Open Access
Research (Published online: 15-03-2019)
8. Antiseptic effect of natural teat dip containing lactic acid against mastitis-causing Escherichia coli
Rinrada Chotigarpa, Kannika Na Lampang, Surachai Pikulkaew, Siriporn Okonogi, Pirote Silman and Raktham Mektrirat
Veterinary World, 12(3): 397-401

Rinrada Chotigarpa: Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
Kannika Na Lampang: Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
Surachai Pikulkaew: Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand.
Siriporn Okonogi: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand.
Pirote Silman: Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand.
Raktham Mektrirat: Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand.

doi: 10.14202/vetworld.2019.397-401

Share this article on [Facebook] [LinkedIn]

Article history: Received: 01-09-2018, Accepted: 04-02-2019, Published online: 15-03-2019

Corresponding author: Raktham Mektrirat

E-mail: raktham.m@cmu.ac.th

Citation: Chotigarpa R, Na Lampang K, Pikulkaew S, Okonogi S, Silman P, Mektrirat R (2019) Antiseptic effect of natural teat dip containing lactic acid against mastitis-causing Escherichia coli, Veterinary World, 12(3): 397-401.
Abstract

Aim: This study aimed to estimate the enumeration of total bacteria and coliform on teat skin from dairy cows and evaluate the efficacy of the natural rice gel containing 5% v/v lactic acid (NGL) against Escherichia coli standard and field strains isolated from bovine teat skin.

Materials and Methods: A total of 100 bacterial teat skin samples (25 cows) were collected from dairy cows in smallholder farm. The cows were housed in freestall barns. The colonization of total bacteria and E. coli on teat skin was measured by 3M Petrifilm method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of lactic acid were evaluated for reference strain of E. coli ATCC 25922 and two field strains of E. coli. The natural teat sanitizer was formulated using 5% NGL with modified rice gel. In vitro antiseptic efficacy of 5% NGL was determined by time-kill kinetic assay. E. coli morphology after exposure with 5% NGL was examined under a scanning electron microscope (SEM).

Results: The total bacteria and coliform counts from bovine teat skin were 2.11×104 and 1.54×101 colony-forming units/ml, respectively. The MIC and MBC of lactic acid on the tested bacteria were 0.5% v/v. The natural teat dip was successfully prepared with minimum change in consistency after 1 year of storage at 4°C. The reduction rate of 5% NGL on E. coli ATCC 25922 and field strain showed 32.77% and 27.58%, respectively. An appearance under SEM of non-viable E. coli after being incubated with 5% NGL clearly showed atypical form and rough surface cell membrane.

Conclusion: The rice gel containing 5% v/v lactic acid is a promising preparation as a natural teat antiseptic for reducing bacteria on teat skin. It was shown to be effective against E. coli causing bovine mastitis in dairy cows.

Keywords: antiseptic, Escherichia coli, lactic acid, teat skin.

References

1. Islam, M.A., Islam, M.Z., Islam, M.A., Rahman, M.S. and Islam, M.T. (2011) Prevalence of subclinical mastitis in dairy cows in selected areas of Bangladesh. Bangladesh. J. Vet. Med., 9(1): 73-78.

2. Plozza, K., Lievaart, J.J., Potts, G. and Barkema, H.W. (2011) Subclinical mastitis and associated risk factors on dairy farms in New South Wales. Aust. Vet. J., 89(1-2): 41-46. [Crossref] [PubMed]

3. Sharma, N., Rho, G.J., Hong, Y.H., Kang, T.Y., Lee, H.K., Hur, T.Y. and Jeong, D.K. (2012) Bovine mastitis: An Asian perspective. Asian J. Anim. Vet. Adv., 7(6): 2012.

4. Bunch, K.J., Heneghan, D.J.S., Hibbitt, K.G. and Rowllands, G.J. (1984) Genetic influences in clinical mastitis and its relationship with milk yield, season and stage of lactation. Livest. Prod. Sci., 11(1): 91-104. [Crossref]

5. Bartlett, P.C., Agger, J.F., Houe, H., Lawson, L.G. (2001) Incidence of clinical mastitis in Danish dairy cattle and screening for non-reporting in a passively collected national surveillance system. Prev. Vet. Med., 48(2): 73-83. [Crossref]

6. Yang, F., Zhang, S.D., Shang, X.F., Wang, X.R., Wang, L., Yanh, Z.T., Li, H.S. (2018) Prevalence and characteristics of extended spectrum β-lactamase-producing Escherichia coli from bovine mastitis cases in China. J. Integr. Agric., 17(6): 1246-1251. [Crossref]

7. Bhat, A.M., Soodan, J.S., Singh, R., Dhobi, I.A., Hussain, T., Dar, M.Y. and Mir, M. (2017) Incidence of bovine clinical mastitis in Jammu region and antibiogram of isolated pathogens. Vet. World, 10(8): 984-989. [Crossref] [PubMed] [PMC]

8. Navaneethan, R., Saravanan, S., Suresh, P., Ponnuswamy, K.K. and Palanivel, K.M. (2017) Prevalence of clinical mastitis due to E. coli in bovines. Int. J. Curr. Microbiol. Appl. Sci., 6(10): 405-409. [Crossref]

9. Sancak, Y.C., Sancak, H., Isleyici, O. and Durmaz, H. (2015) Presence of Escherichia coli O157 and O157: H7 in raw milk and van herby cheese. Bull. Vet. Inst. Pulawy, 59(4): 511-514. [Crossref]

10. Oliver, S.P. and Murinda, S.E. (2012) Antimicrobial resistance of mastitis pathogens. Vet. Clin. North Am. Food Anim. Pract., 28(2): 165-185. [Crossref] [PubMed]

11. Nickerson, S.C. (2001) Choosing the Best Teat Dip for Mastitis Control and Milk Quality. Proceedings NMC-PDPW Milk Quality Conference. p43-54.

12. Boonyayatra, S. and Chaisri, W. (2004) Incidence and prevalence of subclinical mastitis in smallholder dairy farms of Chiang Mai Province, Thailand. Chiang Mai Vet. J., 1(2): 25-30.

13. Ajariyakhajorn, K., Samngamnim, S., Boonserm, T., Inchaisri, C., Thirapatsakun, T. and Farnsworth R.J. (2003) Mastitis in Small Dairy Holders of Nakhonpathom Province, Thailand. The 11th International Symposium of the World Association of Veterinary Laboratory Diagnosticians and OIE Seminar on Biotechnology.

14. Suriyasathaporn, W. and Chupia, V. (2011) Reduction in numbers of bacteria after pre-milking teat dipping in milking dairy cows. CMU. J. Nat. Sci., 10(2): 301-306.

15. Gleeson, D., O'Brien, B., Flynn, J., O' Callaghan, E. and Galli, F. (2009) Effect of pre-milking teat preparation procedures on the microbial count on teats prior to cluster application. Ir. Vet. J., 62(7): 461-467. [Crossref] [PubMed] [PMC]

16. Boomsma, B., Bikker, E., Lansdaal, E. and Stuut, P. (2015) L-lactic acid a safe antimicrobial for home and personal care formulations. Sofw J., 10(141): 2-5.

17. Alsaheb, R.A.A., Aladdin1, A., Othman, N.Z., Malek, R.A., Leng, O.M., Aziz, R. and Enshasy, H.A.E. (2015) Lactic acid applications in pharmaceutical and cosmeceutical industries. J. Chem. Pharm. Res., 7(10: 729-735.

18. Sadakane, K. and Ichinose T. (2015) Effect of the hand antiseptic agents benzalkonium chloride, povidone-iodine, ethanol, and chlorhexidine gluconate on atopic dermatitis in NC/Nga mice. Int. J. Med. Sci., 12(2): 116-125. [Crossref] [PubMed] [PMC]

19. Rowbotham, R.F. and Ruegg, P.L. (2016) Bacterial counts on teat skin and in new sand, recycled sand, and recycled manure solids used as bedding in freestalls. J. Dairy Sci., 99(8): 6594-6608. [Crossref] [PubMed]

20. 3M Corporation. (2017) Aerobic Count Plate Interpretation Guide. 3M Corporation, St. Paul.

21. Okonogi, S., Kaewpinta, A., Yotsawimonwat, S. and Khongkhunthian, S. (2015) Preparation and characterization of lidocaine rice gel for oral application. Drug Discov. Ther., 9(6): 397-403. [Crossref] [PubMed]

22. Chotigarpa, R., Na Lampang, K., Pikulkaew, S., Okonogi, S., Ajariyakhajorn, K. and Mektrirat, R. (2018) Inhibitory effects and killing kinetics of lactic acid rice gel against pathogenic bacteria causing bovine mastitis. Sci. Pharm., 86(3): 1-10. [Crossref]

23. Baumberger, C., Guarin, J.F. and Ruegg, P.L. (2016) Effect of 2 different premilking teat sanitation routines on reduction of bacterial counts on teat skin of cows on commercial dairy farms. J. Dairy Sci., 99(4): 1-15. [Crossref]

24. Mbuk, E.U., Kwaga, J.K.P., Bale, J.O.O., Boro, L.A. and Umoh, J.U. (2016) Coliform organisms associated with milk of cows with mastitis and their sensitivity to commonly available antibiotics in Kaduna State, Nigeria. J. Vet. Med. Anim. Health., 8(12): 228-236. [Crossref]

25. Hassan, R., Kudi, C.A., Chiezey, N.P., Rekwot, P.I., Egbodo, B.E., Samuel, F.U., Maikaji, F.S. and Bello, T.K. (2016) Mastitis causing pathogens within the environment and teats of milking cows in Zaria, Kaduna state. J. Anim. Prod. Res., 28(1): 8-13.

26. Kucevic, D., Plavsic, M., Trivunovic, S., Radinovic, M. and Kucevic, D.S. (2013) Effect of post-milking teat dipping on hygienic quality of cow's milk. Biotechnol. Anim. Husbandry, 29(4): 665-673. [Crossref]

27. Gleeson, D., Flynn, J. and O' Brien, B. (2018) Effect of pre-milking teat disinfection on new mastitis infection rates of dairy cows. Ir Vet J., 71(11): 11. [Crossref]

28. Haas, W., Pillar, C.M., Hesje, C.K., Sanfilippo, C.M. and Morris, T.W. (2010) Bactericidal activity of besifloxacin against staphylococci, Streptococcus pneumoniae and Haemophilus influenza. J. Antimicrob. Chemother., 65(7): 1441-1447. [Crossref] [PubMed] [PMC]

29. Wang, C., Chang, T., Yang, H., and Cui, M. (2015) Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control, 47(1): 31-236. [Crossref]

30. In, Y.W., Kim, J.J., Kim, H.J. and Oh, S.W. (2013) Antimicrobial activities of acetic acid, citric acid and lactic acid against Shigella species. J. Food. Saf., 33(1): 79-85. [Crossref]

31. Nikolic, S.S., Dimic, G., Mojovic, L., Pejin, J., Vukovic, A.D. and Tanackov, S.K. (2016) Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J. Food Process. Preserv., 40(5): 990-998. [Crossref]

32. Sobhy, H.M., Moghazy, G.M.E. A'al, M.H.A., Ibrahim, H.E. and Hamouda, M.S. (2017) Using lactic acid as an antimicrobial against Pseudomonas aeroginosa and validation of its test method by LC-MS/MS. Int. J. Adv. Res., 5(11): 111-119.

33. Verma, A., Singh, S., Kaur, R. and Jain, U.K. (2013) Topical gels as drug delivery systems: A review. Int. J. Pharm. Sci. Rev. Res., 23(2): 374-382.

34. Hussain, G., Rahman, A., Hussain, T., Uddin, S. and Ali T. (2015) Citric and lactic acid on the growth inhibition of E. coli and Salmonella Typhimurium on beef during storage. Sarhad J. Agric., 31(3): 183-190. [Crossref]

35. Raftari, M., Jalilian, F.A., Abdulamir, A.S., Son, R., Sekawi, Z. and Fatimah, A.B. (2009) Effect of organic acids on Escherichia coli O157: H7 and Staphylococcus aureus contaminated meat. Open Microbiol. J., 3(1): 121-127. [Crossref] [PubMed] [PMC]

36. Alakomi, H.L., Skytta, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K. and Helander, I.M. (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol., 66(5): 2001-2005. [Crossref]

37. Minamino, T., Imae, Y., Oosawa, F., Kobayashi, Y., and Oosawa, K. (2002) Effect of intracellular pH on rotational speed of bacterial flagellar motors. J. Bacteriol., 185(4): 1190-1194. [Crossref] [PMC]

38. Maurer, L.M., Yohannes, E., Bondurant, S.S., Radmacher, M., and Slonczewski, J.L. (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol., 187(1): 304-319. [Crossref] [PubMed] [PMC]