmons, C.P., Dunstan, S.J., Tachedjian, M., Krywult, J., Hodgson, A.L. and Strugnell, R.A. (1998) Vaccine potential of attenuated mutants of Corynebacterium pseudotuberculosis in sheep. Infect. Immun., 66(2): 474-479. [PubMed] [PMC]

61. Eggleton, D.G., Middleton, H.D., Doidge, C.V. and Minty, D.W. (1991) Immunisation against ovine caseous lymphadenitis: Comparison of Corynebacterium pseudotuberculosis vaccines with and without bacterial cells. Aust. Vet. J., 68(10): 317-319. [Crossref] [PubMed]