Open Access
Research (Published online: 22-04-2019)
15. Effect of seasonality on the population density of wetland aquatic insects: A case study of the Hawr Al Azim and Shadegan wetlands, Iran
Hassan Nasirian and Aref Salehzadeh
Veterinary World, 12(4): 584-592

Hassan Nasirian: Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Aref Salehzadeh: Department of Medical Entomology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

doi: 10.14202/vetworld.2019.584-592

Share this article on [Facebook] [LinkedIn]

Article history: Received: 05-11-2018, Accepted: 05-03-2019, Published online: 22-04-2019

Corresponding author: Hassan Nasirian

E-mail: hanasirian@yahoo.com

Citation: Nasirian H, Salehzadeh A (2019) Effect of seasonality on the population density of wetland aquatic insects: A case study of the Hawr Al Azim and Shadegan wetlands, Iran, Veterinary World, 12(4): 584-592.
Abstract

Aim: Wetlands are extremely suitable ecosystems to assess the effect of climate change on the density of aquatic insects. This study aimed to assess the effect of seasonality on populations of aquatic insects in the Hawr Al Azim and Shadegan wetlands.

Materials and Methods: The insect samplings were conducted at a large area of the Hawr Al Azim and five different sites of the Shadegan wetlands. In total, 18,534 arthropods of different life stages, including 12 orders containing 51 families, were collected and identified from the selected sites of the Shadegan and Hawr Al Azim wetlands.

Results: Results showed that the population density of wetland aquatic insects gradually increased as the average daily temperature decreased, positively increased with daily mean relative humidity and precipitation, and decreased with the mean daily evaporation between October and April. Conversely, the population density of wetland aquatic insects gradually decreased with increasing average daily temperature and reduction of the mean relative humidity and precipitation and increasing the average evaporation from April to September. When differences between the average daily and water temperatures reached minimum in April, the population density of wetland aquatic insects reached maximum and turned mainly to families that they have high level of biological indices, indicating that wetlands have clean waters around the spring. While around the autumn conversely, they mostly changed to families that they have low level of biological indices, indicating that wetlands have unclean waters.

Conclusion: The present study showed an optimum condition for the growth of insects around spring. Seasonality affects the population density of wetland aquatic insects during a year.

Keywords: change of insect population, effect of seasonality on insect population density, seasonal climate change, wetland aquatic insect.

References

1. Tont, S.A. and Delistraty, D. (1980) The Effects of Climate on Terrestrial and Marine Populations. Vol. 21. California Cooperative Oceanic Fisheries Investigations (CalCOFI) Reports. p85-89.

2. Roiz, D., Ruiz, S., Soriguer, R. and Figuerola, J. (2014) Climatic effects on mosquito abundance in Mediterranean wetlands. Parasit. Vectors, 7(1): 333. [Crossref]

3. Hopp, M.J. and Foley, J.A. (2003) Worldwide fluctuations in dengue fever cases related to climate variability. Clim. Res., 25(1): 85-94. [Crossref]

4. Patz, J.A., Campbell-Lendrum, D., Holloway, T. and Foley, J.A. (2005) Impact of regional climate change on human health. Nature, 438(7066): 310-317. [Crossref] [PubMed]

5. de Magny, G.C., Murtugudde, R., Sapiano, M.R., Nizam, A., Brown, C.W., Busalacchi, A.J., Yunus, M., Nair, G.B., Gil, A.I. and Lanata, C.F. (2008) Environmental signatures associated with cholera epidemics. Proc. Natl. Acad. Sci., 105(46): 17676-17681. [Crossref] [PubMed] [PMC]

6. Luis, A.D., Douglass, R.J., Mills, J.N. and Bjornstad, O.N. (2010) The effect of seasonality, density and climate on the population dynamics of Montana deer mice, important reservoir hosts for Sin nombre hantavirus. J. Anim. Ecol., 79(2): 462-470. [Crossref] [PubMed]

7. Bagamian, K.H., Douglass, R.J., Alvarado, A., Kuenzi, A.J., Amman, B.R., Waller, L.A. and Mills, J.N. (2012) Population density and seasonality effects on Sin nombre virus transmission in North American deer mice (Peromyscus maniculatus) in outdoor enclosures. PLoS One, 7(6): e37254. [Crossref]

8. Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M. and Rohani, P. (2006) Seasonality and the dynamics of infectious diseases. Ecol. Lett., 9(4): 467-484. [Crossref] [PubMed]

9. Cornelissen, T. (2011) Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol., 40(2): 155-163. [Crossref]

10. Bouzid, M., Colon-Gonzalez, F.J., Lung, T., Lake, I.R. and Hunter, P.R. (2014) Climate change and the emergence of vector-borne diseases in Europe: Case study of dengue fever. BMC Public Health, 14: 781. [Crossref] [PubMed] [PMC]

11. Olden, J.D., Poff, N.L., Douglas, M.R., Douglas, M.E. and Fausch, K.D. (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol., 19(1): 18-24. [Crossref] [PubMed]

12. Smart, S.M., Thompson, K., Marrs, R.H., Le Duc, M.G., Maskell, L.C. and Firbank, L.G. (2006) Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc. Biol. Sci., 273(1601): 2659-2665. [Crossref] [PubMed] [PMC]

13. Arroyo-Rodriguez, V., Ros, M., Escobar, F., Melo, F.P., Santos, B.A., Tabarelli, M. and Chazdon, R. (2013) Plant β-diversity in fragmented rain forests: Testing floristic homogenization and differentiation hypotheses. J. Ecol., 101(6): 1449-1458. [Crossref]

14. Faccioli, M., Font, A.R. and Figuerola, C.M.T. (2015) Valuing the recreational benefits of wetland adaptation to climate change: A trade-off between species' abundance and diversity. Environ. Manag., 55(3): 550-563. [Crossref] [PubMed]

15. Junk, W.J. (2013) Current state of knowledge regarding South America Wetlands and their future under global climate change. Aquat. Sci., 75(1): 113-131. [Crossref]

16. Barros, D. and Albernaz, A. (2014) Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon. Braz. J. Biol., 74(4): 810-820. [Crossref] [PubMed]

17. Costanza, R., d'Arge, R., Groot, R.D., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V. and Paruelo, J. (1997) The value of the world's ecosystem services and natural capital. Nature, 387(15): 253-260. [Crossref]

18. EPA. (2012) Wetlands, Available from: http://www.water.epa.gov/type/wetlands/index.cfm. Last accessed on 10-04-2019.

19. Nasirian, H., Mahvi, A.H., Hosseini, M., Vazirianzadeh, B., Sadeghi, S.M. and Nazmara, S. (2013) Study on the heavy metal bioconcentrations of the Shadegan international wetland mosquitofish, Gambusia affinis, by inductively coupled plasma technique. J. Environ. Health Sci. Eng., 11(1): 22. [Crossref]

20. Nasirian, H., Sadeghi, S.M.T., Vazirianzadeh, B. and Moosa-Kazemi, S.H. (2014) New record of Aedes vittatus and Culiseta subochrea (Diptera: Culicidae) and their distribution from Shadegan Wetland, South Western Iran. J. Entomol. Zool. Stud., 2(5): 271-275.

21. Nasirian, H. (2014) Evaluation of water quality and organic pollution of Shadegan and Hawr Al Azim wetlands by biological indices using insects. J. Entomol. Zool. Stud., 2(5): 193-200.

22. Nasirian, H., Nasirian, Z. and Sadeghi, S.M. (2014) Use of inductively coupled plasma-mass spectrometry, ICP-MS, in entomology. Int. J. Entomol. Res., 2(2): 47-57.

23. Nasirian, H., Vazirianzadeh, B., Sadeghi, S.M.T. and Nazmara, S. (2014) Culiseta subochrea as a bioindicator of metal contamination in Shadegan International Wetland, Iran (Diptera: Culicidae). J. Insect. Sci., 14: 258. [Crossref]

24. Nasirian, H. and Irvine, K. (2017) Odonata larvae as a bioindicator of metal contamination in aquatic environments: Application to ecologically important wetlands in Iran. Environ. Monit. Assess., 189(9): 436. [Crossref]

25. Nasirian, H., Irvine, K., Sadeghi, S., Mahvi, A. and Nazmara, S. (2016) Assessment of bed sediment metal contamination in the Shadegan and Hawr Al Azim Wetlands, Iran. Environ. Monit. Assess., 188(2): 1-15. [Crossref]

26. Nasirian, H., Alimohammadi, M., Kamandar, M., Barahwie, L.S., Moghadam, H.M., Sheikhi, R., Asgari, M., Hosseini, S.S. and Ahmadi, F.F. (2015) Water quality evaluation of the Shadegan and Hawr Al Azim wetlands from Iran. Indian J. Sci. Res., 6(2): 11-24.

27. Nasirian, H., Nazmara, S., Mahvi, A.H., Hosseini, M., Shiri, L. and Vazirianzadeh, B. (2015) Assessment of some heavy metals in the Shadegan and Hawr Al Hawizea wetland waters from Iran. Indian J. Sci. Tech., 8(33): 1-9. [Crossref]

28. Nasirian, H. (2013) Using Insects for Heavy Metal Contamination Survey in Shadegan Wetland, Thesis for Fulfillment of the Ph. D Degree in Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Science, Tehran.

29. Leblebicioglu, H., Ozaras, R., Irmak, H. and Sencan, I. (2016) Crimean-Congo hemorrhagic fever in Turkey: Current status and future challenges. Antiviral Res., 126: 21-34. [Crossref]

30. Parain, E.C., Rohr, R.P., Gray, S.M. and Bersier, L.F. (2019) Increased temperature disrupts the biodiversity-ecosystem functioning relationship. Am. Nat., 193(2): 227-239. [Crossref] [PubMed]

31. Al Dabal, L.M., Shahmirzadi, M.R.R., Baderldin, S., Abro, A., Zaki, A., Dessi, Z., Al Eassa, E., Khan, G., Shuri, H. and Alwan, A.M. (2016) Crimean-congo hemorrhagic fever in Dubai, United Arab Emirates, 2010: Case report. Iran. Red Crescent Med. J., 18(8): e38374. [Crossref]

32. Andersen, L.K. and Davis, M.D.P. (2017) Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: Update from the international society of dermatology climate change task force. Int. J. Dermatol., 56(3): 252-259. [Crossref] [PubMed]

33. Rahpeyma, M., Samarbaf-Zadeh, A., Makvandi, M., Ghadiri, A.A., Dowall, S.D. and Fotouhi, F. (2017) Expression and characterization of codon-optimized Crimean-Congo hemorrhagic fever virus Gn glycoprotein in insect cells. Arch. Virol., 162(7): 1951-1962. [Crossref] [PubMed]

34. Farahi, A., Ebrahimzade, E., Nabian, S., Hanafi-Bojd, A.A., Akbarzadeh, K. and Bahonar, A. (2016) Temporal and spatial distribution and species diversity of hard ticks (Acari: Ixodidae) in the Eastern region of Caspian Sea. Acta Trop., 164: 1-9. [Crossref]

35. Nasirian, H., Ladonni, H., Vatandoost, H., Shayeghei, M. and Poudat, A. (2006) Laboratory performance of 0.05% fipronil and 2.15% imidacloprid gel baits against German cockroaches, Blattella germanica. Hormozgan Med. J., 10(2): 24-25.

36. Nasirian, H., Ladoni, H., Davari, B., Shayeghi, M., Ershadi, Y., Reza, M. and Vatandoost, H. (2006) Effect of fipronil on permethrin sensitive and permethrin resistant strains of Blattella germanica. Sci. J. Kurdistan Univ. Med. Sci., 11(1): 33-41.

37. Nasirian, H., Ladonni, H., Shayeghi, M., Vatandoost, H., Rassi, Y., Ershadi, M. Y., Rafinejad, J. and Basseri, H. (2006) Duration of fipronil WHO glass jar method toxicity against susceptible and feral German cockroach strains. Pak. J. Biol. Sci., 9(10): 1955-1959. [Crossref]

38. Nasirian, H., Ladonni, H., Shayeghi, M., Vatandoost, H., Yaghoobi-Ershadi, M., Rassi, Y., Abolhassani, M. and Abaei, M. (2006) Comparison of permethrin and fipronil toxicity against German cockroach (Dictyoptera: Blattellidae) strains. Iran. J. Public Health, 35(1): 63-67.

39. Nasirian, H., Ladonni, H. and Vatandoost, H. (2006) Duration of fipronil topical application toxicity in Blattella germanica field population strains. Pak. J. Biol. Sci., 9(5): 800-804. [Crossref]

40. Nasirian, H. (2007) Duration of fipronil and imidacloprid gel baits toxicity against Blattella germanica strains of Iran. J. Arthropod Borne Dis., 1(2): 40-47.

41. Nasirian, H. (2008) Rapid elimination of German cockroach, Blattella germanica, by fipronil and imidacloprid gel baits. J. Arthropod Borne Dis., 2(1): 37-43.

42. Nasirian, H., Ladonni, H., Shayeghi, M. and Soleimani-Ahmadi, M. (2009) Iranian non-responding contact method German cockroach permethrin resistance strains resulting from field pressure pyrethroid spraying. Pak. J. Biol. Sci., 12(8): 643-647. [Crossref]

43. Limoee, M., Shayeghi, M., Heidari, J., Nasirian, H. and Ladonni, H. (2010) Susceptibility level of hospital-collected strains of German cockroach Blattella germanica (L.) to carbamate and organophosphorus insecticides using surface contact method in Tehran (2007-2008). J. Kermanshah Univ. Med. Sci., 13(4): 337-343.

44. Nasirian, H. (2010) An overview of German cockroach, Blattella germanica, studies conducted in Iran. Pak. J. Biol. Sci., 13(22): 1077-1084. [Crossref]

45. Nasirian, H., Ladonni, H., Aboulhassani, M. and Limoee, M. (2011) Susceptibility of field populations of Blattella germanica (Blattaria: Blattellidae) to spinosad. Pak. J. Biol. Sci., 14(18): 862-868. [Crossref]

46. Paksa, A., Ladonni, H. and Nasirian, H. (2011) Detection of malathion and chlorpyrifos resistance mechanism in German cockroaches (Blattella germanica, Insecta: Blattodea: Blattellidae) using piperonyl butoxide and tributyl phosphorotrithioate. J. Hormozgan Univ. Med. Sci., 15(3): 243-253.

47. Paksa, A., Ladonni, H. and Nasirian, H. (2012) Comparison of PBO and DEF effects on creating bendiocarb and carbaryl insecticide resistance in German cockroach. Sci. J. Kurdistan Univ. Med. Sci., 17(3): 91-101.

48. Ladonni, H., Paksa, A., Nasirian, H., Doroudgar, A. and Abaie, M. (2013) Detection of carbamate and organophosphorus susceptibility levels in German cockroach in vivo. Toloo e Behdasht, 40(3): 95-105.

49. Nasirian, H. (2016) New aspects about Supella longipalpa (Blattaria: Blattellidae). Asian Pac. J. Trop. Biomed., 6(12): 1065-1075. [Crossref]

50. Nazari, M., Motlagh, B.A. and Nasirian, H. (2016) Toxicity of cypermethrin and chlorpyrifos against German cockroach Blattella germanica (Blattaria: Blattellidae) strains from Hamadan, Iran. Pak. J. Biol. Sci., 19(6): 259-264. [Crossref]

51. Nasirian, H. (2017) Contamination of cockroaches (Insecta: Blattaria) to medically fungi: A systematic review and meta-analysis. J. Mycol. Med., 27(4): 427-448. [Crossref] [PubMed]

52. Davari, B., Hassanvand, A., Nasirian, H., Ghiasian, S., Salehzadeh, A. and Nazari, M. (2017) Comparison of cockroach fungal contamination in the clinical and non-clinical environments from Iran. J. Entomol. Acarol. Res., 49(2): 109-115. [Crossref]

53. Nasirian, H. (2017) Infestation of cockroaches (Insecta: Blattaria) in the human dwelling environments: A systematic review and meta-analysis. Acta Trop., 167(1): 86-98. [Crossref] [PubMed]

54. Dehkordi, A.S., Abadi, Y.S., Nasirian, H., Hazratian, T., Gorouhi, M.A., Yousefi, S. and Paksa, A. (2017) Synergists action of piperonyl butoxide and S,S,S-tributyl phosphorotrithioate on toxicity of carbamate insecticides against Blattella germanica. Asian Pac. J. Trop. Med., 10(10): 981-986. [Crossref] [PubMed]

55. Davari, B., Kashani, S., Nasirian, H., Nazari, M. and Salehzadeh, A. (2018) The efficacy of Maxforce and Avion gel baits containing fipronil, clothianidin and indoxacarb against the German cockroach (Blattella germanica). Entomol. Res., 48(6): 459-465. [Crossref]

56. Nasirian, H. and Salehzadeh, A. (2019) Control of cockroaches (Blattaria) in sewers: A practical approach systematic review. J. Med. Entomol., 56(1): 181-191. [Crossref] [PubMed]

57. Gallinat, A.S., Primack, R.B. and Wagner, D.L. (2015) Autumn, the neglected season in climate change research. Trends Ecol. Evol., 30(3): 169-176. [Crossref] [PubMed]

58. Piggott, J.J., Townsend, C.R. and Matthaei, C.D. (2015) Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Glob. Change Biol., 21(5): 1887-1906. [Crossref] [PubMed]

59. Neji, M., Gorel, A., Ojeda, D.I., Duminil, J., Kastally, C., Steppe, K., Fayolle, A. and Hardy, O.J. (2019) Comparative analysis of two sisters Erythrophleum species (Leguminosae) reveal contrasting transcriptome-wide responses to early drought stress. Gene, 694: 50-62. [Crossref] [PubMed]

60. Gangloff, E.J., Sorlin, M., Cordero, G.A., Souchet, J. and Aubret, F. (2019) Lizards at the peak: Physiological plasticity does not maintain performance in lizards transplanted to high altitude. Physiol. Biochem. Zool., 92(2): 189-200. [Crossref] [PubMed]

61. Heberling, J.M., MacKenzie, C.M.D., Fridley, J.D., Kalisz, S. and Primack, R.B. (2019) Phenological mismatch with trees reduces wildflower carbon budgets. Ecol. Lett., 22(4): 616-623. [Crossref] [PubMed]

62. Moriyama, M. and Ichinohe, T. (2019) High ambient temperature dampen adaptive immune responses to influenza a virus infection. Proc. Natl. Acad. Sci. U. S. A., 116(8): 3118-3125. [Crossref] [PubMed]

63. Dellicour, S., Michez, D., Rasplus, J.Y. and Mardulyn, P. (2015) Impact of past climatic changes and resource availability on the population demography of three food-specialist bees. Mol. Ecol., 24(5): 1074-1090. [Crossref] [PubMed]