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Abstract

Background and Aim: Sepsis is characterized by loss of control of the inflammatory response, which can be triggered 
by various microorganisms and toxic secretions. The mortality rate increases due to impaired endothelial function caused 
dysfunctional organ systems. Diabetes is closely related to sepsis. The study aimed to determine the method of using animal 
models of sepsis diabetes through a combination of streptozotocin (STZ) and Staphylococcus aureus infection based on 
biological marker parameters.

Materials and Methods: A total of 30 male Wistar rats of 2.5-3 months old weighing approximately 150-250 g body 
weight (BW) divided into six treatment groups with five replications per group were used in the study. Treatment A was 
negative control (healthy rats) and Treatment B was the positive control (with diabetes) where rats were given STZ dose 
at 45 mg/kg BW on day 8 intraperitoneally (IP). The blood glucose was measured on day 10, Treatment C was a positive 
control (bacteria), rats inoculated with S. aureus with a concentration of 108 CFU/mL on day 8 given IP and observed 
sepsis conditions on day 10th. Treatment group (D, E, and F): Rats given STZ dose at 45 mg/kg BW on day 8th by IP 
and measured blood glucose on day 10th, then inoculated with S. aureus with different concentrations of 105 CFU/mL, 
106 CFU/mL, and 107 CFU/mL on the 10th day, respectively, and were later observed the condition of sepsis on day 12th. 
Data on diabetes bacteremia were quantitative used blood glucose levels, the bacterial count, and C-reactive protein (CRP) 
and were analyzed using the one-way analysis of variance test with a confidence level of 95%. Physical examination 
(temperature and respiration) is qualitative.

Results: Physical examination showed that all treatments had a normal temperature, an increased pulse in Groups D, E, and 
F and a decrease in respiratory rate in the treatment of E and F, the bacteria found in the vital organs in all groups, and CRP 
levels were not significantly different at all.

Conclusion: Animal model of diabetes sepsis can be observed through a combination of pancreas damage, and respiration, 
the bacteria in the vital organs.
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Introduction

Sepsis is a condition that damages the body, 
characterized by systemic activation of the inflamma-
tory pathway and coagulation in response to microbial 
infections in ordinarily sterile parts of the body [1], 
and is often exacerbated by a number of conditions 
for metabolic disorders including type 1 and 2 diabe-
tes mellitus (DM) [2]. Sepsis is characterized by loss 
of control of the inflammatory response, which can 
be triggered by various microorganisms and toxic 
secretions. The prevalence of sepsis in dogs showed 
89 individuals (78%) had dysfunction in one or more 

organ systems, and 57 individual (50%) dogs showed 
multiple organ dysfunction organs. The mortality 
rate increases the number of dysfunctional organ 
systems [3]. In animal models of type 2 diabetes are 
known that the inflammation induced by more severe 
sepsis compared with no diabetes. Animal with sep-
sis diabetes also experiences an increasing number of 
bacterial infection and dysfunction in the expression 
of inflammatory cytokines and immune cells. The lit-
erature study on obese and diabetes models (given a 
high-fat diet) has a higher mortality rate when chal-
lenged with Staphylococcus aureus compared with 
no infection [1]. Increased mortality in animal mod-
els of diabetes occurs after 72 h associated with per-
sistent bacteremia and reticuloendothelial microbial 
presence [4]. Diabetes that does not heal can cause 
complications such as neuropathy, vasculopathy, reti-
nopathy, immune defects, and sepsis [5]. DM is consid-
ered a state of immunosuppression. Diabetes patients 
are very susceptible to endothelial dysfunction during 
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sepsis. A recent study showed that E-selectin, leuko-
cyte adhesion molecules dissolved, vascular cell adhe-
sion molecule 1, intercellular adhesion molecule 1, 
vascular endothelial growth factor, and increased sig-
nificantly in diabetes patients compared with patients 
without diabetes during the most severe sepsis stage. 
Some research suggests that patients with diabetes 
showed a clear activation of multiple pathways endo-
thelium during sepsis, especially during severe sep-
sis. These molecules play a role in the inflammatory 
response during sepsis [4]. This suggests that patients 
with diabetes showed a clear activation of multi-
ple pathways endothelium during sepsis, especially 
during severe sepsis [5]. Treatment of diabetes with a 
microbial infection is still unresolved, so the mortality 
rate is still high. This is estimated because the inci-
dence of the disease is difficult to detect.

Animal models of diabetes and sepsis have 
developed their own to create a system that can be 
reproduced for studying the pathogenesis, prelim-
inary testing of the potential therapeutic agent but 
animal models of diabetes bacteremia yet. Until now, 
the existing animal models are diabetes accompanied 
by foot infection or gangrene or diabetes foot [5], 
whereas there are no diabetes animal models with 
S. aureus infection.

The study aimed to determine the method of 
using animal models of sepsis diabetes through a com-
bination of streptozotocin (STZ) and Staphylococcus 
aureus infection based on biological marker 
parameters.
Materials and Methods

Ethical approval

Maintenance and handling of Wistar rat animals 
in a laboratory were based on the letter of ethics no. 
937-KEP-UB from Biosains, Brawijaya University.
Research methods

This research is of true experimental laboratory 
post-control only design, which created an animal 
model of diabetes sepsis using a combination of STZ 
and S. aureus.
Location and time of research

This research was conducted at the Pharmacology 
Laboratory of the Medical Faculty and Veterinary 
Medicine of Brawijaya University, Indonesia.
Sample and population

The study sample used white rats stain Wistar 
used for diabetes sepsis STZ and S. aureus adminis-
tered intraperitoneally (IP) in a completely random-
ized design.
Experimental design

This study used male rat (body weight [BW] 
150-250 g). The rat was previously adapted for 7 
days. In this study consisted of six treatment groups, 
namely: Treatment A (negative control): Five normal/
healthy rat, Treatment B (diabetes): Five rats were 
given STZ dose at 45 mg/kg BW on day 8th IP and 

measured blood glucose on the 10th day, Treatment C 
(bacteria): Five rats were inoculated with S. aureus 
with a concentration of 108 CFU/mL on the 8th day and 
observed sepsis conditions on the 10th day, Treatment 
D: Five rats given STZ dose at 45 mg/kg BW on day 
8th IP and measured blood glucose on day 10, then 
inoculated with S. aureus with a concentration of 105 
CFU/mL on day 10th, and observed the condition of 
sepsis on the 12th day, Treatment E: Five rats given 
STZ dose at 45 mg/kg BW on day 8th IP and mea-
sured blood glucose on day 10, then inoculated with 
S. aureus with a concentration of 106 CFU/mL on day 
10, and observed the condition of sepsis on the 12th 
day, and Treatment F: Five rats given STZ dose at 45 
mg/kg BW on day 8 IP and measured blood glucose 
on day 10, then inoculated with S. aureus with a con-
centration of 107 CFU/mL on day 10, and observed the 
condition of sepsis on the 12th day.
Induction of an animal model of type 1 diabetes rats

STZ (Cat. No. 41910012-4 [714 992], bio-
WORLD Dublin, Dublin, OH) 32.5 mg was dissolved 
in (50 mM, 0.1M, pH 4.5) buffer citrate to a final 
concentration of 32.5 mg/mL and preserved in a fro-
zen condition before use. Animal treatment adapted 
in cages for 7 days, after the treatment of diabetes 
control and treatment (D, E, and F) was fasted over-
night (6-8 h). The rats were further injected with a 
single dose of STZ via intraperitoneal route (45mg/kg 
BB) and blood glucose levels were measured 2 days 
after STZ injection. Rats with fasting blood glucose 
>270 mg/dl were considered diabetes positive.  [6,7]. 
Blood sugar was measured using digital blood glucose 
level Glucostick (Gluco-Dr®) device.
Bacterial culture

S. aureus bacteria were obtained from the 
Microbiology of FK Universitas Brawijaya. S. aureus 
bacterial identification using mannitol salt to be pos-
itive, catalase test positive, and Gram stain showed 
Gram-positive, cocci-shaped, and grape-clustered 
bacteria. The test bacteria have been resistant to sev-
eral antibiotics, namely amoxicillin, vancomycin, 
cefoxitin, ceftriaxone, and penicillin.

Bacterial seeding was carried out by taking 10 
colonies of S. aureus bacteria then cultured in Nutrient 
Broth media (Merck Millipore, Boston, USA) at 37°C 
for 24 h, then measuring optical density (OD) using 
a spectrophotometer. The results obtained with simi-
lar bacteria concentration of 0.1 OD 108 CFU/mL and 
then made appropriate dilution for treatment [8].
Preparation of animal model of sepsis

Wistar strain male rats were inoculated with 108 
CFU/mL of S. aureus through asepsis IP, and the bac-
terial dose was 2 mL per tail. Clinical signs, weight, 
and survival rates were monitored daily for 3 days 
after infection [8].
Necropsy of an animal model

Necropsy begins with the administration of 
anesthesia using ketamine at a dose of 2 mg/kg bw 
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(body weight) via intramuscular route per rat. After 
disinfection with 70% alcohol, surgical procedure 
was done to extract blood, liver, heart and kidney. The 
numbers of S. aureus bacteria in the collected organs 
were then examined.
CRP test

Rat blood sample was taken after 3 days of infec-
tion and stored inside a 3 ml vacutainer. The blood 
sample was then frozen for 1 h at room temperature 
and centrifuged at 4000xg, 4 °C, 15 min to obtain 
serum. The serum was further analyzed for CRP 
test using a commercial kit (Life Diagnostics, West 
Chester, AS) [8].
Histopathological examination

Sample from pancreas was collected on the 12th 
day, fixed in formaldehyde at 10% with phosphate 
buffer (pH-7.4) and then post-fixed for 24 h, dehy-
drated, and embedded in paraffin. Sections, with 3-4 
mm of thickness, were cut with a microtome [9].
Statistical analysis

The diabetes sepsis data that were analyzed 
include clinical symptoms (BW, temperature, pulse, 
respiration), CRP examination and the number of 
bacteria present in vital organs (kidneys, liver and 
heart). The clinical signs were analyzed descriptively. 
Quantitative of blood glucose and CRP levels were 
then analyzed using the one-way analysis of variance 
test with a confidence level of 95% to determine the 
difference in the effect of treatment on making animal 
models of sepsis diabetes.
Results and Discussion

Animal model of type 1 diabetes rats

The results showed that in the treatment of 
diabetes and diabetes sepsis showed blood glucose 
>270 mg/dL, whereas in normal treatment and sep-
sis that was not suspected STZ showed normal blood 
sugar levels (<120 mg/dl) (Figure-1). Blood sugar 
levels increase due to STZ induction. STZ is a β-cy-
totoxic drug, an antimicrobial agent and has also been 
used as an alkylating agent for acupuncture. STZ 
can cause pancreatic β-cell necrosis. The incidence 
of diabetes depends on animal species; the dose and 
route of administration from STZ are severe diabetes 
(blood glucose to 200/300 mg/dL) and mild diabetes 
(120-200/300 mg/dL). The pancreas can regenerate 
through the proliferation and neogenesis. Remodeling 
of the pancreas caused by increased replication and 
cell apoptosis on day 13-day 17. Under physio-
logical conditions, the pancreas maintains glucose 
homeostasis [10,11]. Weight loss was only shown in 
STZ-induced rat while healthy rat and bacteria-in-
duced rat did not show weight loss. Weight loss was 
significantly higher in the D and E treatment groups 
than in Groups B and F (unpublished data). This is 
in accordance with the research [8], which showed 
that rats induced by S. aureus bacteria concentrations 
of 4.5×104-4.5×109 CFU/mL showed no weight loss. 

According to the research conducted by Reis et al. [9], 
which showed that male Wistar rats induced by STZ 
at a dose of 65 mg/BW intravenous showed weight 
loss. The absence of insulin that serves to regulate the 
metabolism of sugars through the breakdown of sug-
ars into simple molecules which are then distributed 
to the cells causes very high levels of glucose in the 
blood called as hyperglycemia. The body cannot use 
sugar as an energy source and stores extra glucose as 
fat, resulting in weight loss.

STZ causes an increase in free radicals that serve 
to destroy the pancreatic β-cells. This result is quite 
interesting to observe that diabetes rats characterized 
by pancreatic β damage and turned out to be clinical 
symptoms that appeared normal. The results showed 
that in the diabetes control group (B) and all diabetes 
and bacterial treatments (D, E, and F) showed pan-
creatic beta-cell nuclei shrinking and even disappear-
ing, only cytoplasm was seen so that the Langerhans 
island cell density was lower or less [9] than in the 
group healthy (A) and a positive control bacteria (C) 
showing pancreatic beta-cell nucleus appear clear 
and evenly so that a higher density of pancreatic cells 
(Figure-2).

STZ works by inhibiting the enzyme activity 
of free radicals, thereby increasing the formation of 
superoxide radicals, and nitric oxide turn produces 
reactive oxygen species (ROS) or oxidative stress 
which can cause oxidative damage to cellular com-
ponents (lipids, DNA, and proteins) and trigger the 
activation of signaling pathways and disrupt stan-
dard repair mechanism. STZ enters the tissue through 
glucose transport, GLUT2 in the plasma membrane, 
and then, it will go to the pancreas and affect other 
organs such as the liver and kidneys. When the pan-
creatic β-cell is destroyed, insulin secretion decreases 
so that blood glucose increases and is not controlled in 
the blood. ROS can increase oxidative stress through 
increased production of p21 and reduced insulin mes-
senger RNA cytosolic adenosine triphosphate and cal-
cium flux in the cytosol and mitochondria [12].
The existence of bacteria in vital organs

In this study, animal model was used to induce 
a combination of diabetes and sepsis. On bacterial 
examination, bacterial infections are found in vital 

Figure-1: Blood glucose level.
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organs in all treatments because bacteria would enter 
the blood vessels and would spread through lymphatic 
vessels to organs and cause multiple organ damage to 
death. Bacterial infections that enter the body cause 
hemodynamic changes that interfere with microcircu-
lar and cellular disorders resulting in the development 
of various organ dysfunctions and death. The bacte-
ria were induced by IP in rats showed an increased 
pulse in all treatments (above 450 beats/min), respi-
ration decreased only in the treatment Groups E and 
F (below 130 beats/min) while the temperature in 
normal conditions for all treatments (36.07-37.32°C). 
This is supported by research conducted by Popov and 
Paplov [13], which indicates that there are differences 
in the animal model of sepsis between positive and 
Gram-negative bacteria. Sepsis animal model was 
caused by the administration of gram-positive bac-
teria (intravenously), low hemodynamic appearance, 
and changes in lung disorder were observed. Whereas 
gram-negative bacteria causes hemodynamic shock 
and acute respiratory disorder.

S. aureus bacteria can replicate in the blood and 
colonize multiple organs and cause fatal sepsis [14]. 

Bacteria in the organs of diabetes rats are controlled 
by genes that encode toxins and protease enzymes 
that cause tissue damage [15]. Furthermore, there 
are genes related to virulence factors such as adhe-
sion molecules, capsule polysaccharides, siderophore, 
and metabolic and transport systems of amino acids 
and carbohydrates that support the severity of endo-
carditis. Diabetes rats can interfere immunity which 
can accelerate the infection. According to Popov and 
Paplov [13], the development of sepsis animal models 
using rodents depends on the type of bacteria, route 
of administration, bacterial dose, and frequency of 
administration. The higher dose of the bacteria with 
a direct route into the blood vessel then will be more 
severe clinical symptoms.

Diabetes rat would be at high-risk exposure to 
pathogens and disease will be more severe. According 
to Mai et al. [16] states that high-fat feed-induced 
rat is at high risk of increasing the number of bac-
teria, decreasing the T-cell immune system to elim-
inate bacteria, and increasing pro-inflammatory and 
anti-inflammatory cytokines compared to normal 
mice. The study showed the death of rats in positive 
diabetes control and S. aureus bacteria concentration 
of 108 CFU/mL on day 2 after bacterial induction. 
The results of this study are different from those 
conducted by Wu et al. [8] which showed rat died 
after being induced with S. aureus with successive 
concentrations ranging from 4.5×107 to 4.5×109 
CFU/mL intravenously which were observed 7 days 
post-infection. Death in diabetic rats is due to the 
impaired immune system through decreased produc-
tion and function of inflammatory cytokines, loss 
of phagocytic function, and body antioxidant pro-
duction [17].  The high concentration of S. aureus 
induced in rat resulted in increased inflammation. 
Bacteria that enter IP will activate macrophages to do 
phagocytosis so that there will be an increase in the 
production of free radicals and inflammatory cyto-
kines. However, death was not found in all diabetes 
treatments and S. aureus bacteria from concentra-
tions of 105-107 CFU/mL. The high sugar levels and 
bacterial induction did not affect the clinical symp-
toms of rat even though bacteria were found in vital 
organs. When viewed from the results of the study, 
diabetes control rat had an average blood sugar level 
higher at 544 mg/dl compared to diabetes and bacte-
rial groups.
CRP test

CRP can be found in vertebrates (humans, mice, 
and rats) and invertebrate animals [18]. CRP is an 
acute inflammation produced in the liver as a result 
of responses to phagocytic cells that are affected 
by proinflammatory cytokines, namely interleukin 
(IL)-1, IL-6, and tumor necrosis factor-α. CRP will 
appear after 6-8 h after the initial infection and peak at 
36-50 h thereafter. CRP is part of the ligand-binding 
plasma calcium-dependent family. The mechanism 

Figure-2: Images with magnifications 400×: Negative 
control (a) showing pancreatic beta-cell nucleus appears 
clear and spread evenly (arrow). Positive control diabetes 
(b) showed that the pancreatic beta-cell nucleus seemed 
to shrink even invisible and only seen cytoplasm (arrow). 
Positive control bacteria with a concentration of 108 CFU/mL 
of Staphylococcus aureus (c) showing pancreatic beta-cell 
nucleus appear clear and spread evenly (arrow). Treatment 
diabetes and bacteria S. aureus with a concentration of 105 
CFU/mL (d) showed that the pancreatic beta-cell nucleus 
seemed to shrink even invisible and only seen cytoplasm 
(arrow). Treatment diabetes and bacteria S. aureus 
with a concentration of 106 CFU/mL (e) showed that the 
pancreatic beta-cell seemed to shrink (arrow). Treatment 
diabetes and bacteria S. aureus with a concentration of 107 
CFU/mL (f) showed that the pancreatic beta-cell seemed 
to shrink (arrow).
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b
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of action of CRP is that it binds to phosphocholine 
residues and then causes membrane damage and cell 
apoptosis. CRP will activate the classic path comple-
ment, C1q protein will then activate C3 and end with 
membrane damage [19].

The results showed that rat in the group of D, E, 
and F (diabetes rats with a concentration of S. aureus 
bacteria consecutively 105 CFU/mL, 106 CFU/mL, and 
107 CFU/mL) was significantly different from con-
trol diabetes but not significantly different from con-
trol S. aureus bacteria concentration of 108 CFU/mL 
(Figure-3) and healthy control. This shows that CRP 
levels increase only in diabetes conditions, whereas 
in diabetes with diverse high concentrations of bac-
teria does not show an increase in CRP levels. The 
results are consistent with the research conducted by 
Dimitrov et al. [20], which showed that increased 
CRP could be detected in animals that have decreased 
in inflammation and an increase in high carbohydrate 
levels. CRP test demonstrates that the presence of 
acute inflammation such as in humans is less prom-
inent in rats as a result of induction of bacteria does 
not activate the complement pathway [21]. This study 
contradicts the results of human studies, which showed 
that serum CRP levels were high in conditions of bac-
terial sepsis compared to healthy humans [22]. CRP 
in the rat is not specific to indicate an acute inflam-
matory reaction. Levels of CRP concentrations in rats 
would increase the basal metabolic condition that is 
approximately 300-500 mg/l, 100 times higher than in 
humans [18]. The biological effect indicates that the 
average of CRP level in healthy rat lower than that 
of all the treatment of diabetes and bacteria and also 
bacterial induction courses. This shows that the induc-
tion of diabetes and bacteria can trigger inflammation. 
At the time of entry of the antigen in the body, there 
will cause inflammatory cells out of the blood vessels 
leading to the injured area or damaged tissue, causing 
the release of inflammatory mediators to clear patho-
gens and wound healing agent [23].

CRP in the rat cannot activate complement 
which mediates inflammation except ligand-spe-
cific CRP mediated by C-polysaccharide from bac-
terium Streptococcus pneumoniae [18], but it can 
induce inflammation, pro-oxidants, and pro-coagula-
tion through a pathway to increase macrophage acti-
vation [20]. Biomarkers of diabetes sepsis in Wistar rats 
can be seen from the weight loss, increased blood sugar, 
pancreatic cell damage, increased pulse, and decreased 
respiration, and the bacteria found in the vital organs.
Conclusion

Biomarkers of animal models of sepsis diabetes 
using Wistar rats through a combination of weight loss 
increased blood sugar levels and pancreatic cell dam-
age, increased pulse and decreased respiration, and 
found bacteria in vital organs in all treatments.
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