Open Access
Research (Published online: 28-02-2019)
24. Comparative effects of amiodarone and dronedarone treatments on cardiac function in a rabbit model
Worakan Boonhoh, Anusak Kijtawornrat and Suwanakiet Sawangkoon
Veterinary World, 12(2): 345-351

Worakan Boonhoh: Department of Physiology, Animal Physiology Program, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand.
Anusak Kijtawornrat: Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand; Research Clusters: Research Study and Testing of Drug's Effect Related to Cardiovascular System in Laboratory Animal, Chulalongkorn University, 39 Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand.
Suwanakiet Sawangkoon: Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand.

doi: 10.14202/vetworld.2019.345-351

Share this article on [Facebook] [LinkedIn]

Article history: Received: 14-06-2018, Accepted: 16-01-2019, Published online: 28-02-2019

Corresponding author: Suwanakiet Sawangkoon


Citation: Boonhoh W, Kijtawornrat A, Sawangkoon S (2019) Comparative effects of amiodarone and dronedarone treatments on cardiac function in a rabbit model, Veterinary World, 12(2): 345-351.

Aim: The objective of the study was to compare the effects of amiodarone (AM) and dronedarone (DR) on heart rate variability (HRV) and cardiac contractility in a rabbit model.

Materials and Methods: A total of 16 male New Zealand white rabbits were divided into two groups, treated either with AM or DR at incremental dosages of 50 mg/kg/day (AM50 and DR50) and 100 mg/kg/day (AM100 and DR100), orally administrated for 7 days. At the end of each period, electrocardiograms were recorded during consciousness and analyzed using the short-term time and frequency domains of HRV. Standard echocardiography and speckle-tracking echocardiography were studied during immobilization with xylazine and ketamine.

Results: The results showed that AM100 and DR100 significantly decreased heart rate, total power, low-frequency component, and low-to-high frequency ratio compared with baselines. Most echocardiogram parameters revealed no significant difference from baselines, except for the global circumferential plane strain rate and time to peak standard deviation of strain, which had statistical significances after treating with AM.

Conclusion: Both AM and DR possess negative chronotropy and reduce HRV, which may be explained by their sympathetic suppression and calcium channel blocking activities. Theoretically, both antiarrhythmic drugs may also possess negative inotropy, but only AM is shown to have a negative inotropic effect and reduces cardiac dyssynchrony in this model.

Keywords: Amiodarone, cardiac function, dronedarone, heart rate variability, rabbit.


1. Vassallo, P. and Trohman, R.G. (2007) Prescribing amiodarone: An evidence-based review of clinical indications. J. Am. Med. Assoc., 298(11): 1312-1322. [Crossref] [PubMed]

2. Malik, M., Camm, A.J., Janse, M.J., Julian, D.G., Frangin, G.A. and Schwartz, P.J. (2000) Depressed heart rate variability identifies postinfarction patients who might benefit from prophylactic treatment with amiodarone: A substudy of EMIAT (the European myocardial infarct amiodarone trial). J. Am. Coll. Cardiol., 35(5): 1263-1275. [Crossref]

3. Boonhoh, W., Kijtawornrat, A. and Sawangkoon, S. (2016) Monitoring for adverse effects of amiodarone and dronedarone treatments in a rabbit model. Thai. J. Vet. Med. Suppl., 46: 419-420.

4. Danzi, S. and Klein, I. (2015) Amiodarone-induced thyroid dysfunction. J. Intensive Care Med., 30(4): 179-185. [Crossref] [PubMed]

5. Diederichsen, S.Z., Darkner, S., Chen, X., Johannesen, A., Pehrson, S., Hansen, J., Feldt-Rasmussen, U. and Svendsen, J.H. (2016) Short-term amiodarone treatment for atrial fibrillation after catheter ablation induces a transient thyroid dysfunction: Results from the placebo-controlled, randomized AMIO-CAT trial. Eur. J. Intern. Med., 33: 36-41. [Crossref] [PubMed]

6. Razvi, S., Jabbar, A., Pingitore, A., Danzi, S., Biondi, B., Klein, I., Peeters, R., Zaman, A. and Iervasi, G. (2018) Thyroid hormones and cardiovascular function and disease. J. Am. Coll.Cardiol., 71(16): 1781-1796. [Crossref] [PubMed]

7. Markou, K., Georgopoulos, N., Kyriazopoulou, V. and Vagenakis, A.G. (2001) Iodine-induced hypothyroidism. Thyroid, 11(5): 501-510. [Crossref] [PubMed]

8. Chatelain, P., Meysmans, L., Matteazzi, J.R., Beaufort, P. and Clinet, M. (1995) Interaction of the antiarrhythmic agents SR 33589 and amiodarone with the beta-adrenoceptor and adenylate cyclase in rat heart. Br. J. Pharmacol., 116(3): 1949-1956. [Crossref]

9. Pantos, C., Mourouzis, I., Delbruyere, M., Malliopoulou, V., Tzeis, S., Cokkinos, D.D., Nikitas, N., Carageorgiou, H., Varonos, D., Cokkinos, D. and Nisato, D. (2002) Effects of dronedarone and amiodarone on plasma thyroid hormones and on the basal and postischemic performance of the isolated rat heart. Eur. J. Pharmacol., 444(3): 191-196. [Crossref]

10. Jiang, L.Q., Chen, S.J., Xu, J.J., Ran, Z., Ying, W. and Zhao, S.G. (2016) Dronedarone and amiodarone induce dyslipidemia and thyroid dysfunction in rats. Cell Physiol. Biochem., 38(6): 2311-2322. [Crossref] [PubMed]

11. Patel, C., Yan, G.X. and Kowey, P.R. (2009) Dronedarone. Circulation, 120(7): 636-644. [Crossref] [PubMed]

12. Brateanu, A. (2015) Heart rate variability after myocardial infarction: What we know and what we still need to find out. Curr. Med. Res. Opin., 31(10): 1855-1860. [Crossref] [PubMed]

13. Da Silva, V.J.D., Gnecchi-Ruscone, T., Lavelli, B., Bellina, V., Manzella, D., Porta, A., Malliani, A. and Montano, N. (2002) Opposite effects of iv amiodarone on cardiovascular vagal and sympathetic efferent activities in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 283(2): R543-R548. [Crossref] [PubMed]

14. Dandel, M. and Hetzer, R. (2009) Echocardiographic strain and strain rate imaging--clinical applications. Int. J. Cardiol., 132(1): 11-24. [Crossref] [PubMed]

15. Du, W.H., Wang, X., Xiong, X.Q., Li, T. and Liang, H.P. (2015) Role of speckle tracking imaging in the assessment of myocardial regional ventricular function in experimental blunt cardiac injury. Chin. J. Traumatol., 18(4): 223-228. [Crossref]

16. Li, T., Liu, J.J., Du, W.H., Wang, X., Chen, Z.Q. and Zhang, L.C. (2014) 2D speckle tracking imaging to assess sepsis induced early systolic myocardial dysfunction and its underlying mechanisms. Eur. Rev. Med. Pharmacol. Sci., 18(20): 3105-3114. [PubMed]

17. Sessa, F., Anna, V., Messina, G., Cibelli, G., Monda, V., Marsala, G., Ruberto, M., Biondi, A., Cascio, O., Bertozzi, G., Pisanelli, D., Maglietta, F., Messina, A., Mollica, M.P. and Salerno, M (2018) Heart rate variability as predictive factor for sudden cardiac death. Aging, 10(2): 166-177. [Crossref] [PubMed] [PMC]

18. Berntson, G.G., Bigger, J.T Jr., Eckberg, D.L., Grossman, P., Kaufmann, P.G., Malik M., Nagaraja, H.N., Porges, S.W., Saul, J.P., Stone, P.H. and van der Molen, M.W. (1997) Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6): 623-648. [Crossref]

19. Kaya, D., Karaca, S., Barutcu, I., Esen A.M., Kulac, M. and Esen, O. (2005) Heart rate variability in patients with essential hyperhidrosis: Dynamic influence of sympathetic and parasympathetic maneuvers. Ann. Noninvasive Electrocardiol., 10(1): 1-6. [Crossref]

20. Beda, A., Simpson, D.M., Carvalho, N.C. and Carvalho, A.R. (2014) Low-frequency heart rate variability is related to the breath-to-breath variability in the respiratory pattern. Psychophysiology, 51(2): 197-205. [Crossref] [PubMed]

21. Da Silva Valdo, J.D., Publio, C.C.V., de Melo Alves, R., Fazan, R Jr., Ruscone, T.G., Porta, A., Malliani, A., Salgado, H.C. and Montano, N. (2002) Intravenous amiodarone modifies autonomic balance and increases baroreflex sensitivity in conscious rats. Auton. Neurosci., 95(1-2): 88-96. [Crossref]

22. Sobrado, L.F., Varone, B.B., Machado, A.D., Nearing, B.D., Zeng, D., Belardinelli, L. and Verrier, R.L. (2013) Dronedarone's inhibition of if current is the primary mechanism responsible for its bradycardic effect. J. Cardiovasc. Electrophysiol., 24(8): 914-918. [Crossref] [PubMed]

23. Saengklub, N., Youngblood, B., Del Rio, C., Sawangkoon, S., Hamlin, R.L. and Kijtawornrat, A. (2016) Short-term effects of oral dronedarone administration on cardiac function, blood pressure and electrocardiogram in conscious telemetry dogs. J. Vet. Med. Sci., 78(6): 977-985. [Crossref] [PubMed] [PMC]

24. Gautier, P., Guillemare, E., Marion, A., Bertrand, J.P., Tourneur, Y. and Nisato, D. (2003) Electrophysiologic characterization of dronedarone in guinea pig ventricular cells. J. Cardiovasc. Pharmacol., 41(2): 191-202. [Crossref]

25. Aomine, M. (1990) The inhibitory actions of amiodarone on rested-state contraction in isolated guinea-pig ventricular muscle. Gen. Pharmacol., 21(5): 709-714. [Crossref]

26. Dahle, G.O., Stangeland, L., Moen, C.A., Salminen, P.R., Haaverstad, R., Matre, K. and Grong, K. (2016) The influence of acute unloading on left ventricular strain and strain rate by speckle tracking echocardiography in a porcine model. Am. J. Physiol. Heart Circ. Physiol., 310(10): H1330-H1339. [Crossref]

27. Al-Biltagi, M.A., Tolba, O.A.R., El Mahdy, H., Donia, A. and Elbanna, S. (2015) Echocardiographic assessment of left ventricular dyssynchrony in Egyptian children with congestive heart failure due to dilated cardiomyopathy. Cardiol. Young, 25(6): 1173-1181. [Crossref] [PubMed]