Open Access
Research (Published online: 10-01-2019)
8. Tadpole serum activity (Rana catesbeiana) in caspase-3 as a marker of the role of apoptosis and total cytotoxic T lymphocytes in albino rats' epithelial cells induced by neoplasia
M. T. E. Purnama, I. H. Rahmaningtyas, A. R. Pratama, Z. Prastika, A. M. Kartikasari and N. P. D. Cahyo
Veterinary World, 12(1): 63-67

M. T. E. Purnama: Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Campus C Surabaya, East Java 60115, Indonesia.
I. H. Rahmaningtyas: Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Campus C Surabaya, East Java 60115, Indonesia.
A. R. Pratama: Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Campus C Surabaya, East Java 60115, Indonesia.
Z. Prastika: Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Campus C Surabaya, East Java 60115, Indonesia.
A. M. Kartikasari: Department of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Campus C Surabaya, East Java 60115, Indonesia.
N. P. D. Cahyo: Department of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Campus C Surabaya, East Java 60115, Indonesia.

doi: 10.14202/vetworld.2019.63-67

Share this article on [Facebook] [LinkedIn]

Article history: Received: 10-08-2018, Accepted: 26-11-2018, Published online: 10-01-2019

Corresponding author: M. T. E. Purnama

E-mail: thohawi@fkh.unair.ac.id

Citation: Purnama MTE, Rahmaningtyas IH, Pratama AR, Prastika Z, Kartikasari AM, Cahyo NPD (2019) Tadpole serum activity (Rana catesbeiana) in caspase-3 as a marker of the role of apoptosis and total cytotoxic T lymphocytes in Albino rats epithelial cells induced by neoplasia, Veterinary World, 12(1): 63-67.
Abstract

Aim: This study was conducted to examine the tadpole's serum activity (Rana catesbeiana) in caspase-3 as a marker of the role of apoptosis and total cytotoxic T lymphocyte (CTL) in albino rats' epithelial cells induced by neoplasia. Tadpole serumcontains thyroxine hormone that may cause the metamorphosis process and control cell proliferation.

Materials and Methods: Male rats were induced by 7,12-dimethylbenz (α)anthracene (DMBA) 20 mg/rats twice every week over 5 weeks to stimulate skin neoplasia. Tadpole serum injected intracutaneously after neoplasia is known. The negative control group (C−) was not exposed to DMBA and tadpole serum, while the positive control group (C+) was exposed to DMBA. Treatment groups (T1, T2, and T3) were exposed DMBA and tadpole serum 100%, 75%, and 25%/rat/ day, respectively. Samples of skin organ were be made preparations immunohistochemistry interacted with caspase-3 and CTL antibody as the marker.

Results: Based on the result, immunohistochemistry from skin neoplasia and given therapy of tadpole serum show that Treatment 1 was the highest caspase-3 and CTL expression. The result of caspase-3 expression in C−, C+, T1, T2, and T3 was 0.00c±0.000, 0.70bc±0.141, 2.00a±0.283, 1.10b±0.424, and 1.15b±0.495, respectively. The result of CTL expression in C−, C+, T1, T2, and T3 was 0.10d±0.200, 1.00c±0.230, 2.10a±0.529, 1.70ab±0.258, and 1.35bc±0.443, respectively.

Conclusion: It can be concluded from the study that tadpole serum (R. catesbeiana) 100% concentration can increase caspase-3 and total CTL in albino rats' epithelial cells induced by neoplasia.

Keywords: caspase-3, cytotoxic T lymphocyte, Rana catesbeiana, serum, tadpoles.

References

1. Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D. and Bray, F. (2013) GLOBOCAN 2012 v1. 0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11. International Agency for Research on Cancer, Lyon, France. p19.

2. Gulland, A. (2014) Global cancer prevalence is growing at" alarming pace," says WHO. Br. Med. J., 348(7944): g1338. [Crossref]

3. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100(1): 57-70. [Crossref]

4. Nurhayati, S. and Lusiyanti, Y. (2014) Apoptosis dan respon biologik sel sebagai faktor prognosa radioterapi kanker. Bul. Alara, 7(3): 57-66.

5. Wang, R.A., Li, Q.L., Li, Z.S., Zheng, P.J., Zhang, H.Z., Huang, X.F., Chi, S.M., Yang, A.G. and Cui, R. (2013) Apoptosis drives cancer cells to proliferate and metastasize. J. Cell. Mol. Med., 17(1): 205-211. [Crossref] [PubMed] [PMC]

6. Bai, L. and Wang, S. (2014) Targeting apoptosis pathways for new cancer therapeutics. Annu. Rev. Med., 65(1): 139-155. [Crossref] [PubMed]

7. Du, C.C., Li, X.Y., Wang, H.X., Liang, K., Wang, H.Y. and Zhang, Y. (2017) Identification of thyroid hormone receptors α and β genes and their expression profiles during metamorphosis in Rana chensinensis. Turk. J. Zool., 41(3): 454-463. [Crossref]

8. Thompson, C.K. and Cline, H.T. (2016) Thyroid hormone acts locally to increase neurogenesis, neuronal differentiation, and dendritic arbor elaboration in the tadpole visual system. J. Neurosci., 36(40): 10356-10375. [Crossref] [PubMed] [PMC]

9. Thompson, C.K. (2013) Thyroid hormone induces major changes in body plan development in pre-metamorphic Xenopus laevis tadpoles. Mol. Reprod. Dev., 80(10): 219-229.

10. Tamura, K., Takayama, S., Ishii, T., Mawaribuchi, S., Takamatsu, N. and Ito, M. (2015) Apoptosis and differentiation of Xenopus tail-derived myoblasts by thyroid hormone. J. Mol. Endocrinol., 54(3):185-192. [Crossref] [PubMed]

11. Exbrayat, J.M., Moudilou, E.N., Abrouk, L. and Brun, C. (2012) Apoptosis in amphibian development. Adv. Biosci. Biotechnol., 3(6): 669. [Crossref]

12. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2013) Essential Cell Biology. Garland Science, New York. p101-118.

13. Cabecas, J.R., Costa, E., Alves, G., Jesus, P. and Cabrita, A. (2014) Oral cavity morphometric evaluation in 7,12-dimethylantracene administration (1139.11). FASEB J., 28(1): 1139.

14. Das, M. and Mahapatra, P. K. (2014) Hematology of wild caught Dubois's tree frog Polypedates teraiensis, Dubois, 1986 (Anura: Rhacophoridae). Sci. World J., 2014(1): 7.

15. Provinciali, M. and Fabris, N. (1990) Modulation of lymphoid cell sensitivity to interferon by thyroid hormones. J. Endocrinol. Invest., 13(2): 187-191. [Crossref] [PubMed]

16. Mondou, P.M. and Kaltenbach, J.C. (1979) Thyroxine concentrations in blood serum and pericardial fluid of metamorphosing tadpoles and of adult frogs. Gen. Comp. Endocrinol., 39(3): 343-349. [Crossref]

17. Kumar, V., Abbas, A.K., Fausto, N. and Aster, J.C. (2014) Robbins and Cotran Pathologic Basis of Disease, Professional Edition e-book. Elsevier Health Sciences, Philadelphia p98-128.

18. Sinuhaji, I., Siregar, B. and Lisnawati, L. (2013) P16INK4A expression in cervical carcinoma young age. J. Indones. Med., 63(1): 165-71.

19. Gudernatsch, J.F. (1914) Feeding experiments on tadpoles. II. A further contribution to the knowledge of organs with internal secretion. Am. J. Anat., 15(4): 431-480. [Crossref]

20. Nakajima, K., Fujimoto, K. and Yaoita, Y. (2005) Programmed cell death during amphibian metamorphosis. Semin. Cell Dev. Biol., 16(2): 271-280. [Crossref] [PubMed]

21. Kerr, J.F.R., Harmon, B. and Searle, J. (1974) An electron microscope study of cell deletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibres. J. Cell Sci., 14(3): 571-585. [PubMed]

22. Gilbert, L.I., Tata, J.R. and Atkinson, B.G. (1996). Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press, USA. p145.

23. Hodkinson, C.F., Simpson, E.E., Beattie, J.H., O'Connor, J.M., Campbell, D.J., Strain, J.J. and Wallace, J.M. (2009) Preliminary evidence of immune function modulation by thyroid hormones in healthy men and women aged 55-70 years. J. Endocrinol., 202(1): 55-63. [Crossref] [PubMed]

24. Bie, G.H. and Reijnhart, S. (2006) Immunology: Self and Non-self from a Phenomenological Point of View. Louis Bolk Instituut, Driebergen. p72.

25. von Bubnoff, D., Andres, E., Hentges, F., Bieber, T., Michel, T. and Zimmer, J. (2010). Natural killer cells in atopic and autoimmune diseases of the skin. J. Allergy Clin. Immunol., 125(1): 60-68. [Crossref] [PubMed]

26. Lowdell, M.W. (2012). Natural Killer T cells-balancing the regulation of tumor immunity. Br. J. Cancer, 107(10): 1795. [Crossref] [PMC]

27. Don, M.M., Ablett, G., Bishop, C.J., Bundesen, P.G., Donald, K.J., Searle, J. and Kerr, J.F.R. (1977) Death of cells by apoptosis following attachment of specifically allergized lymphocytes in vitro. Aust. J. Exp. Biol. Med. Sci., 55(4): 407-417. [Crossref]

28. Hayden, M., Schroter, S. and Minev, B.R. (2006) Analyzing T cell responses: How to analyze cellular immune responses against tumor-associated antigens. Apoptosis, 11(9): 1657-1658. [Crossref]

29. Muppidi, J.R., Tschopp, J. and Siegel, R.M. (2004) Life and death decisions: Secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity., 21(4): 461-465. [Crossref] [PubMed]

30. Krammer, P.H., Arnold, R. and Lavrik, I.N. (2007) Life and death in peripheral T cells. Natl. Rev. Immunol., 7(7): 532. [Crossref]

31. Johnstone, R.W., Frew, A.J. and Smyth, M.J. (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Natl. Rev. Cancer, 8(10): 782. [Crossref]

32. Vilar, M. (2017) Structural characterization of the p75 neurotrophin receptor: A stranger in the TNFR superfamily. Vitam. Horm., 104(10): 57-87. [Crossref] [PubMed]

33. Purnama, M.T.E. and Samik, A. (2014) Potential mycotoxin binders on histopathology of the mammary gland experiencing neoplasia in pregnant mice (Mus musculus) with exposed zearalenone. Vet. Med., 7(1): 73-80.

34. Zachary, J.F. and McGavin, M.D. (2013) Pathologic Basis of Veterinary Disease-E-Book. Elsevier Health Sciences, Philadelphia p38-81.