Open Access
Research (Published online: 09-02-2019)
4. Reduction of proteolysis of high protein silage from Moringa and Indigofera leaves by addition of tannin extract
Anuraga Jayanegara, Aldi Yaman and Lilis Khotijah
Veterinary World, 12(2): 211-217

Anuraga Jayanegara: Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia.
Aldi Yaman: Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia.
Lilis Khotijah: Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia.

doi: 10.14202/vetworld.2019.211-217

Share this article on [Facebook] [LinkedIn]

Article history: Received: 07-09-2018, Accepted: 21-12-2018, Published online: 09-02-2019

Corresponding author: Anuraga Jayanegara

E-mail: anuraga.jayanegara@gmail.com

Citation: Jayanegara A, Yaman A, Khotijah L (2019) Reduction of proteolysis of high protein silage from Moringa and Indigofera leaves by addition of tannin extract. Veterinary World, 12(2): 211-217.
Abstract

Aim: The objective of this experiment was to evaluate the effect of the addition of tannin extract to Moringa and Indigofera leaf silages on their chemical composition, silage quality characteristics, and in vitro rumen fermentation parameters and digestibility.

Materials and Methods: Moringa and Indigofera leaves were cut (3 cm length) and added with either 0, 2, or 4% chestnut tannin in three replicates. The leaves were then inserted into lab-scale silos (1 L capacity) and kept for 30 days. Silage samples were subjected to silage quality determination, chemical composition analysis, and in vitro rumen fermentation and digestibility evaluation using a gas production technique. Data obtained were subjected to the analysis of variance with a factorial statistical model in which the first factor was different silage species and the second factor was tannin addition levels.

Results: Tannin addition at 4% dry matter (DM) increased neutral detergent insoluble crude protein (NDICP) and acid detergent insoluble CP (ADICP) of Indigofera silage. A similar response was observed in Moringa silage, but it required less tannin, i.e., 2% DM to increase its NDICP and ADICP. Moringa silage had lower pH than that of Indigofera silage (p<0.05), and tannin addition did not change pH of both Indigofera and Moringa silages. Higher addition level of tannin decreased total volatile fatty acid (VFA) and ammonia concentrations of both Indigofera and Moringa silages (p<0.05). A higher level of tannin addition reduced ruminal total VFA concentration, ammonia, in vitro DM digestibility, and in vitro organic matter digestibility of Indigofera and Moringa silages (p<0.05). Tannin addition also decreased ruminal methane emission of both Indigofera and Moringa silages (p<0.05).

Conclusion: Tannin extract can reduce proteolysis of high protein silage from Moringa and Indigofera leaves.

Keywords: deamination, feed fermentation, polyphenol, protein degradation.

References

1. Kholif, A.E., Gouda, G.A., Morsy, T.A., Salem, A.Z.M., Lopez, S. and Kholif, A.M. (2015) Moringa oleifera leaf meal as a protein source in lactating goat's diets: Feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Rum. Res., 129: 129-137. [Crossref]

2. Suharlina, A.D.A., Nahrowi, J.A. and Abdullah, L. (2016) Nutritional evaluation of dairy goat rations containing Indigofera zollingeriana by using in vitro rumen fermentation technique (RUSITEC). Int. J. Dairy Sci., 11(3): 100-105. [Crossref]

3. Jadhav, R.V., Chaudhary, L.C., Agarwal, N. and Kamra, D.N. (2018) Influence of Moringa oleifera foliage supplementation on feed intake, rumen fermentation and microbial profile of goats. Indian J. Anim. Sci., 88(4) : 458-462.

4. Tarigan, A., Ginting, S.P., Arief, I.I., Astuti, D.A. and Abdullah, L. (2018) Body weight gain, nutrients degradability and fermentation rumen characteristics of Boerka goat supplemented green concentrate pellets (GCP) based on Indigofera zollingeriana. Pak. J. Biol. Sci., 21(2): 87-94. [Crossref] [PubMed]

5. Bernardes, T.F., Daniel, J.L.P., Adesogan, A.T., McAllister, T.A., Drouin, P., Nussio, L.G., Huhtanen, P., Tremblay, G.F., Belanger, G. and Cai, Y. (2018) Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci., 101(5): 4001-4019. [Crossref] [PubMed]

6. Owens, V.N., Albrecht, K.A., Muck, R.E. and Duke, S.H. (1999) Protein degradation and fermentation characteristics of red clover and alfalfa silage harvested with varying levels of total nonstructural carbohydrates. Crop Sci., 39(6): 1873-1880. [Crossref]

7. Ke, W.C., Ding, W.R., Xu, D.M., Ding, L.M., Zhang, P., Li, F.D. and Guo, X.S. (2017) Effects of addition of malic or citric acids on fermentation quality and chemical characteristics of alfalfa silage. J. Dairy Sci., 100(11): 8958-8966. [Crossref] [PubMed]

8. Jayanegara, A., Ardani, V. and Sukria, H.A. (2019) Nutritional comparison between dried and ensiled indigofera, papaya and moringa leaves. J. Indones. Trop. Anim. Agric., Accepted.

9. Girard, A.L., Bean, S.R., Tilley, M., Adrianos, S.L. and Awika, J.M. (2018) Interaction mechanisms of condensed tannins (proanthocyanidins) with wheat gluten proteins. Food Chem., 245: 1154-1162. [Crossref] [PubMed]

10. Jayanegara, A. and Palupi, E. (2010) Condensed tannin effects on nitrogen digestion in ruminants: A meta-analysis from in vitro and in vivo studies. Media Peternak., 33(3): 176-181. [Crossref]

11. Mezzomo, R., Paulino, P.V.R., Detmann, E., Valadares Filho, S.C., Paulino, M.F., Monnerat, J.P.I.S., Duarte, M.S., Silva, L.H.P. and Moura, L.S. (2011) Influence of condensed tannin on intake, digestibility, and efficiency of protein utilization in beef steers fed high concentrate diet. Livest. Sci., 141(1): 1-11. [Crossref]

12. Hymes-Fecht, U.C., Broderick, G.A., Muck, R.E. and Grabber, J.H. (2013) Replacing alfalfa or red clover silage with birdsfoot trefoil silage in total mixed rations increases production of lactating dairy cows. J. Dairy Sci., 96(1): 460-469. [Crossref] [PubMed]

13. Hoste, H., Torres-Acosta, J.F.J., Sandoval-Castro, C.A., Mueller-Harvey, I., Sotiraki, S., Louvandini, H., Thamsborg, S.M. and Terrill, T.H. (2015) Tannin-containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol., 212(1-2): 5-17. [Crossref] [PubMed]

14. Bhatta, R., Uyeno, Y., Tajima, K., Takenaka, A., Yabumoto, Y., Nonaka, I., Enishi, O. and Kurihara, M. (2009) Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci., 92(11 ): 5512-5522. [Crossref] [PubMed]

15. Jayanegara, A., Kreuzer, M. and Leiber, F. (2012) Ruminal disappearance of polyunsaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livest. Sci., 147(1-3): 104-112. [Crossref]

16. Buccioni, A., Pauselli, M., Minieri, S., Roscini, V., Mannelli, F., Rapaccini, S., Lupi, P., Conte, G., Serra, A., Cappucci, A., Brufani, L., Ciucci, F. and Mele, M. (2017) Chestnut or quebracho tannins in the diet of grazing ewes supplemented with soybean oil: Effects on animal performances, blood parameters and fatty acid composition of plasma and milk lipids. Small Rum. Res., 153: 23-30. [Crossref]

17. Kamel, H.E.M., Al-Dobaib, S.N., Salem, A.Z.M., Lopez, S. and Alaba, P.A. (2018) Influence of dietary supplementation with sunflower oil and quebracho tannins on growth performance and meat fatty acid profile of Awassi lambs. Anim. Feed Sci. Technol., 235: 97-104. [Crossref]

18. Kondo, M., Shimizu, K., Jayanegara, A., Mishima, T., Matsui, H., Karita, S., Goto, M. and Fujihara, T. (2016) Changes in nutrient composition and in vitro ruminal fermentation of total mixed ration silage stored at different temperatures and periods. J. Sci. Food Agric., 96(4): 1175-1180. [Crossref] [PubMed]

19. AOAC. (2005) Official Methods of Analysis. 18th ed. AOAC International, Arlington, VA, USA.

20. Van Soest, P.J., Robertson, J.B. and Lewis, B.A. (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10): 3583-3597. [Crossref]

21. Licitra, G., Hernandez, T.M. and Van Soest, P.J. (1996) Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol., 57(4): 347-358. [Crossref]

22. Jayanegara, A., Dewi, S.P., Laylli, N., Laconi, E.B., Nahrowi, N. and Ridla, M. (2016) Determination of cell wall protein from selected feedstuffs and its relationship with ruminal protein digestibility in vitro. Media Peternak., 39(2): 134-140. [Crossref]

23. Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J. (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol., 48(3-4): 185-197. [Crossref]

24. Fievez, V., Babayemi, O.J. and Demeyer, D. (2005) Estimation of direct and indirect gas production in syringes: A tool to estimate short-chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol., 123-124(1): 197-210. [Crossref]

25. Tilley, J.M.A. and Terry, R.A. (1963) A two-stage technique for the in vitro digestion of forage crops. Grass For. Sci., 18(2): 104-111. [Crossref]

26. Adesogan, A.T. and Salawu, M.B. (2002) The effect of different additives on the fermentation quality, aerobic stability and in vitro digestibility of pea/wheat bi-crop silages containing contrasting pea to wheat ratios. Grass For. Sci., 57(1): 25-32. [Crossref]

27. Deaville, E.R., Givens, D.I. and Mueller-Harvey, I. (2010) Chestnut and mimosa tannin silages: Effects in sheep differ for apparent digestibility, nitrogen utilization and losses. Anim. Feed Sci. Technol., 157(3-4): 129-138. [Crossref]

28. Chaikong, C., Saenthaweesuk, N., Sadtagid, D., Intapim, A. and Khotakham, O. (2017) Local silage additive supplementation on fermentation efficiency and chemical components of leucaena silage. Livest. Res. Rur. Dev., 29(6): Article #114.

29. Hapsari, S.S., Suryahadi, S. and Sukria, H.A. (2016) Improvement on the nutritive quality of napier grass silage through inoculation of Lactobacillus plantarum and formic acid. Media Peternak., 39(2): 125-133. [Crossref]

30. Gonzalez, L.A., Hoedtke, S., Castro, A. and Zeyner, A. (2012) Assessment of in vitro ensilability of jack bean (Canavalia ensiformis) and cowpea (Vigna unguiculata) grains, sole or mixed with sorghum (Sorghum bicolor) grains. Cuban J. Agric. Sci., 46(1): 55-62.

31. Oladosu, Y., Rafii, M.Y., Abdullah, N., Magaji, U., Hussin, G., Ramli, A. and Miah, G. (2016) Fermentation quality and additives: A case of rice straw silage. Bio. Med. Res. Int., 2016(13): 7985167. [Crossref]

32. Jonsson, A. (1991) Growth of Clostridium tyrobutyricum during fermentation and aerobic deterioration of grass silage. J. Sci. Food Agric., 54(4): 557-568. [Crossref]

33. Silanikove, N., Perevolotsky, A. and Provenza, F.D. (2001) Use of tannin-binding chemicals to assay for tannins and their negative post-ingestive effects in ruminants. Anim. Feed Sci. Technol., 91(1-2): 69-81. [Crossref]

34. Ding, W., Guo, X. and Ataku, K. (2013) Characterization of peptides in ensiled alfalfa treated with different chemical additives. Anim. Sci. J., 84(12): 774-781. [Crossref] [PubMed]

35. Jayanegara, A., Sujarnoko, T.U.P., Ridla, M., Kondo, M. and Kreuzer, M. (2019) Silage quality as influenced by concentration and type of tannins present in the material ensiled: A meta-analysis. J. Anim. Physiol. Anim. Nutr., accepted.

36. Getachew, G., Blummel, M., Makkar, H.P.S. and Becker, K. (1998) In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol., 72(3-4): 261-281. [Crossref]

37. Krieg, J., Seifried, N., Steingass, H. and Rodehutscord, M. (2017) In situ and in vitro ruminal starch degradation of grains from different rye, triticale and barley genotypes. Animal, 11(10): 1745-1753. [Crossref] [PubMed]

38. Archimede, H., Sauvant, D. and Schmidely, P. (1997) Quantitative review of ruminal and total tract digestion of mixed diet organic matter and carbohydrates. Reprod. Nutr. Dev., 37(2): 173-189. [Crossref]

39. Bach, A., Calsamiglia, S. and Stern, M.D. (2005) Nitrogen metabolism in the rumen. J. Dairy Sci., 88(S): E9-E21. [Crossref]

40. Jayanegara, A., Togtokhbayar, N., Makkar, H.P.S. and Becker, K. (2009) Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro rumen fermentation system. Anim. Feed Sci. Technol., 150(3-4): 230-237. [Crossref]

41. Sebata, A., Ndlovu, L.R. and Dube, J.S. (2011) Chemical composition, in vitro dry matter digestibility and in vitro gas production of five woody species browsed by Matebele goats (Capra hircus L.) in a semi-arid savanna, Zimbabwe. Anim. Feed Sci. Technol., 170(1-2): 122-125. [Crossref]

42. Huyen, N.T., Fryganas, C., Uittenbogaard, G., Mueller-Harvey, I., Verstegen, M.W.A., Hendriks, W.H. and Pellikaan, W.F. (2016) Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci., 154(8): 1474-1487. [Crossref]

43. Min, B.R., McNabb, W.C., Barry, T.N. and Peters, J.S. (2000) Solubilization and degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39; Rubisco) protein from white clover (Trifolium repens) and Lotus corniculatus by rumen microorganisms and the effect of condensed tannins on these processes. J. Agric. Sci., 134(3): 305-317. [Crossref]

44. Jolazadeh, A.R., Dehghan-Banadaky, M. and Rezayazdi, K. (2015) Effects of soybean meal treated with tannins extracted from pistachio hulls on performance, ruminal fermentation, blood metabolites and nutrient digestion of Holstein bulls. Anim. Feed Sci. Technol., 203: 33-40. [Crossref]

45. Jayanegara, A., Goel, G., Makkar, H.P.S. and Becker, K. (2015) Divergence between purified hydrolyzable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol., 209: 60-68. [Crossref]

46. Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N., Attwood, G.T. and Sivakumaran, S. (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol., 123-124(1): 403-419. [Crossref]

47. Becker, P.M., van Wikselaar, P.G., Franssen, M.C.R., de Vos, R.C.H., Hall, R.D. and Beekwilder, J. (2014) Evidence for a hydrogen-sink mechanism of (+)catechin-mediated emission reduction of the ruminant greenhouse gas methane. Metabolomics, 10(2): 179-189. [Crossref]