Open Access
Research (Published online: 29-09-2018)
24. Effects of secretome on cisplatin-induced testicular dysfunction in rats
Surya Agus Prihatno, Irma Padeta, Arinda Devi Larasati, Betty Sundari, Annisa Hidayati, Yuda Heru Fibrianto and Teguh Budipitojo
Veterinary World, 11(9): 1349-1356

Surya Agus Prihatno: Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55821, Indonesia.
Irma Padeta: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55821, Indonesia.
Arinda Devi Larasati: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55821, Indonesia.
Betty Sundari: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55821, Indonesia.
Annisa Hidayati: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55821, Indonesia.
Yuda Heru Fibrianto: Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55821, Indonesia.
Teguh Budipitojo: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55821, Indonesia.

doi: 10.14202/vetworld.2018.1349-1356

Share this article on [Facebook] [LinkedIn]

Article history: Received: 18-05-2018, Accepted: 16-08-2018, Published online: 29-09-2018

Corresponding author: Teguh Budipitojo


Citation: Prihatno SA, Padeta I, Larasati AD, Sundari B, Hidayati A, Fibrianto YH, Budipitojo T (2018) Effects of secretome on cisplatin-induced testicular dysfunction in rats, Veterinary World, 11(9): 1349-1356.

Background: Testicular dysfunction is a degenerative disorder characterized by failure in the synthesis of reproductive hormones and spermatogenesis. Secretome derived from the human umbilical mesenchymal stem cell (MSC) has been reported to repair some degenerative disorders.

Aim: This study aimed to investigate the effect of secretome derived from the human umbilical MSCs on cisplatin-induced testicular dysfunction in rats.

Materials and Methods: Thirty-six male Wistar rats were divided into the control and secretome-treated groups. In the secretome-treated group, testicular dysfunction was induced by 3 mg/kg BW of cisplatin intraperitoneally 3 times with 3-day intervals. The secretome-treated group was divided according to dose: Low-dose (0.2 mL/kg BW) and high-dose (0.5 mL/kg BW) groups. Secretomes were injected intraperitoneally once a week for 3 weeks. 1 week after the injection of secretome, the cauda epididymis of the rats was removed for spermatozoa evaluation and histological examination.

Results: After the injection of secretome, the sperm motility of the high-dose group showed thin wave-like, rare, and slow movements. No abnormal sperm morphology was observed in all the treated groups. The number of spermatozoa increased gradually in the high-dose group after the injection of secretome. The developmental stages of the spermatogenic cells were complete in both spermatozoa groups after the injection of secretome. However, the spermatozoa in the seminiferous tubules of the high-dose group were denser. Vimentin and cytokeratin immunoreactivities were very strong in the high-dose group 1 week after the second secretome injection.

Conclusion: High-dose secretome derived from the human fetal umbilical cord could increase the number and motility of sperms in rats with cisplatin-induced testicular dysfunction. The administration of high-dose secretome was effective 1 week after the second dose, as indicated by very strong immunoreactivity for vimentin and cytokeratin. Moreover, secretome could promote the regeneration of the seminiferous tubules of both the groups.

Keywords: cisplatin, cytokeratin, secretome, spermatogenesis, testicular dysfunction, vimentin.


1. Pawitan, J.A. (2014) Prospect of stem cell conditioned medium in regenerative medicine. Biomed. Res. Int., 2014: 1-14. [Crossref] [PubMed] [PMC]

2. Nugroho W.S., Kusindarta, D.L., Susetya, H., Fitriana, I., Mulyani, G.T., Fibrianto, Y.H., Haryanto, A. and Budipitojo, T. (2016) The structural and functional recovery of pancreatic ?-cells In Type 1 diabetes mellitus induced mesenchymal stem cell-conditioned medium. Vet. World, 9(5): 535-539. [Crossref] [PubMed] [PMC]

3. Kusindarta, D.L., Wihadmadyatami, H., Fibrianto, Y.H., Nugroho, W.S., Susetya, H., Musana, D.K., Wijayanto, H., Prihatna, S.A. and Wahyuni, A.E.T.H. (2016) Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration. Vet. World, 9(6): 605-610. [Crossref] [PubMed] [PMC]

4. Padeta, I., Nugroho, W.S., Kusindarta, D.L., Fibrianto, Y.H. and Budipitojo, T. (2017) Mesenchymal stem cell-conditioned medium promote the recovery of skin burn wound. Asian J. Anim. Vet. Adv., 12(3): 132-141. [Crossref]

5. Koster, R., Van Vugt, M.A.T.M., Timmer-Bosscha, H., Gietema, J.A. and de Jong, S. (2013) Unravelling mechanisms of cisplatin sensitivity and resistance in testicular cancer. Expert. Rev. Mol. Med., 15: e12. [Crossref] [PubMed]

6. Amin, A., Abraham, C., Hamza, A.A., Abdalla, Z.A., Al-Shamsi, S.B. and Harethi, S.S. (2012) A standardized extract of Ginkgo biloba neutralizes cisplatin-mediated reproductive toxicity in rats. Biomed. Res. Int., 2012: 1-11.

7. Beytur, A., Ciftci, O., Oguz, F., Oguzturk, H. and Yilmaz, F. (2012) Montelukast attenuates side effects of cisplatin including testicular, spermatological, and hormonal damage in male rats. Cancer Chemoth. Pharm., 69: 207-213. [Crossref] [PubMed]

8. Jahnukainen, K., Ehmcke, J., Hou, M. and Schlatt, S. (2011) Testicular function and fertility preservation in male cancer patients. Best. Pract. Res. Clin. Endocrinol. Metab., 25: 287-302. [Crossref] [PubMed]

9. Rives, N., Perdrix, A., Hennebicq, S., Saias-Magnan, J., Melin, M.C. and Berthaut, I. (2012) The semen quality of 1158 men with testicular cancer at the time of cryopreservation: Results of the French national CECOS network. J. Androl., 33: 1394-1401. [Crossref] [PubMed]

10. Ahmed, E.A., Omar, H.M., Ragb, S.M. and Nasser, A.Y. (2011) The antioxidant activity of vitamin C, DPPD and L-cysteine against cisplatin-induced testicular oxidative damage in rats. Food Chem. Toxicol., 49: 1115-1121. [Crossref] [PubMed]

11. Reddy, Y.V.K., Reddy, P.S. and Shivalingam, M.R. (2010) Cisplatin or carboplatin caused suppression in antioxidant enzyme defense system in liver, kidney and testis of male albino rats. J. Biomed. Sci. Res., 2(1): 23-28.

12. Madhu, P., Reddy, K.P. and Reddy, P.S. (2016) Role of melatonin in mitigating chemotherapy-induced testicular dysfunction in wistar rats. Drug Chem. Toxicol., 39(2): 137-146. [Crossref] [PubMed]

13. Atessahin, A., Sahna, E. and Turk, G. (2006) Chemoprotective effect of melatonin against cisplatin-induced testicular toxicity in rats. J. Pineal Res., 41: 21-27. [Crossref] [PubMed]

14. Reddy, K.P., Madhu, P. and Reddy, P.S. (2016) Protective effects of resveratrol against cisplatin-induced testicular and epididymal toxicity in rats. Food Chem. Toxicol., 91: 65-72. [Crossref] [PubMed]

15. Boekelheide, K. (2005) Mechanisms of toxic damage to spermatogenesis. J. Natl. Canc. Inst. Monogr., 34: 6-8. [Crossref] [PubMed]

16. Soni, K.K., Zhang, L.T., You, J.H., Lee, S.W., Kim, C.Y., Cui, W.S., Chae, H.J., Kim, H.K. and Park, J.K. (2015) The effects of motiliperm on cisplatin-induced testicular toxicity in Sprague-Dawley rats. Cancer Cell Int., 15: 121. [Crossref] [PubMed] [PMC]

17. Al-Bader, M. and Kilarkaje, N. (2015) Effects of bleomycin, etoposide and cisplatin treatment on Leydig cell structure and transcription of steroidogenic enzymes in rat testis. Eur. J. Pharmacol., 747: 150-159. [Crossref] [PubMed]

18. Ciftci, O., Beytur, A., Cakir, O., Gurbuz, N. and Vardi, N. (2011) Comparison of reproductive toxicity caused by cisplatin and novel platinum-N-heterocyclic carbene complex in male rats. Basic Clin. Pharmacol. Toxicol., 109: 328-333. [Crossref] [PubMed]

19. Eroschenko, V.P. (2010) Atlas Histologi Difiore Dengan Korelasi Fungsional. Penerbit Buku Kedokteran EGC, Jakarta. p423-439.

20. Kianifard, D., Sadrkhanlou, R.A. and Hasanzadeh, S. (2011) The ultrastructural changes of the Sertoli and Leydig cells following streptozotocin induced diabetes. Iran J. Basic Med. Sci., 15(1): 623-635.

21. Maxson, S., Lopez, E.A., Yoo, D. and Miagkova, A.D. (2012) Concise review: Role of mesenchymal stem cells in wound repair. Stem. Cells Transl. Med., 1(2): 142-149. [Crossref] [PubMed] [PMC]

22. Han, Y., Chai, J., Sun, T., Li, D. and Dongjie, T.R. (2011) Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblast in vitro. Biochem. Biophys. Res. Comm., 413: 661-565. [Crossref] [PubMed]

23. Paranko, J., Kallajoki, M., Pelliniemi, L.J., Lehto, V.P. and Virtanen, I. (1986) Transient coexpression of cytokeratin and vimentin in differentiating rat Sertoli cells. Dev. Biol., 117: 35-44. [Crossref]

24. Frojdman, K., Paranko, J., Virtanen, I. and Pelliniemi, L.J. (1992) Intermediate filaments and epithelial differentiation of male rat embryonic gonad. Differentiation, 50: 113-123. [Crossref] [PubMed]

25. Rogatsch, H., Jezek, D., Hittmair, A., Mikuz, G. and Feichtinger, H. (1996) Expression of vimentin, cytokeratin, and desmin in Sertoli cells of human fetal, cryptorchid, and tumor-adjacent testicular tissue. Virchows Arch., 427: 497-502. [Crossref] [PubMed]

26. Sasaki, M., Yamamoto, M., Arishima, K. and Eguchi, Y. (1998) Effects of follicle-stimulating hormone on intermediate filaments and cell division of Sertoli cells of fetal rat testis in culture. J. Vet. Med. Sci., 60: 35-39. [Crossref] [PubMed]

27. Kume, E., Yuya, O., Mituru, S., Hiroyuki, T., Tomoko, M., Michael, F.W., Hiroshi, I. and Shin, W. (2017) Quantitative morphometric analysis of vimentin filament in Sertoli cell of rats after in utero dbp exposure. Fundam. Toxicol. Sci. 4(2): 85-93. [Crossref]

28. Gerber, J. (2015) Investigation of The Junctional Complex at the Blood-Testis Barrier in Sccx43ko Mice and Establishment and Functional Characterization of a Murine Sertoli Cell Line Deficient of Connexin43. Inaugural-Dissertation Zur Erlangung Des Grades Eines Doktors Der Naturwissenschaften, Hannover.

29. Kierszenbaum, A.L., Rivkin, E., Fefer-Sadler, S., Mertz, J.R. and Tres, L.L. (1996) Purification, partial characterization, and localization of Sak57 and acidic intermediate filament keratin present in rat spermatocytes, spermatids and sperm. Mol. Reprod. Dev., 44(3): 392-394. [Crossref]

30. Budipitojo, T., Padeta, I., Nugroho, W.S. and Fitriana, I. (2018) Temporal recovery of pancreatic β-cells in Type 2 diabetes mellitus induced by mesenchymal stem cell-conditioned medium. Adv. Life Sci. Tech., 62: 14-19.

31. Lin, T., Wang, D. and Nagpal, M.L. (1993) Human chorionic gonadotropin induces interleukin-1 gene expression in rat Leydig cells in vivo. Mol. Cell. Endocrinol., 95: 139-145. [Crossref]

32. Okuda, Y., Sun, X.R. and Morris, P.L. (1994) Interleukin-6 (IL-6) mRNAs expressed in Leydig and Sertoli cells are regulated by cytokines, gonadotropins and neuropeptides. Endocr. J., 2: 617-624.

33. Cudicini, C., Lejeune, H., Gomez, E., Bosmans, E., Ballet, F., Saez, J. and Jegou, B. (1997) Human Leydig cells and Sertoli cells are producers interleukins-1 and-6. J. Clin. Endocrinol. Metabol., 82(5): 1426-1433. [Crossref]

34. Bhang, S.H., Lee, S., Shin, J.Y., Lee, T.J., Jang, H.K. and Kim, B.S. (2014) Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol. Ther., 22(4): 862. [Crossref] [PubMed] [PMC]