Open Access
Research (Published online: 14-06-2019)
12. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess
Ehab Ali Fouad, Azza S. M. Abu Elnaga and Mai M. Kandil
Veterinary World, 12(6): 802-808

Ehab Ali Fouad: Department of Microbiology and Immunology, National Research Centre, Egypt.
Azza S. M. Abu Elnaga: Department of Microbiology and Immunology, National Research Centre, Egypt.
Mai M. Kandil: Department of Microbiology and Immunology, National Research Centre, Egypt.

doi: 10.14202/vetworld.2019.802-808

Share this article on [Facebook] [LinkedIn]

Article history: Received: 16-12-2018, Accepted: 04-04-2019, Published online: 14-06-2019

Corresponding author: Ehab Ali Fouad

E-mail: ehabfoaud@gmail.com

Citation: Fouad EA, Abu Elnaga ASM, Kandil MM (2019) Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess, Veterinary World, 12(6): 802-808.
Abstract

Background: Abscess in camel is one of the most important bacterial infections. It causes anemia and emaciation, resulting in an economic loss due to carcass condemnation and a decrease in reproductive and production efficiency.

Aim: This investigation aimed to isolate the bacteria from abscesses in camels and evaluate the antibacterial activity of Moringa oleifera extracts.

Materials and Methods: Disk diffusion method and minimum inhibitory concentration were used for the evaluation of the antibacterial activity of M. oleifera extracts against isolated bacteria from camel abscesses.

Results: The isolated bacteria were displayed relatively as follows: Corynebacterium pseudotuberculosis (30.4%), Staphylococcus aureus (25.8%), Escherichia coli (17.8%), Corynebacterium ulcerans (10.5%), Klebsiella pneumoniae (8.5%), Pseudomonas aeruginosa (8.5%), Micrococcus spp. (6.7%), Proteus vulgaris (5.2%), Citrobacter spp. (4.2%), and Staphylococcus epidermidis (1.7%). The drugs of choice for Corynebacterium isolates were ciprofloxacin and trimethoprim/ sulfamethoxazole, whereas amikacin, ciprofloxacin, gentamicin, neomycin, novobiocin, streptomycin, and vancomycin were for Staphylococcus isolates. Moreover, the ethanol extracts of M. oleifera showed higher antibacterial efficacy than the cold aqueous extracts.

Conclusion: M. oleifera is considered one of the new infection-fighting strategies in controlling pyogenic bacteria responsible for camel abscesses.

Keywords: antibacterial activity, camel abscess, Moringa oleifera, pyogenic bacteria.

References

1. Ranjan, R., Vyas, S., Kashinath, S., Sonawane, G. and Patil, N.V. (2018) Lymphadenitis caused by Corynebacterium pseudotuberculosis in a dromedary (Camelus dromedarius) Herd. J. Camel Pract. Res., 25(1): 45-53. [Crossref]

2. Abdel-Rahman, E.H., El-Jakee, J.K., Hatem, M.E., Ata, N.S. and Fouad, E.A. (2017) Preparation of goat and rabbit anti-camel immunoglobulin G whole molecule labeled with horseradish peroxidase. Vet. World, 10(1): 92-100. [Crossref] [PubMed] [PMC]

3. Nawito, M.F., Shalash, M.R., Hoppe, R. and Rakha, A.M. (1967) Reproduction in female camel. Nat. Res. Cent. Bull., 2(2): 82.

4. Alhakmani, F., Kumar, S. and Khan, S.A. (2013) Estimation of total phenolic content, in vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac. J. Trop. Biomed., 3(8): 623-627. [Crossref]

5. Hatem, M.E., Arab, R.H., Ata, S.N., El-Moez, S.I.A., Khairy, E.A. and Fouad, E.A. (2013) Bacterial Abscessationin in sheep and goat in Giza governorate with full antibiogram screening. Glob. Vet., 10(4): 372-381.

6. Wernery, U. (2015) Production of a caseous lymphadenitis vaccine for dromedaries. J. Camel Pract. Res., 22(2): 163-168. [Crossref]

7. Hassan, N.A., Al-Humiany, A.A., Bahoboil, A.S. and Mansour, A.M.A. (2011) Bacteriological and pathological studies on caseous lymphadenitis in sheep in Saudi Arabia. Int. J. Microbiol. Res., 2(1): 28-37.

8. Wernery, U. (2012) Caseous lymphadenitis (pseudotuberculosis) in camelids. J. Camel Pract. Res., 19(1): 21-27.

9. Yagoub, S.O. (2005) Bacterial disease of the reproductive system of camel (Camelus dromedarius) in Eastern Sudan. J. Anim. Vet. Adv., 4(7): 642-644.

10. Zidan, K.H., Mazloum, K., Saran, M.A. and Hatem, M.E. (2013) Abscesses in Dromedary Camels, Sheep and Goats Etiology and Pathology. 1st International Scientific Conference of Pathology Department, Faculty of Veterinary Medicine. p 47-59.

11. Berlin, M. (2015) Corynebacterium pseudotuberculosis bei Kamelen-Epidemiologie undPhasen der Impfstoffherstellung. Bachelor of Science Thesis (B. Sc.) Beuth Hochschule fur Technik. Berlin-University of Applied Science, Berlin. p 1-43.

12. Wernery, U. and Kinne, J. (2016) Caseous lymphadenitis (pseudotuberculosis) in camelids: A review. Austin J. Vet. Sci. Anim. Husbandry, 3(1): 1022-1028.

13. Sahoo, S. and Ganguly, S. (2015) Surgical management of abscess in camel: A case report. World J. Biol. Med. Sci., 2(4): 32-34.

14. Mgbeahuruike, A.C., Edeh, G., Eze, C.S., Parker, J., Ekere, S.O., Kanu, O.O. and Dibua, E. (2017) Comparative evaluation of the antimicrobial profile of Moringa leaf and seed oil extracts against resistant strains of wound pathogens in orthopedic hospitals. Afr. J. Microbiol. Res., 11(39): 1484-1494. [Crossref]

15. Wansi, J.D., Devkota, K.P., Tshikalange, E. and Kuete, V. (2013) 14-alkaloids from the medicinal plants of Africa. In: Kuete V, editor. Medicinal Plant Research in Africa. Elsevier, Oxford. p 557-605. [Crossref]

16. Dzotam, J.K., Touani, F.K. and Kuete, V. (2016) Antibacterial and antibiotic-modifying activities of three food plants (Xanthosoma mafaffa Lam., Moringa oleifera (L.) Schott and Passiflora edulis Sims) against multidrug-resistant (MDR) Gram-negative bacteria. BMC Complement. Altern. Med., 16(9): 1-8. [Crossref] [PubMed] [PMC]

17. Hegazi, A.G., Megeed, K.N.A., Hassan, S.E., Abdelaziz, M.M., Toaleb, N.I., El Shanawany, E.E. and Aboelsoued, D. (2018) Comparative ovicidal activity of Moringa oleifera leaf extracts on Fasciola gigantica eggs. Vet. World, 11(2): 215-220. [Crossref] [PubMed] [PMC]

18. El-Kholy, K.H., Barakat, S.A., Morsy, W.A., Abdel-Maboud, K., Seif-Elnaser, M.I. and Ghazal, M.N. (2018) Effect of aqueous extract of Moringa oleifera leaves on some production performance and microbial ecology of the gastrointestinal tract in growing rabbits. Pak. J. Nutr., 17(1): 1-7. [Crossref]

19. Isitua, C.C., Sanchez-Muros, M.J., Jaramillo, J.C.G. and Dutan, F. (2015) Phytochemical and nutritional properties of dried leaf powder of Moringa oleifera Lam. From Machala El Oro province of Ecuador. Asian J. Plant Sci. Res., 5(2): 8-16.

20. Vongsak, B., Mangmool, S. and Gritsanapan, W. (2015) Antioxidant activity and induction of mRNA expressions of antioxidant enzymes in HEK-293 cells of Moringa oleifera leaf extract. Planta Med. J., 81(12-13): 1084-1089. [Crossref] [PubMed]

21. Vats, S. and Gupta, T. (2017) Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. From Rajasthan, India. Physiol. Mol. Biol. Plants, 23(1): 239-248. [Crossref] [PubMed] [PMC]

22. Stohs, S.J. and Hartman, M.J. (2015) Review of the safety and efficacy of Moringa oleifera. Phytother. Res. J., 29(6): 796-804. [Crossref] [PubMed]

23. Makita, C. (2015) A Study of the Elemental Analysis and the Effect of the Pressurised Hot Water Extraction Method (PHWE) on the Antibacterial Activity of Moringa oleifera and Moringa ovalifolia Plant Parts. Available from: http://www.hdl.handle.net/10539/16828 . Last accessed on 06-06-2019.

24. Cruickshank, R., Duguid, B.P., Mien, M. and Swain, R.H.A. (1975) Medical Microbiology. 12th ed. Churchill Living Stone, Edinburgh, London and New York.

25. Funk, G., Graevenitz, A., Claride, J. and Bernard, K. (1997) Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev., 10(1): 125-159. [Crossref]

26. Quinn, P.J., Markey, B.K., Carter, M.E., Donnelly, W.J.C., Leonard, F.C. and Maguire, D. (2002) Veterinary Microbiology and Microbial Diseases. 1st ed. Blackwell Science Ltd., Chichester, West Sussex, UK.

27. Rahman, M.M., Sheikh, M.I., Sharmin, S.A., Islam, M.S., Rahman, M.A., Rahman, M.M. and Alam, M.F. (2009) Antibacterial activity of leaf juice and extracts of Moringa oleifera Lam. Against some human pathogenic bacteria. CMU J. Nat. Sci., 8(2): 219-227.

28. Bauer, A.W., Kibry, W.M.M., Sherris, J.C. and Turck, M. (1966) Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45(4): 493-496. [Crossref]

29. Barry, A.L. (1980) Procedure for testing antimicrobial agent in agar media. In: Lorian, V., editor. Antibiotics in Laboratory Medicines. Williams and Wilkins Co., Baltimore. p 1-23.

30. Opara, A.U., Anyanwu, G. and Uloneme, G.C. (2015) The antibacterial action of Moringa oleifera on some wound and enteric pathogens. J. Med. Sci. Clin. Res., 3(7): 6741-6757.

31. Zar, J.H. (1999) Biostatistical Analysis. Prentice Hall, New Jersey, USA. p 663.

32. Muckle, C.A. and Gyles, C.L. (1982) Characterization of strains of Corynebacterium pseudotuberculosis. Can. J. Comp. Med., 46(2): 206-208.

33. Judson, R. and Songer, J.G. (1991) Corynebacterium pseudotuberculosis: In vitro susceptibility to 39 antimicrobial agents. Vet. Microbiol., 27(2): 145-150. [Crossref]

34. Zhao, H.K., Morimura, H., Hiramune, T., Kikuchi, N., Yanagawa, R. and Serikawa, S. (1991) Antimicrobial susceptibility of Corynebacterium pseudotuberculosis isolated from lesions of caseous lymphadenitis in sheep in Hokkaido, Japan. Vet. Med. Sci., 53(2): 355-356. [Crossref] [PubMed]

35. Mohan, P., Vathsala, M. and Jayaprakasan, V. (2007) Comparative characterization of C. pseudotuberculosis from goats in Kerala, India and reference strain. Small Rumin. Res., 74(1-3): 226-230. [Crossref]

36. Lowy, F.D. (2003) Antimicrobial resistance: The examples of Staphylococcus aureus. J. Clin. Invest., 111(9): 1265-1273. [Crossref] [PubMed] [PMC]

37. Moran, G.J., Krishnadasan, A., Gorwitz, R.J., Rosheim, G.E., McDougal, L.K., Carey R.B. and Talan, D.A. (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med., 355(7): 666-674. [Crossref] [PubMed]

38. Zhu, W., Clark, N.C., McDougal, L.K., Hageman, J., McDonald L.C. and Patel, J.B. (2008) Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like van a plasmids in Michigan. Antimicrob. Agents Chemother., 52(2): 452-457. [Crossref] [PubMed] [PMC]

39. Guler, L., Ok, U., Gunduz, K., Gulcu, Y. and Hadimli, H.H. (2005) Antimicrobial susceptibility and coagulase genotyping of Staphylococcus aureus isolated from bovine clinical mastitis cases in Turkey. J. Dairy Sci., 88(9): 3149-3154. [Crossref]

40. Udo, E.E., L-Sweih, N.A., Dhar, R., Dimitrov, T.S., Mokddas, M.E., Johny, M., Al-Obaid, I.A., Gomaa, H.H., Mobasher, L.A., Rotimi, V.O. and Al-Asar, A.A. (2008) Surveillance of antibacterial resistance in Staphylococcus aureus isolated in Kuwaiti hospitals. Med. Princ. Pract., 17(1): 71-75. [Crossref] [PubMed]

41. Virdis, S., Scarano, C., Cassu, F., Spanu, V., Spanu C. and Santis, E.P.L. (2010) Antibiotic resistance in Staphylococcus aureus and coagulase-negative staphylococci isolated from goats with subclinical mastitis. Vet. Med. Int., 2010: 517060. [Crossref] [PubMed] [PMC]

42. Djeussi, D.E., Noumedem, J.A., Seukep, J.A., Fankam, A.G., Voukeng, I.K. and Tankeo, S.B. (2013) Antibacterial activities of selected edible plants extract against multidrug-resistant gram-negative bacteria. BMC Complement. Altern. Med., 1310(13): 164. [Crossref] [PubMed] [PMC]

43. Touani, F.K., Seukep, A.J., Djeussi, D.E., Fankam, A.G., Noumedem, J.A. and Kuete, V. (2014) Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant gram-negative bacteria expressing efflux pumps. BMC Complement. Altern. Med., 14(1): 258. [Crossref] [PubMed] [PMC]

44. Nair, R., Kalariya, T. and Sumitra, C. (2005) Antibacterial activity of some selected Indian medicinal flora. Turk. J. Biol., 29(1): 41-47.

45. Kuhnt, M., Probstle, A., Rimpler, H., Bauer, R. and Heinrich, M. (1994) Biological and pharmacological activities and further constituents of Hyptis verticillata. Planta Med., 61(3): 227-232. [Crossref] [PubMed]

46. Afolayan, A.J. and Meyer, J.J. (1995) Antibacterial activity of Helichrysum aureonitens (Asteraceae) J. Ethnopharmacol., 47(2): 109-111. [Crossref]

47. Kansal, S.K. and Kumari, A. (2014) Potential of M. oleifera for the treatment of water and wastewater. Chem. Rev., 114(9): 4993-5010. [Crossref] [PubMed]

48. Dubreuil, J.D. (2013) Antibacterial and antidiarrheal activities of plant products against enterotoxigenic Escherichia coli. Toxins, 5(11): 2009-2041. [Crossref] [PubMed] [PMC]

49. Fankam, A.G., Kuiate, J.R. and Kuete, V. (2014) Antibacterial activities of Beilschmiedia obscura and six other Cameroonian medicinal plants against multi-drug resistant gram-negative phenotypes. BMC Complement. Altern. Med., 14(1): 241. [Crossref] [PubMed] [PMC]

50. Arafa, A.A., Ibrahim, E.S., Fouad, E.A. and Gaber, E.S. (2016) Antibiotic resistance of staphylococci concerning strains included in food industry in Egypt. Int. J. Pharm. Clin. Res., 8(12): 1583-1589.

51. Hegazi, A.G., Al Guthami, F.M., Al Gethami, A.F.M., Allah, F.M.A., Saleh, A.A. and Fouad, E.A. (2017) Potential antibacterial activity of some Saudi Arabia honey. Vet. World, 10(2): 233-237. [Crossref] [PubMed] [PMC]

52. El-Gindy, Y.M., Zewell, H.S. and Hamad, M. (2017) Effect of Moringa leaf as a natural antioxidant on growth performance, blood lipid profile and immune response of rabbits under moderate heat stress. Egypt. J. Poult. Sci., 37(2): 333-344. [Crossref]

53. Isitua, C.C., Ibeh, I.N. and Olayinka, J.N. (2016) Antibacterial activity of Moringa oleifera Lam leaves on enteric human pathogens. Indian J. Appl. Res., 6(8): 553-557.