Untargeted metabolite profiling on the water-soluble metabolites of edible bird's nest through liquid chromatography-mass spectrometry

Shi-Ruo Tong¹, Ting-Hun Lee², Soon-Keng Cheong¹ and Yang-Mooi Lim^{1,3}

 Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Cheras, Selangor, Malaysia; 2. Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia; 3. Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Cheras, Selangor, Malaysia. Corresponding author: Yang-Mooi Lim, e-mail: ymlim@utar.edu.my
Co-authors: SRT: shiruo01670@gmail.com, THL: leetinghun@utm.my, SKC: cheongsk@utar.edu.my
Received: 25-09-2019, Accepted: 07-01-2020, Published online: 17-02-2020

doi: www.doi.org/10.14202/vetworld.2020.304-316 **How to cite this article:** Tong SR, Lee TH, Cheong SK, Lim YM (2020) Untargeted metabolite profiling on the water-soluble metabolites of edible bird's nest through liquid chromatography-mass spectrometry, *Veterinary World*, 13(2): 304-316.

Abstract

Background and Aim: Edible bird's nest (EBN) is the nutrient-rich salivary bioproduct produced by swiftlets in Southeast Asia. Currently, researchers are exploring the therapeutic effects of EBN, such as cell growth promotion, antioxidant content, antiviral effects, bone strengthening, eyes care, and neuroprotection bioactivities. The therapeutic effects of EBN have been studied through different extraction methods but the metabolites profile of the EBN in each extract has not yet been elucidated. This study aimed to profile the water-soluble metabolites of EBN prepared in different extraction methods. Subsequently, an extraction method will be selected as an ideal extraction method for untargeted metabolite profiling on the water-soluble metabolites in EBN.

Materials and Methods: In this study, water-soluble metabolites of EBN extracted by the four extraction methods were subjected to metabolite profiling through liquid chromatography-mass spectrometry (LC-MS). The extraction methods were acid extraction(ABN), pancreatic extraction (EzBN), eHMG extraction, and spray drying of HMG extraction (pHMG). The metabolite profiles, such as the number of metabolites and their identities in each extraction method, were evaluated through LC-MS analysis.

Results: The identity of metabolites present in the four extraction methods is inconsistent. Based on LC-MS analysis, only one and six metabolites were extracted differently through EzBN and ABN, respectively, in the first pre-screening. Through the second LC-MS screening on pHMG and eHMG extraction methods, eHMG was selected as an ideal extraction method due to the highest numbers of water-soluble metabolites with an amount of 193 was detected. Besides, eHMG extraction method was able to extract sialic acid and a high percentage of secondary metabolites.

Conclusion: This study suggests that eHMG is the ideal extraction method for extracting higher number of water-soluble metabolites from EBN and could be further developed as an extraction method for industry application. In addition, this study also has identified the types of primary and secondary metabolites present in EBN.

Keywords: edible bird's nest, extraction method, liquid chromatography-mass spectrometry, untargeted metabolite profiling.

Introduction

Edible bird's nest (EBN) is a well-known bioproduct made from the saliva secretion of swiftlet, specifically from the two genera of *Aerodramus* and *Collocalia*. The swiftlet from the two genera is mostly habitat in Southeast Asia [1,2]. The main constituents of EBN are proteins, carbohydrates, lipids, and a group of minerals such as calcium, sodium, potassium, magnesium, phosphorus, iron, zinc, copper, chromium, and selenium [2-5]. EBN has been regarded as traditional Chinese medicine by the practitioners in Qing dynasty due to its recuperative

Copyright: Tong, *et al.* Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

properties [1,6]. The recuperative properties of EBN are highlighted with the effect of boosting immune system, treating malnutrition, improving metabolism, enhancing skin complexion and alleviating asthma, helping in phlegm clearance, relieving cough, nourishing children, libido raising, enhancing renal function, recovery from illness and surgery, as well as improving concentration [7]. Recently, EBN is further demonstrated for its properties on suppressing the virus, inflammation and oxidative stress, strengthening bone, eye caring, and neuroprotective properties [8-14]. On the other hand, Roh et al. [15] and Kong et al. [16] have reported the proliferative effects of EBN on human adipose-derived stem cells and normal human fibroblasts with the presence of epidermal growth factor-like activity. In summary, EBN acts as a dual function bioproduct with both its nutritional and therapeutic values.

To study the constituents of EBN and its therapeutic effects, the development of an ideal extraction

Veterinary World, EISSN: 2231-0916

methodology of EBN is very important. Several extraction methodologies were developed and used for studying the bioactivities of EBN. The study by Guo et al. [9] documented strong inhibition of influenza viruses by EBN extract that is pre-treated with pancreatin. Besides, Abidin et al. [11] also reported that the EBN extract prepared by eHMG extraction method successfully stimulated and enhanced the proliferation of corneal keratocytes in wound healing without altering their functionality. Chua et al. [17] prepared EBN extracts by the water extraction method (HMG). These extracts exhibited strong chondroprotective effects on osteoarthritis (OA). In addition, Aswir and Wan Nazaimoon [18] have documented acid-extracted EBN exhibited an anti-inflammation effect by significantly reducing the production of the inflammatory protein, tumor necrosis factor-alpha. In view of all the works, it is observed that different EBN extract obtained through different extraction methods showed different therapeutic effects. One possible explanation is because the extraction of an active component is highly dependent on the extraction method employed. Thus far, the identity of the metabolites in each of these extractions has not yet been further studied for the underlying mechanism of actions for their therapeutic effects. Hence, future study could be carried out to confirm the therapeutic effects of the metabolites.

Metabolite profiling is a powerful scientific tool for a complete investigation of a group of small molecules. This approach often used in analyzing biological components for the identification of potential biomarkers for certain diseases [19]. Recently, metabolite profiling has gained fame in food classification [20,21]; this is due to its untargeted analysis approach with the potential to cover the whole or the maximum metabolomics molecular information of foods. One of the examples of using the metabolite profiling approach on EBN has successfully demonstrated in the study done by Chua et al. [22]. The metabolites of the EBN were extracted through the chloroform/methanol solvent extraction, which was then successfully identified through gas chromatography-mass spectrometry (MS) and liquid chromatography-MS (LC-MS) techniques.

Since water is commonly used to prepare EBN essence for consumption and the metabolites of EBN are not fully established yet, this study aimed to preliminary profile the water-soluble metabolites of EBN prepared in different extraction methods. Subsequently, an extraction method will be selected as an ideal extraction method for untargeted metabolite profiling on the water-soluble metabolites in EBN.

Materials and Methods

Ethical approval

The study did not involve any live animals, so no ethical approval was required.

Chemicals

LC-MS grade formic acid and acetonitrile were purchased from Fisher Scientific (Waltham, MA,

USA). Deionized water was obtained from a Barnstead GenPure water purification system (Thermo Fisher Scientific Inc., Waltham, MA, USA).

Sample collection, preparation, and extraction

Raw unclean EBNs samples were collected collectively from different swiftlet premises located in Johor, Malaysia. The feathers and impurities were manually removed with forceps, and the raw unclean EBN was ground with mortar and pestle. Ground EBN was sieved through a 0.4 mm wire mesh to further separate the smaller pieces of feathers and impurities. The unclean EBN powder was then placed in an air force oven at 50-55°C overnight to reduce the moisture content.

There were four extraction methods selected for the comparison in this study, namely, eHMG, pHMG, ABN, and EzBN extraction methods. The raw unclean EBN was extracted with the proprietary methods of eHMG [11] and pHMG (the spray-dried of HMG extract) [17] that were innovated and standardized by School of Chemical and Energy Engineering in Universiti Teknologi Malaysia (UTM). These methods were modified based on the methods presented by Oda *et al.* [23] and Goh *et al.* [24]. Besides, another acid extraction (ABN) and pancreatin extraction (EzBN) were developed by the team of Universiti Tunku Abdul Rahman (UTAR) in 2016 [25] with some modification from the methods presented by Aswir and Wan Nazaimoon [18] and Goh *et al.* [9].

$eHMG \ and \ pHMG$

Due to the proprietary issue on these two extraction methods, the details of these two methods were unable to be described in this report.

Acid extraction (ABN)

The EBN powder was suspended in deionized water at 0.2% (w/v) and left for 24 h. The mixture was then boiled at 80°C with 2% (v/v) of 0.4 M sulfuric acid for 4 h. The extract was allowed to cool down and centrifuged at 2716 g (5000 rpm) for 15 min. The pH of the supernatant collected was neutralized to pH 7.0. The white precipitated formed was removed through centrifugation with 2716 g (5000 rpm) for 15 min at 4°C. The supernatant was collected and kept at 4°C for further analysis.

Pancreatin extraction (EzBN)

The EBN powder was suspended in deionized water at 0.2% (w/v) and left for 24 h. The EBN mixture was boiled at 100°C for 30 min. An amount of 1 ml of 0.5 mg/ml pancreatin was added into EBN mixture and was allowed for the reaction at 45°C for 4 h with pH 8.5-9.0. The enzyme was inactivated by heating at 90°C for 10 min. The supernatant was collected after centrifugation at 2716 g (5000 rpm) for 15 min. The extract was kept at 4°C.

Before subjecting the extracts to LC-MS analysis, all the four extracts were centrifuged at 9660 g

(12,000 rpm) for 10 min and the supernatant of the extracts was filtered through 0.2 μ m polytetrafluoro-ethylene membranes.

Quadrupole time-of-flight (QTOF) LC-MS analysis

The four EBN extracts were qualitatively analyzed using Agilent 6560 Ion Mobility QTOF (IM-QTOF) LC-MS system that coupled with the Agilent 1290 ultra-high-performance liquid chromatography (Agilent Technologies, USA). The metabolites present in the EBN extracts were separated through POROSHELL 120 EC-C18 (4.6×100 mm; 2.7 µ; Agilent Technologies, USA) chromatographic column with the mobile phase that consisted of (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile. All the four EBN extracts were undergone the first pre-screening evaluation with the elution of 5-95% B (0.0-1.0 min) and 95-5% B (1.0-15.0 min). The flow rate was set at 1.0 ml/min. The two extracts with a higher number of metabolites were selected and further subjected for the second LC-MS screening with modified mobile phase elution. The condition of the modified elution was set as follows: 5% B (0.0-2.0 min), 5-15% B (2.0-4.0 min), 15-25% B (4.0-6.0 min), 25-35% B (6.0-8.0 min), 35-45% B (8.0-10.0 min), 45-50% B (10.0-12.0 min), 50-75% B (12.0-16.0 min), 75-100% B (16.0-20.0 min), 100-5% B (20.0-20.1 min), and isocratic at 5% (20.1-25 min). The flow rate was modified to 0.3 ml/min.

The other setting parameters for IM-TOF analysis remained the same throughout the analysis process. The injection volume was 1 μ l and the column temperature was maintained at 40°C. The acquisition of the metabolites was performed in positive (ES+) mode. The mass spectra were recorded over an m/z range from 100 to 1000. Deionized water was used as the background blank. Whereas, the operating conditions of the mass spectrometer were set as follows: Capillary voltage of 4000 V, nozzle voltage of 500 V, and fragmentor voltage of 365 V were maintained. Nebulizer pressure (N₂) was kept at 20 psi, drying gas temperature was maintained at 225°C. Drying gas flow was 13 L/min and sheath gas flow was 12 L/min at 400°C.

Data mining and metabolites identification

The metabolite features from the acquired MS spectral raw data were extracted with the untargeted molecular feature extraction algorithm in Agilent MassHunter Workstation - Qualitative Analysis software B.07.00 (Agilent Technologies, USA). The algorithm filtered off the peak height with 100 counts to avoid the noise spectral picking, as well as the mass of internal reference ions with 121.0967 and 922.1389. Then, the algorithm locates the covariant ions in the chromatogram and grouped them as a single metabolite feature using the information of mass, isotopic distribution with common organic elements (C, H, O, N, P, Cl, F, and S), charge-state and adducts of sodium, potassium, and ammonium. The extracted metabolite

features were characterized by retention time (RT) and intensity.

The identity of the extracted metabolite features was searched against METLIN Personal Metabolite Database in the MassHunter software based on the accurate mass and RT (optional). The mass and RT tolerance of the compound identity matching was restricted to ± 5 ppm and ± 0.1 min (optional), respectively. The accuracy of the identity of each metabolite was calculated as a score. The metabolites list of each extract was retained if the identity of the metabolite fulfilled the threshold score of 80, and the error of database matching was less than ± 5 ppm.

Results and Discussion

The efficiency of EBN extraction methods

The method of extraction is a crucial process that maximizes the extraction of the bioactive metabolites from EBN. To search for an ideal extraction method for the untargeted metabolite profiling of EBN, four different extraction methods with the therapeutic effects were assessed and evaluated. For example, pancreatin extraction with antiviral effect as reported by Guo et al. [9]; eHMG extraction with the effect of enhancing proliferation of corneal keratocytes by Abidin et al. [11]; HMG extraction showed chondroprotective effect on OA as documented by Chua et al. [17]; and finally the acid extraction with anti-inflammation bioactivities reported by Aswir and Wan Nazaimoon [18]. The approach of LC-MS is recognized with its high sensitivity, accuracy, and reproducibility [26-28]; thus, there was no technical replicate done in this untargeted metabolite profiling analysis.

The number of detected metabolites in each of the extraction method was analyzed by MassHunter software. Nearly 37-67% out of the total metabolites from the four different extracts were putatively identified by matching with the METLIN metabolites database. The complete information of all the identified metabolites in each extraction method is detailed in Table-1. The identities of the extracted metabolites are unique among the four different extracts, suggesting that there is no single extraction method that could extract all types of metabolites due to the differences in natural physicochemical properties of the metabolites [29-32].

Based on the mobile phase for compound separation in the first screening evaluation, there were significant differences in the number of extracted metabolites under each extraction method (Table-2a). The highest total number of metabolites obtained was from pHMG extract and followed by eHMG extract. The total number of metabolites detected in both of pHMG and eHMG extracts was greater than EzBN and ABN extracts, with approximately 20-30 times and 4-5 times, respectively. However, the LC-MS separation for each extract was not well defined by referring to the chromatograms obtained (Figure-1). Therefore, the second screening evaluation was carried out with an improved LC-MS mobile phase.

Available at www.veterinar	yworld.org/Vol.13/Febr	uary-2020/12.pdf
----------------------------	------------------------	------------------

Number	RT (min)	Ion	Mass	m/z	Molecular formula	Score	DB differences (ppm)	Putatively identified metabolites
					ABN			
1	1.001	$(M+NH_4)^+$	104.0375	122.0713	$C_6H_4N_2$	85.65	-0.48	4-Cyanopyridine
2	1.005	(M+H)+	273.1082	274.1154	C ₉ H ₁₅ N ₅ O ₅	97.11	-3.06	4a-Peroxy-tetrahydrobiopterin
3	1.005	(M+H)+	291.1206	292.1278	C ₁₄ H ₁₇ N ₃ O ₄	89.12	4.47	Serinyl-Tryptophan
4	1.005	(M+H)+	309.1332	310.1406	C ₁₇ H ₁₈ F ₃ NO	87.45	2.62	Fluoxetine
5	1.039	(M+Na)+	325.0796	348.0687	$C_{14}H_{15}NO_{8}$	84.49	0.49	Pancratistatin
6	1.083	(M+Na)+	291.0943	314.0835	C ₁₁ H ₁₇ NO ₈	95.46	3.83	2-Deoxy-2,3-dehydro-N- acetylneuraminic acid
					EzBN			
1	1.502	(M+H)+	109.0643	110.0715	$C_5H_7N_3$	85.25	-2.46	2-Aminomethylpyrimidine
					eHMG			
1	0.741	(M+H)+	379.1125	380.1197	C ₁₄ H ₂₁ NO ₁₁	83.05	-2.62	Chondroitin
2	0.924	(M+Na)+	333.1523	356.1415	C ₁₃ H ₂₃ N ₃ O ₇	80.80	3.82	Ser Asp Leu
3	1.007	(M+H)+	385.2081	386.2152	C ₁₅ H ₂₇ N ₇ O ₅	83.05	-1.87	Asn Pro Arg
4	1.042	(M+H)+	311.1692	312.1764	C ₁₂ H ₂₁ N ₇ O ₃	91.60	4.34	Arginyl-Histidine
5	1.112	(M+H)+	344.2172	345.2244	$C_{14}H_{28}N_6O_4$	84.88	0.07	Gly Ile Arg
6	1.138	$(M+NH_4)^+$	384.2144	402.2484	C ₂₀ H ₃₂ O ₇	81.25	1.10	Cinnzeylanol
7	1.311	(M+H)+	387.2238	388.2313	$C_{15}H_{29}N_7O_5$	94.39	-2.03	Arg Asn Val
8	1.383	(M+H)+	373.2333	374.2405	C ₁₆ H ₃₁ N ₅ O ₅	81.27	-2.19	Lys Asn Leu
9	4.299	(M+H)+	654.3986	655.4060	C ₃₅ H ₅₈ O ₁₁	93.38	-1.00	Filipin III
10	4.316	(M+H)+	130.0741	131.0813	C ₅ H ₁₀ N ₂ O ₂	87.43	1.25	L-cis-3-Amino-2- pyrrolidinecarboxylic acid
11	4.342	(M+H)+	114.0433	115.0505	$C_4H_6N_2O_2$	86.61	-3.03	Muscimol
					pHMG			
1	1.019	(M+H)+	166.0270	167.0344	$C_8H_6O_4$	85.71	-2.59	3-Formylsalicylic acid
2	1.020	(M+Na)+	383.1430	406.1321	$C_{14}H_{25}NO_{11}$	98.38	-0.64	Lacto-N-biose I
3	1.022	(M+Na)+	309.1065	332.0956	$C_{11}H_{19}NO_{9}$	82.57	-1.76	N-Acetyl-b-neuraminic acid
4	1.023	(M+Na)+	325.0792	348.0685	$C_{14}H_{15}NO_{8}$	82.22	1.85	Pancratistatin
5	1.024	(M+H)+	203.0798	204.0870	$C_{8}H_{13}NO_{5}$	86.39	-1.97	N2-Acetyl-L-aminoadipate
6	1.026	(M+Na)+	291.0960	314.0851	C ₁₂ H ₁₃ N ₅ O ₄	84.24	2.72	Toyocamycin
7	1.075	(M+Na)+	291.0954	314.0847	C ₁₁ H ₁₇ NO ₈	83.71	0.12	2,7-Anhydro-alpha-N- acetylneuraminic acid
8	1.314	(M+H)+	137.0478	138.0551	C,H,NO	87.40	-1.17	2-Pyridylacetic acid
9	1.319	(M+Na)+	145.0770	168.0660	C _o H _o N ₂	81.66	-2.63	4-Aminomethylindole
10	1.402	(M+H)+	245.1385	246.1457	C, H, N, O,	81.33	-3.66	, Asn Leu
11	1.514	(M+H)́⁺	135.0544	136.0617		84.12	0.94	Adenine
12	1.542	(M+NH_)+	256.0582	274.0920	C. H. O.	93.89	0.53	Piscidic Acid
13	5.692	(M+H)+ ⁴	101.0840	102.0912	C ₅ ¹¹ H1 ₁ NÓ	87.59	0.67	2-Methylpropanal O-methyloxime

Table-1: Information of the metabolites in each extracts with first pre-screening by QTOF LC-MS.

RT=Retention time, DB=Database, LC-MS=Liquid chromatography-mass spectrometry, QTOF=Quadrupole time-of-flight

Table-2: Number of metabolites detected and identified by QTOF LC-MS in each of the extracts for the first prescreening and the second screening with the optimized LC-MS parameters.

Extracts	Total metabolites	Putatively identified metabolites	Metabolites after filtering*
(a) First pre-screeni	ng		
ABN	18	7	6
EzBN	3	2	1
eHMG**	69	26	11
pHMG**	85	34	13
(b) Second screenin	g with optimized parameters		
éHMG	775	468	193
pHMG	168	96	42

*Metabolites filtering is based on the presence of contaminants, the score and database matching error (ppm). **The extracts were selected for the second screening with the optimized LC-MS parameters. LC-MS=Liquid chromatographymass spectrometry, QTOF=Quadrupole time-of-flight

Both of the eHMG and pHMG extraction methods were selected to undergo the second screening evaluation since they showed greater efficacy in extracting the higher number of metabolites from EBN in the first screening evaluation. The second screening evaluation with an optimized LC-MS mobile phase for separating compounds has greatly improved the elution efficacy and increased the number of analyzed metabolites (Figure-2a and b). The good separation in the liquid

Figure-1: Total ion chromatograms of the first liquid chromatography/mass spectrometry (LC-MS) pre-screening on edible bird's nest extraction methods (a) ABN, (b) EzBN, (c) eHMG, and (d) pHMG. The LC-MS chromatograms are obtained from ES+mode.

chromatography has broadened the range of eluted metabolites. Hence, the second screening evaluation has provided a better comparison between the eHMG and pHMG extraction methods. The eHMG extraction method has successfully recovered a significant number in total extracted metabolites as compared with pHMG (Table-2b). There were 193 metabolites detected from eHMG extraction method (Table-2b), which are more than 26 non-polar metabolites detected in the study done by Chua *et al.* [22]. Therefore, the eHMG extraction method was selected as the ideal extraction method because it provided the maximal recovery of the number of water-soluble metabolites present in EBN.

The metabolite profile of extraction methods

In the second screening evaluation, there were approximately more than half out of the total metabolites (60.39% and 57.14% of metabolites, respectively) from eHMG and pHMG extracts that were putatively identified. The information of the retained metabolites for both eHMG and pHMG extraction methods in the second screening evaluation are shown in Tables-3 and 4, respectively. Based on the comparison between eHMG and pHMG extraction methods in the second screening evaluation, 24 out of the total identified metabolites were found to be similar in each extract (Figure-2c). The result indicated that the eHMG extraction method not only extracted a greater number of metabolites but also there were approximately 57.14% of the metabolites from pHMG extraction method which were found to be similar to eHMG. The identities of the metabolites that found to be similar in both of the extraction methods are marked in Tables-3 and 4.

Sialic acid is known as the key component of EBN because it is served as the unique quantitative marker for grading the EBN. In this study, sialic acid was identified in the eHMG extraction method with the identity of 2,7-Anhydro-alpha-N-acetylneuraminic acid (Table-3). The result agreed with the previous studies that N-acetylneuraminic acid (NANA) is the predominant form of sialic acid in EBN [33-35]. The

Figure-2: The second liquid chromatography/mass spectrometry (LC-MS) screening with optimized parameters on eHMG and pHMG extracts. (a) Total ion chromatograms of eHMG and pHMG extraction methods selected from the first prescreening. The LC-MS chromatograms were obtained from ES+mode. (b) The efficiency comparison between the first and second screening for both eHMG and pHMG extracts. (c) The number of metabolites that found similar between pHMG and eHMG extracts. The comparison was made based on the identified metabolites that the contaminant was filtered off. (d) The classification of edible bird's nest metabolites in eHMG and pHMG extracts. The classification was based on the metabolite identities after removing the contaminants.

detected of sialic acid in eHMG extract has further convinced that eHMG extraction method is more suitable as the ideal extraction method. The type of metabolites present in eHMG and pHMG extracts (from the second screening) was further categorized into five groups based on the

Number	RT (min)	Ion	Mass	m/z	Molecular formula	Score (DB)	DB differences (ppm)	Putatively identified metabolites
1	7.678	$(M+NH_4)^+$	188.1052	206.1388	$C_9H_{16}O_4$	87.23	-1.78	(+/-)-Ethyl 3-acetoxy-2-methylbutyrate
2	6.351	(M+H)+	156.0533	157.0605	C.H.N.O.	86.21	1.11	(S)-3-(Imidazol-5-vl)lactate
3	9.285	$(M+NH_{.})^{+}$	146.0481	164.0819	C.H.N.O	87.68	-0.82	1(2H)-Phthalazinone
4	7.814	(M+H) ⁺	225.1118	226.1190	$C_{10}H_{15}N_{3}O_{3}$	85.52	-1.99	1-(Methylnitrosoamino)-4- (3-pyridinyl)-1,4-butanediol
5	7.154	$(M+NH_4)^+$	151.1003	169.1341	$C_9H_{13}NO$	85.35	-3.75	1,2,3,4,5,6-Hexahydro-5- methyl-7H-cyclopenta[b] pyridin-7-one
6	19.916	(M+H)+	310.2875	311.2947	C ₂₀ H ₂₀ O ₂	82.62	-1.10	15Z-eicosenoic acid
7	19.852	$(M+NH_{2})^{+}$	168.1882	186.2220	C. H.	93.33	-2.37	1-Dodecene*
8	17.086	(M+H)+ ⁴	203.0811	204.0882	$C_{9}^{12}H_{17}^{24}NS_{2}$	90.55	-4.19	1-Isothiocyanato-7- (methylthio)heptane*
9	13.104	(M+H)+	115.0456	116.0528	C _z H _o NS	95.32	-0.49	1-Isothiocyanatobutane*
10	19.913	(M+NH₄)+	392.4382	410.4720	C, H _E	95.74	0.02	1-Octacosene*
11	8.497	(M+Na) ⁴	303.1824	326.1717	C, H, NO,	93.54	3.33	1-O-Desmethyltetrabenazine
12	6.266	(M+H)+	129.0429	130.0503	$C_5^{18}H_7^{23}NO_3$	94.98	-2.57	1-Pyrroline-4-hydroxy-2- carboxylate
13	7.633	(M+H)+	365.1324	366.1397	C ₁₄ H ₂₃ NO ₁₀	98.61	-0.58	2-(acetylamino)-1,5- anhydro-2-deoxy-4-O-b-D- galactopyranosyl-D-arabino- Hey-1-enitol
14	15.590	(M+H)+	171.1087	172.1160	$C_9H_{17}NS$	90.62	-3.11	2,5-Dihydro-4,5-dimethyl-2- (1-methylpropyl)thiazole*
15	7.631	(M+H)+	291.0958	292.1030	$C_{11}H_{17}NO_8$	98.24	-1.31	2,7-Anhydro-alpha-N- acetylneuraminic acid
16	8.822	(M+NH ₄) ⁺	418.1835	436.2172	$C_{19}H_{30}O_{10}$	98.30	1.05	2-[4-(3-Hydroxypropyl)- 2-methoxyphenoxy]-1,3- propanediol 1-glucoside
17	8.685	(M+H)+	113.0843	114.0917	C.H. NO	86.02	-2.34	2-Acetylpyrrolidine*
18	5.701	$(M + NH_4)^+$	155.0950	173.1288	$C_8H_{13}NO_2$	86.86	-2.51	2-Amino-2- Norbornanecarboxylic acid
19	5.702	(M+H)+	190.0958	191.1029	$C_7 H_{14} N_2 O_4$	90.69	-2.50	2-Amino-4-[(2-hydroxy-1- oxopropyl)amino]butanoic acid
20	7.725	$(M+NH_4)^+$	239.1067	257.1405	$C_{14}H_{13}N_{3}O$	81.23	-3.70	2-amino-a-phenyl-1H- Benzimidazole-5-methanol
21	10.087	$(M+NH_4)^+$	94.0785	112.1124	$C_7 H_{10}$	86.34	-2.46	2-Methyl-1,3-cyclohexadiene
22	7.103	(M+H)+	155.0701	156.0774	C ₂ H ₁ N ₂ O ₂	84.30	-4.09	3-(Pyrazol-1-yl)-L-alanine
23	6.949	$(M+NH_{2})^{+}$	118.0421	136.0759	C H O Ź	87.41	-1.96	3.5.7-Octatrivn-1-ol
24	7.656	$(M + NH_4)^+$	477.1901	495.2239	$C_{26}H_{27}N_3O_6$	93.78	-0.31	3,5-Pyridinedicarboxylic acid, 2,6-dimethyl-4-(3- nitrophenyl)-, methyl 2-[methyl(phenylmethyl) amino]
25	9.346	(M+H)+	186.1374	187.1449	$C_9H_{18}N_2O_2$	96.27	-3.33	3-[(3-Methylbutyl) nitrosoamino]-2-butanone
26	6.347	$(M+NH_4)^+$	129.0791	147.1129	$C_6H_{11}NO_2$	99.35	-0.98	3-acetamidobutanal
27	7.395	(M+H)+ ⁻	194.1061	195.1134	$C_{10}H_{14}N_2O_2$	85.27	-2.80	3-Hydroxy-N- glycyl-2,6-xylidine (3-Hydroxyalycinexylidide)
28	7.632	(M+H)+	196.0377	197.0449	$C_9H_8O_5$	85.10	-2.44	3-Methoxy-4,5- methylenedioxybenzoic acid
29	19.921	(M+NH₄)+	278.2972	296.3311	C ₂₀ H ₂₀	85.63	0.46	3Z,6Z-Eicosadiene
30	10.783	(M+H)+ ⁴	218.1424	219.1495	$C_{13}^{20}H_{18}^{38}N_2O$	92.62	-2.42	4-[2-(Propylamino)ethyl]- 1,3-dihydro-2H-indol-2-one
31	7.627	(M+Na)+	145.0766	168.0658	$C_{9}H_{9}N_{2}$	86.63	0.02	4-Aminomethylindole
32	8.253	(M+NH₄) ⁺	153.1156	171.1493	C _₀ H _{₁₅} NO	92.51	-1.46	4-Butyl-2,5-dimethyloxazole
33	5.641	(M+NH ₄) ⁺	167.1316	185.1654	C ₁₀ H ₁₇ NO	85.56	-3.51	4-Butyl-2-ethyl-5- methyloxazole
34	10.175	(M+H)+	104.0373	105.0446	$C_6H_4N_2$	87.29	1.25	4-Cyanopyridine
35	8.933	(M+H)+	466.2196	467.2267	Č ₁₉ H ₃₀ D ₃ N ₃ O ₈ S	87.39	-4.25	4-hydroxy Nonenal Glutathione-d3
36	6.351	(M+H)+	166.0379	167.0452	$C_7H_6N_2O_3$	83.68	-0.52	4-Hydroxy-3- nitrosobenzamide
37	8.457	$(M+NH_4)^+$	129.0430	147.0769	$C_5H_7NO_3$	96.21	-2.91	4-Oxoproline*

Table-3: Information of the metabolites in eHMG extract. The metabolites are identified by QTOF LC-MS with second screening evaluation.

Table-3:	(Continued)
----------	-------------

Number	RT (min)	Ion	Mass	m/z	Molecular formula	Score (DB)	DB differences (ppm)	Putatively identified metabolites
38	6.327	(M+NH_)+	168.0903	186.1241	C.H.N.O.	86.78	-2.26	4-PIOL
39	8.928	$(M + NH^{4})^{+}$	139.0638	157.0977	C_H_NO_	86.17	-3.48	5-Acetyl-2.4-dimethyloxazole
40	7.722	$(M+NH_4)^+$	267.1016	285.1354	$C_{15}H_{13}N_{3}O_{2}$	81.08	-3.24	5-benzyl-5-(pyridin-3-yl) imidazolidine-2 4-dione
41	7.815	$(M+NH_4)^+$	165.1159	183.1497	$C_{10H_{15}NO}$	98.24	-3.05	5-Methyl-2-(1-pyrrolidinyl)- 2-cyclopenten-1-one*
42	7.400	(M+H)+	241.1067	242.1140	$C_{10}H_{15}N_{3}O_{4}$	86.34	-1.88	5-Methyldeoxycytidine
43	9.361	(M+Na)+	597.3489	620.3383	C ₃₁ H ₅₁ NO ₁₀	89.94	4.09	5-O-β-D- Mycaminosyltylonolide
44	7.658	(M+NH ₄) ⁺	139.0999	157.1337	C ₀ H ₁₀ NO	92.23	-1.66	5-Pentyloxazole
45	7.406	(M+H)+ ⁴	172.0851	173.0924	C_H_N_O	97.82	-1.94	5-δ-Hydroxybutyl Hydantoin
46	8.150	(M+Na)+	585.2945	608.2836	$C_{33}H_{39}N_5O_5$	91.39	1.04	8',10'- Dihydroxydihydroergotamine
47	6 927	(M+H)+	216 0755	217 0829	сн мо	95 52	-4 14	8-Hydroxyalanylclayam
48	7 919	$(M+NH)^+$	228 1364	246 1703	$C_{8} H_{12} H_{2} C_{5}$	86.63	-1.26	9 12-dioxo-dodecanoic acid
10	16 030	$(M \perp NH)^+$	250 2300	240.1705	$C_{12} H_{20} O_4$	86.18	_1 10	9S 10P-Epoxy-37
50	10.035	$(M + NH_4)$	250.2500	200.2009	C H	00.10	0.22	6Z-octadecadiene*
50	19.920	$(\mathbb{M} + \mathbb{N} \square_4)^{\vee}$	364.4068	382.4407	С ₂₆ П ₅₂	99.78	0.22	
51	6./56	$(M+NH_4)^+$	217.0856	235.1194	$C_{11}H_{11}N_{3}O_{2}$	86.25	-2.08	Acetyinydrazinoptnaiazinone
52	9.279	$(M+NH_4)^+$	245.1170	263.1508	$C_{13}H_{15}N_{3}O_{2}$	96.87	-2.15	Acetyitryptophanamide
53	4.538	(M+H)*	135.0551	136.0623	$C_5H_5N_5$	84.51	-4.22	Adenine*
54	7.198	(M+H)+	243.1221	244.1298	$C_{10}H_{17}N_{3}O_{4}$	85.40	-0.95	Ala Gly Pro
55	6.934	$(M+NH_4)^+$	236.1165	254.1504	$C_{12}H_{16}N_2O_3$	97.31	-1.88	Alanyl-DL-Phenylalanine
56	3.734	(M+H)+	226.1074	227.1145	$C_9H_{14}N_4O_3$	87.75	-3.48	Alanyl-Histidine*
57	8.374	(M+H)+	232.1578	233.1652	$C_{14}H_{20}N_{2}O$	85.03	-0.85	Albine
58	6.159	$(M+NH_4)^+$	141.0796	159.1134	C ₇ H ₁₁ NO ₂	85.48	-4.19	Arecaidine
59	7.686	(M+H) ⁺	271.1650	272.1723	C, H, N, O,	86.06	-1.91	Arginyl-Proline
60	7.155	(M+H)+	279.1216	280.1289	C,H,N,O	85.73	1.14	Asn Phe
61	9.361	$(M+NH_{1})^{+}$	378.1906	396.2245		99.55	-0.62	Asn Val Phe
62	5.759	(M+H)+	368.1330	369.1404	CHN.O.	84.38	0.41	Asn-Lys-OH
63	3.515	$(M+Na)^+$	349.1122	372.1015	C H N O	98.31	-0.19	Asp Thr Asp
64	7.189	$(M+Na)^+$	559.3144	582.3037	C H NO	94.22	0.15	Auriculine
65	3.073	$(M+NH)^+$	173.0434	191.0772	C H N O	87.00	1.51	Azaserine
66	14 410	$(M+NH^{4})^{+}$	290 1788	308 2126	C H N	83 40	-1 75	Azatadine
67	4 4 1 1	$(M+NH^{4})^{+}$	472 2283	490 2622	C H O S	93.08	0.12	ΒΔΥ-μ9773
68	7 655	$(M + NH)^+$	165 0796	183 1135	$C_{27} H_{36} O_5 O_5 O_5 O_5 O_5 O_5 O_5 O_5 O_5 O_5$	85 21	-4.05	Benzocaine
69	9 276	$(M + H)_{4}$	23/ 1/83	235 1557	$C_{9} H_{11} H_{02}$	Q/ 2/	-1.09	Benzovlagmatine
70	9.270	(M+N5)+	265 1733	200.1007	$C_{12} H_{18} H_{4} O$	97.27 97.56	1.05	Brovianamido B
70	2 242	(M+Na) (M+U)+	100 0644	110 0717	$C_{21} \Gamma_{23} \Gamma_{3} O_{3}$	02.00	1.05	
72	8.118	(M+H) ⁺	643.3329	644.3407	$C_{35}H_{49}NO_{10}$	80.90	4.29	Buprenorphine
72	7 511		224 116E	242 1504		04 00	2.02	S-O-gluculollide
73	7.511	$(M + N \Pi_4)^{\circ}$	224.1105	242.1504	$C_{11}\Pi_{16}\Pi_2O_3$	04.00	-2.03	Duldivildi
74	0.900	$(M+\Pi)^{+}$	212.1100	213.1240	$C_{10}\Pi_{16}N_2O_3$	80.31	-2.26	
75	6./5/	(M+H)+	2/8.12/0	279.1342	$C_{14}H_{18}N_2O_4$	95.45	-1.14	Carboxy-P110
76	8.511	(M+H)*	607.3124	608.3200	$C_{31}H_{41}N_7O_6$	90.53	-0.90	Chymostatin
//	17.086	(M+H)+	127.1365	128.1437	$C_8H_{17}N$	86.60	-2.89	Conline*
78	6.940	(M+H)+	176.0947	177.1028	$C_{10}H_{12}N_{2}O$	82.06	1.45	Cotinine
79	9.360	(M+Na)+	203.1303	226.1195	$C_{13}H_{17}NO$	96.10	3.31	Crotamiton
80	9.356	(M+H)+	224.1892	225.1965	$C_{13}H_{24}N_{2}O$	93.91	-1.45	Cuscohygrine
81	7.537	(M+H)+	244.1215	245.1287	$C_{14}H_{16}N_2O_2$	86.62	-1.11	Cyclo(L-Phe-L-Pro)
82	6.992	(M+H)+	227.0914	228.0986	$C_{9}H_{13}N_{3}O_{4}$	95.88	-3.67	Deoxycytidine
83	9.360	(M+H)+	249.1484	250.1556	C ₁₃ H ₁₉ N ₃ O ₂	93.27	-2.74	Desethyl-N -acetylprocainamide
84	8.511	(M+H)+	308.1534	309.1601	C. H. N.O.	86.91	-3.03	DMXB-A
85	5.307	(M+H)+	115.0636	116.0709	C_H_NO_	92.37	-2.15	D-Proline
86	7 816	$(M+H)^+$	491 2724	492 2797	C H NO S	86 49	-3 72	Enothilone D
87	6 928	(M+H)+	204 0000	205 007/	$C_{27}H_{41}HO_5$	83.85	_0.72	Ethotoin
88	8 7/6	(MINH)+	261 1004	205.0574	$C_{11} H_{12} H_2 C_2$	85.03	_0.98	Ethyl 1-benzyl-3-
00	0.740	(I'I I NII ₄)	201.1004	279.1541	$C_{14} \Pi_{15} \Pi O_4$	05.05	0.90	hydroxy- 2-oxo[5H]
00	0 207	(M NU)+	272 1050	201 2204		02.01	0.07	Cla Asa Ila
09	9.29/	$(M + NH_4)'$	3/3.1958	391.2294	$C_{15}\Pi_{27}\Pi_{5}U_{6}$	00.12	U.8/	
90	0.351	(M+H) ⁺	300.1433	301.1505	$C_{12}H_{20}N_4O_5$	99.12	0.11	
91	/ 242	(M+H)*	406.2211	407.2284	$C_{20}H_{30}N_4O_5$	81.92	1.31	GIN LEU PNE
92	9.361	(M+H)+	421.2328	422.2402	$C_{20}H_{31}N_5O_5$	96.22	-0.75	Gin Phe Lys
93	/ 815	(M+H)+	356.2061	357.2133	$C_{16}H_{28}N_4O_5$	98.89	-0.50	GIN Pro Leu
94	/.150	(M+Na)+	340.1749	363.1642	$C_{15}H_{24}N_4O_5$	84.85	-0./0	GIN Pro Pro

(Contd...)

-	
Table-3:	(Continued)

Number	RT (min)	Ion	Mass	m/z	Molecular formula	Score (DB)	DB differences (ppm)	Putatively identified metabolites
95	6.983	(M+NH.)+	462.1757	480,2096	C., H., N.O.	81.05	-1.42	Glu Trp Glu
96	7.169	(M+H)+4/	172.0854	173.0927	C_H_N_O_	97.76	-3.55	Glv Pro
97	8,482	(M+NH.)+	311.1121	329.1458	C.H.N.O.	82.80	-1.26	Glv-Lvs-OH
98	14.553	$(M+H)^{+}$	273.2672	274.2746	C.H.NO.	95.51	-1.71	Hexadecasphinganine
99	18.610	(M+H)+	101.1200	102.1273	C H N	84.30	3.97	Hexylamine*
100	5.759	$(M+H)^{+}$	226.1065	227.1137	C H N O	99.39	0.42	His Ala
101	8.072	(M+H)+	302.1386	303.1461	C H N O	82.69	-2.51	His Phe
102	7 651	(M+H)+	417 2011	418 2082	C H N O	96 58	0.17	His Tvr Val
103	7 209	(M+NH)+	348 1060	366 1397	$C_{20} H_{27} H_5 O_5$	94 60	2.81	His-Ala-OH
104	8 180	$(M+H)^+$	302 1382	303 1453	C H N O	84 08	-1.15	Histidinyl-Phenylalanine
105	5 675	(M+NH)+	254 1383	272 1722	C H N O	98.61	-1.64	Histidinyl-Valine
105	6.641	(M+H) ⁺	259.1168	260.1239	$C_{10}H_{17}N_{3}O_{5}$	83.20	0.08	Hydroxypropyl-Gamma- glutamate
107	7.566	(M+NH,)+	268.1173	286.1510	C., H., N.O.	81.20	-0.36	Hvdroxypropyl-Histidine
108	5,700	$(M+Na)^{4}$	289,1639	312.1534	$C_{11}^{11} H_{22}^{16} N_{2}^{4} O_{5}^{4}$	81.82	-0.36	Ile Ala Ser
109	7.815	(M+H)+	259.1538	260.1611	C. H. N.O.	98.35	-2.20	Ile Gln
110	8.447	(M+H)́+	356.2061	357.2134	C. H. N.O.	94.09	-0.48	Ile Gln Pro
111	6.481	$(M+NH_{.})^{+}$	180.0538	198.0876	C.H.N.O.	85.24	-1.88	Isonicotinvlalvcine
112	18.618	$(M+H)^{+}$	298.1545	299.1616	CHN.O	87.32	-0.95	Iso-Olomoucine*
113	8 688	(M+NH)+	268 1315	286 1653	C H O	95 31	-1 49	Kamahine C*
114	3 088	$(M+NH_4)^+$	151 0606	169 0945	$C_{14} + C_{20} + C_{5}$	83.97	0.54	$I_{-}(+)$ -Arabinose
115	9.000	$(M \perp H)^+$	210 1373	211 1//5	$C_{5} H_{11} O_{5}$	97 17	-2 /3	
115	3 370	(M+Na)+	210.1373	406 1318	$C_{11} H_{18} H_2 O_2$	97.17 97.74	0.16	Lacto-N-bioso I*
117	6 715	(M+Na) (M+U)+	106 1219	400.1310	$C_{14} H_{25} NO_{11}$	02.74	0.10	Lalpha Amina 14
117	9 355	(M+H)+	372 2377	373 2447	$C_{10}H_{16}N_{2}O_{2}$	84 53	-1.09	-pyrrole-1-hexanoic acid
119	16 538	$(M+H)^+$	195 0538	196 0610	$C_{17} H_{32} H_{4} O_{5}$	83 37	-3 51	Leucodopachrome
120	6 993	$(M+H)^+$	259 1905	260 1976		80.87	-3 52	
120	8 258	(M+H)+	280 1065	200.1570	$C_{12} H_{25} H_{3} O_{3}$	81 Q8	2.63	Levosimendan
121	0.230	(M+H)+	200.1003	201.1142	$C_{14}\Pi_{12}\Pi_{6}U$	01.90	2.05	Lipomycin
122	0.072	$(M + H)^{+}$	367.3072	252 1019	$C_{32}\Pi_{45}\Pi_{45}\Pi_{9}$	04.74	3.70	
123	9.300 7.01E	$(M + NH)^{+}$	206 2010	233.1910	$C_{14} \Pi_{24} \Pi_2 O_2$	90.00	-3.23	
124	6 076	$(M + M)_4$	200 1695	210 1762	$C_{18} \Pi_{28} \Pi_4 O_6$	99.09	-0.20	Lys Ser Tyr
125	0.020	$(M + H)^+$	309.1005	310.1762	$C_{15} \Pi_{23} \Pi_{3} U_{4}$	07.90	1.22	Lys Tyl
120	4.413	$(\mathbb{M} + \mathbb{D})^{+}$	233.1375	234.1451	$C_9 \Pi_{19} \Pi_3 U_4$	93.49	0.10	Lysillodidilille
127	7.014	$(\mathbb{M} + \mathbb{N} \square_4)^{+}$	293.1740	311.2064	$C_{15} \Pi_{23} N_3 O_3$	90.02	-2.09	
128	7.162	$(\mathbb{M} + \Pi)^{\vee}$	309.1693	310.1766	$C_{15}\Pi_{23}N_{3}O_{4}$	98.10	-1.39	Lysyl-Tyrosine
129	8.404	$(\mathbb{M} + \mathbb{N} \square_4)^{+}$	109.0530	115 0504		84.94	-2.20	m-Aminophenoi
130	3.516	(M+H) ⁺	114.0432	115.0504	$C_4H_6N_2O_2$	84.07	-2.51	Muscimol
131	8.440	(M+H) ⁺	517.2874	518.2948	C ₂₅ H ₄₃ NO ₁₀	96.46	2.44	Mycalamide B
132	7.630	(M+H) ⁺	203.0800	204.08/1	$C_8H_{13}NO_5$	95.68	-2.92	N2-Acetyl-L-aminoadipate
133	/.512	(M+H) ⁺	130.1109	131.1183	$C_6H_{14}N_2O$	86.27	-2.52	N-AcetyIputrescine
134	6.990	(M+Na)+	1/5.0989	198.0882	C ₁₁ H ₁₃ NO	82.86	4.87	N-Acetyltranylcypromine
135	7.539	(M+H)+	216.1268	217.1341	$C_{13}H_{16}N_2O$	85.32	-2.70	Nb-Acetyl-Nb- methyltryptamine
130	0.747	$(\mathbb{M} + \mathbb{H})^{+}$		136.0759		87.70	-1.39	N-Benzyllormamide
137	9.301	$(M + N =)^+$	242.1275	260.1613	$C_{11}\Pi_{18}N_2O_4$	97.30	-3.29	
138	19.799	(M+Na)+	484.3385	130 1502	$C_{23}H_{44}N_6O_5$	96.28	-2.34	deacetyl-leupeptin
140	15 006	(M+H)+	255 2568	256 26/1		05 50	-2.40	Palmitic amido*
140	0 201	(M+H)+	135 0705	136 0868		93.39	-2.40	
141	10 /02	(M+H)+	133.0793	125.0000		02.06	0.95	Pho Ara Lou
142	10.405	$(M + NH)^{+}$	434.2043	433.2710	$C_{21} \Pi_{34} \Pi_6 O_4$	92.00	-0.34	Phe Cly Val
143	0.002	$(M + NH_4)^+$	321.1093	339.2033	$C_{16} H_{23} H_{3} O_{4}$	92.71	-2.04	
144	9.301	$(\mathbb{M} + \mathbb{N} \square_4)^{+}$	400.2303	424.2921	$C_{21}\Pi_{34}N_4O_4$	99.02	-0.75	Pheneyelidine
145	12.012	$(\mathbb{M} + \mathbb{H})^{+}$	243.1991	244.2065	С ₁₇ П ₂₅ N	00.35	-1.83	Phencycliuline
146	18.62/	(M+H) ⁺	123.9925	124.9998		99.77	0.25	Phosphonoacetaidenyde
147	7.154	(M+Na) ⁺	542.2482	565.2379	C ₂₃ H ₄₃ O ₁₂ P	83.84	1.95	PI(14:1(9Z)/0:0)
148	8.0/3	(M+H)+	245.1633	246.1/08	$C_{13}H_{19}N_5$	80.56	3.12	
149	/ 633	$(M + NH_4)^+$	256.0588	2/4.0926	$C_{11}H_{12}O_7$	98.80	-2.01	PISCIDIC ACID
150	9.364	(M+Na)+	162.1400	185.1293	C ₁₂ H ₁₈	84.10	4.97	Pregeijerene
151	/.517	(M+H)+	186.1008	18/.1084	$C_8H_{14}N_2O_3$	84.73	-1.94	Pro Ala
152	6.991	(M+H)+	326.1598	327.1669	$C_{14}H_{22}N_4O_5$	90.54	-2.52	Pro Asn Pro
153	6.934	(M+H)+	371.2166	372.2239	$C_{16}H_{29}N_5O_5$	83.53	0.79	Pro Gln Lys
154	7.164	(M+H)+	340.1752	341.1822	$C_{15}H_{24}N_4O_5$	92.07	-1.60	Pro Gln Pro
155	7.402	(M+H)+	269.1378	270.1451	$C_{12}H_{19}N_{3}O_{4}$	99.48	-1.05	Pro Gly Pro
156	7.129	(M+H)+	212.1165	213.1239	C ₁₀ H ₁₆ N ₂ O ₂	83.55	-2.05	Pro Pro

		,						
Number	RT (min)	Ion	Mass	m/z	Molecular formula	Score (DB)	DB differences (ppm)	Putatively identified metabolites
157	6.930	(M+H)+	269.1372	270.1446	$C_{12}H_{10}N_3O_4$	84.07	1.16	Pro Pro Gly
158	8.222	(M+H)+	375.1797	376.1867	C1, H2, N3, O5	90.59	-0.64	Pro Pro Tyr
159	5.570	(M+H)+	434.2276	435.2349		94.18	0.48	Pro Tyr Arg
160	7.417	(M+H)+	375.1785	376.1861	C ₁₀ H ₂₅ N ₂ O ₅	93.97	2.32	Pro Tyr Pro
161	8.854	(M+Na)+	217.1824	240.1717	C ₁₅ H ₂₃ N	85.69	2.86	Prolintane
162	7.820	(M+H)+	253.1067	254.1140	C, H, N, O,	85.96	-1.67	Pyricarbate
163	5.311	$(M+NH_{1})^{+}$	183.0901	201.1237	C H, NO,	90.47	-3.06	Racepinephrine
164	7.516	(M+H)+	207.0900	208.0972	C,1,H,3NO,	85.18	-2.13	Rhexifoline
165	8.534	(M+H)+	244.1584	245.1653	C ₁₅ H ₂₀ N ₂ O	88.37	-3.31	Rhombifoline
166	9.862	(M+H)+	122.1099	123.1172	C ₀ H ₁	86.97	-3.18	Santene*
167	14.655	(M+H)+	299.2829	300.2901	C1, H, NO,	95.29	-1.68	Sphingosine
168	19.924	(M+H)+	213.2457	214.2530	C ₁₄ H ₃₁ N	99.64	-0.40	Tetradecylamine*
169	19.831	(M+H)+	370.1547	371.1620	C,,,H,,,N,S,	93.67	-2.66	Thioridazine
170	4.410	(M+H)+	346.2212	347.2284	C ₁₅ H ₃₀ N ₄ O ₅	80.69	1.11	Thr Val Lys
171	7.568	(M+Na)+	493.3240	516.3131	C ₁ H ₄ NO ₄ S	87.00	-2.91	Tiamulin
172	7.166	(M+H)+	253.1068	254.1142	C, 3H, N,	83.69	3.12	Triamterene
173	6.352	(M+NH ₄) ⁺	184.0489	202.0827	C,H,N,Ó,	98.31	-2.85	Trimidox
174	9.211	(M+H)+	141.1154	142.1228	C ๎H ํ _ฺ ŇO	84.62	-0.41	Tropine
175	7.102	(M+H)+	415.1856	416.1930	C ₂₀ H ₂₅ N ₅ O ₅	83.43	-0.12	Trp Asn Pro
176	7.010	(M+Na)+	418.1850	441.1747	C ₂₀ H ₂ N ₄ O ₂	80.39	0.59	Trp Asp Val
177	7.210	(M+Na)+	372.1803	395.1694		81.48	-1.36	Trp Pro Ala
178	7.817	(M+NH ₄) ⁺	303.1583	321.1923	C, H, N, O,	96.76	-0.18	Tryptophyl-Valine
179	8.506	$(M+NH_{4})^{+}$	423.2000	441.2342	C, H, N, O,	88.19	1.20	Tyr Ile Glu
180	8.450	$(M+NH_{4})^{+}$	396.2002	414.2345	C1.H2.N4O	90.22	1.70	Tyr Ser Lys
181	6.721	(M+Na)+	516.2543	539.2431	C ₂₅ H ₂₆ N ₆ O ₄ S	80.47	-4.67	Udenafil
182	7.666	(M+NH ₄) ⁺	387.2258	405.2597	C ₂₀ H ₂₀ N ₅ O ₃	80.07	3.07	Urapidil
183	6.933	(M+H)+	346.1489	347.1562	C13H23N4O7	81.66	-0.18	Val Asp Asn
184	7.580	(M+H)+	401.2058	402.2131	C ₂₀ H ₂₇ N ₅ O ₄	82.27	1.29	Val His Phe
185	7.655	(M+H)+	466.2214	467.2286	C ₂₅ H ₂₀ N ₄ O ₅	93.34	0.48	Val Trp Tyr
186	7.189	(M+H)+	254.1385	255.1458	C, H, N, O,	98.02	-2.38	Valyl-Histidine
187	9.275	(M+NH₄)+	202.0745	220.1084	C, H, N, O,	86.30	-1.26	Vasicinone
188	8.958	(M+H)+ ́	199.1326	200.1399	C,H,,N,Ó,	82.59	-2.81	Vinyl-L-NIO
189	5.660	(M+NH₄)+	157.0856	175.1194	C _s H ₁ N ₃ O ₅	98.32	-3.12	V-PYRRO/NO
190	15.142	(M+H)+ ⁺	229.2410	230.2483	C, H, NO	84.30	-1.90	Xestoaminol C*
191	17.087	(M+H)́⁺	115.0461	116.0534	CHNS	94.29	-4.73	xi-2,5-Dihydro-2,4-
		. /			. e c			dimethylthiazole
192	10.173	(M+H)+	374.0342	375.0411	C ₁₇ H ₁₂ C ₁₂ N ₄ O ₂	82.26	-1.30	a,4-Dihydroxytriazolam
193	14.599	(M+NH₄)+	222.1991	240.2329	C ₁₅ H ₂₆ O ²	97.50	-3.28	β-Caryophyllene Alcohol*

*Indicate the metabolites that found similarly from pHMG extract under second evaluation screening. RT=Retention time, DB=Database, LC-MS=Liquid chromatography-mass spectrometry, QTOF=Quadrupole time-of-flight

macronutrient classification (Figure-2d). The five groups of macronutrients are comprised oligosaccharides, peptides, lipids, nucleosides, and secondary metabolites. There were 192 and 42 metabolites identified from eHMG and pHMG extracts (Tables-3 and 4), respectively. The differences in the type of metabolites between eHMG and pHMG extracts have further supported the preference of the type of metabolites toward each extraction method. Among the macronutrients. eHMG extraction method can extract mostly secondary metabolites, followed by peptides, oligosaccharides, lipids, and nucleosides (Figure-2d). The primary metabolites obtained from this study support the finding from the previous proximate analysis of EBN, which protein is the highest composition followed by carbohydrates and lipids [2,36,37].

The presence of secondary metabolites could most probably explain the recuperative and therapeutic effects of EBN. The secondary metabolite with the identity of O²-vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (V-PYRRO/nitric oxide [NO]) was found

in eHMG extract (Table-3). This secondary metabolite acts as NO donor and delivers NO specifically after metabolism by cytochrome P450 in hepatocytes without affecting the NO-sensitive tissues as well as systolic blood pressure [38]. The in vivo study done by Li et al. [39] showed that V-PYRRO/NO is able to protect the hindrance to renal congestion and lipid peroxidation from acetaminophen-induced nephrotoxicity in mice. In addition, V-PYRRO/NO can protect against high-fat diet (HFD)-induced liver steatosis and insulin resistance without affecting the mitochondria biogenesis [40]. Interestingly, Zhang et al. [41] showed that EBN could prevent HFD-induced insulin resistance by regulating the transcriptional changes in insulin signaling genes. Hence, the presence of V-PYRRO/NO in EBN may explain the protective effect of EBN against the HFDinduced damages. In short, from this study, it is believed that the study on secondary metabolites profiling in EBN in the future is crucial and not to be neglected.

A polysaccharide with an identity of chondroitin was identified from the first screening of eHMG extract

Table-3. (Continued)

Number	RT (min)	Ion	Mass	m/z	Molecular formula	Score	DB differences (ppm)	Putatively identified metabolites
1	19.793	(M+Na)+	484.3396	507.3290	$C_{27}H_{48}O_7$	96.12	0.87	(25S)-5alpha-cholestan-3beta,4 beta,6alpha,8beta,15alpha,16b eta,26-heptol
2	3.780	(M+H)+	99.0322	100.0394	C.H.NO.	86.24	-1.50	(R)-Dihvdromaleimide
3	14.655	$(M+NH_{.})^{+}$	168.1881	186.2219	C.H.	98.94	-2.06	1-Dodecene*
4	19.883	$(M+H)^{4}$	241.2768	242.2840	C. H. N	86.03	0.67	1-Hexadecylamine
5	17.082	(M+H) ⁺	203.0807	204.0878	$C_9H_{17}NS_2$	93.79	-2.07	1-Isothiocyanato-7-(methylthio) heptane*
6	15.586	(M+H)+	115.0457	116.0530	C-H-NS	99.79	-1.42	1-Isothiocvanatobutane*
7	19.896	$(M+NH_{1})^{+}$	392.4383	410.4722	C_H_	98.76	-0.37	1-Octacosene*
8	17.084	(M+H)+ ⁺	171.1085	172.1157	C ₉ H ₁₇ NS	96.61	-1.92	2,5-Dihydro-4,5-dimethyl-2-(1- methylpropyl)thiazole*
9	18.737	(M+H)+	170.1303	171.1375	$C_{10}H_{18}O_{2}$	84.98	2.15	2,6-Dimethyl-3,7-octadiene-2,6- diol
10	7.676	(M+NH ₄) ⁺	256.1315	274.1653	$C_{13}H_{20}O_5$	98.83	-1.55	2-[4-(3-Hydroxypropyl)- 2-methoxyphenoxy]-1,3- propanediol
11	7.678	(M+H)+	113.0845	114.0918	C.H. NO	98.61	-3.80	2-Acetylpyrrolidine*
12	14.532	(M+H)+	105.0790	106.0863	$C_4 H_{11} NO_2$	84.69	-0.41	2-Amino-2-methyl-1,3- propanediol
13	9.461	(M+H)+	144.0422	145.0493	$C_6H_8O_4$	95.91	0.31	2-Hydroxy-2-(hydroxymethyl)- 2H-pyran-3(6H)-one
14	9.859	(M+H)+	101.0844	102.0916	C ₂ H ₁₁ NO	96.89	-3.15	2-methylbutanal oxime
15	8.921	(M+H)+	209.1423	210.1496	C, H, NO,	84.38	-3.50	3,4-dimethoxymethamphetamine
16	19.503	(M+NH ₄) ⁺	135.0564	153.0902	$C_7^{12}H_7^{19}N_2^{0}O^{2}$	82.59	-4.21	4-(Hydroxymethyl) benzenediazonium(1+)
17	7.839	(M+H)+	125.0839	126.0912	C_H.,NO	87.69	1.30	4-Ethyl-2,5-dimethyloxazole
18	6.992	(M+H)+	129.0430	130.0503	C _r H ₋ NO ₂	82.11	-3.43	4-Oxoproline*
19	8.905	(M+H)+	153,1156	154.1227	C.H. NO	95.68	-1.34	5-Butyl-2-ethyloxazole
20	7.182	$(M+NH_4)^+$	165.1155	183.1491	$C_{10}H_{15}^{15}NO$	82.05	-0.72	5-Methyl-2-(1-pyrrolidinyl)-2- cyclopenten-1-one*
21	16.002	$(M+NH_4)^+$	250.2302	268.2640	$C_{17}H_{30}O$	85.38	-2.25	9S,10R-Epoxy-3Z,6Z- octadecadiene*
22	19.912	(M+NH₄)+	364.4070	382.4409	C _{ac} H _{ra}	99.67	-0.34	9Z-Hexacosene*
23	5.021	(M+H)+ ⁴	135.0550	136.0622	C _z H _z N _z	86.53	-3.53	Adenine*
24	5.761	(M+H)+	226,1066	227.1139	C.H.N.O.	92.45	0.04	Alanyl-Histidine*
25	18.616	(M+H)+	142.0013	143.0084	C.H.N.O.	80.18	0.76	Alloxan
26	5.765	(M+H)+	109.0641	110.0713	$C_{r}H_{N}$	83.73	-1.28	Brunfelsamidine*
27	7.804	$(M+NH_{2})^{+}$	922,4758	940.5092	C. H. O.	95.22	1.67	Capsianoside VI
28	19,762	$(M+NH_{1}^{4})^{+}$	747,4789	765.5129	$C_{a}H_{a}NO_{a}$	85.36	-2.63	Clarithromycin
29	17.082	(M+H) ⁴	127,1363	128,1435	C.H. N	86.72	-1.61	Coniine*
30	19.949	$(M+NH_{.})^{+}$	703.4523	721.4865	C.H.NO.	80.50	-2.29	Erythromycin D
31	13.733	$(M+Na)^{+}$	270.1830	293.1723	CHO.	86.19	0.32	Ethylene brassylate
32	19.854	$(M+NH_{.})^{+}$	240.2452	258.2791	C. H. O	85.17	0.68	hexadeca-9-en-1-ol
33	19,781	(M+H) ⁴	101.1201	102.1274		87.12	3.51	Hexvlamine*
34	18.616	(M+H)+	298,1537	299.1607	C, H, N,O	83.14	1.86	Iso-Olomoucine*
35	8.676	$(M+NH_{2})^{+}$	268.1312	286.1649	C, H.,O,	80.46	-0.63	Kamahine C*
36	3.375	$(M+Na)^{4}$	383,1426	406.1318		94.48	0.36	Lacto-N-biose I*
37	19.300	(M+H)+	129.1511	130.1585	$C_{0}^{14}H_{10}^{25}N$	83.91	4.67	Octylamine*
38	14.588	(M+H)+	255.2565	256.2637	C ₁₆ H ₃ NO	98.75	-1.08	Palmitic amide*
39	9.858	(M+H)+	122.1096	123.1169	C _H ¹	85.95	-0.42	Santene*
40	19.911	(M+H)+	213.2457	214.2530	C ₁₄ H ₃ N	98.18	-0.32	Tetradecylamine*
41	19.838	(M+H)+	229.2406	230.2478	C ₁₄ H ₃ NO	97.56	0.01	Xestoaminol C*
42	14.568	$(M+NH_4)^+$	222.1988	240.2326	$C_{15}H_{26}O$	98.81	-2.08	β-Caryophyllene Alcohol*

Table-4: Information of the metabolites in pHMG extract. The metabolites are identified by QTOF LC-MS with second screening evaluation.

*Indicate the metabolites that found similarly from eHMG extract under second evaluation screening. RT=Retention time, DB=Database, LC-MS=Liquid chromatography-mass spectrometry, QTOF=Quadrupole time-of-flight

(Table-1), in which the discovery of water-soluble chondroitin is similar to the finding of Nakagawa *et al.* in EBN [42]. Chondroitin is a glycosaminoglycan that acts as a chondroprotective agent for the treatment of OA. OA is the lesion of articular cartilage caused by trauma. Since chondroitin is an essential proteoglycan in cartilage, it acts on OA by stimulates the

cartilage repair through enhancing the production of the extracellular matrix of cartilage. Besides, chondroitin helps to maintain the viscosity of the synovial fluid to lubricate the joint and therefore reducing the pain of the patient. Furthermore, chondroitin suppresses the inflammatory cytokines such as interleukin-1 β that induce the release of matrix metalloproteinases and aggrecanases which cause the degradation of the cartilage [43,44]. In an *in vitro* study done by Chua *et al.* on the effects of EBN to OA [17], the authors reported that EBN can protect articular cartilage from further deterioration by reducing inflammation and enzymatic lesions process and enhancing the cartilage formation simultaneously. Therefore, the effects of EBN on OA might be contributed by chondroitin.

Conclusion

There was no single extraction method could provide optimal conditions in extracting all the metabolites from EBN. Therefore, complementary extraction methods should be used in parallel when broader metabolite profiles are required. eHMG extraction method was selected as the ideal extraction method for untargeted profiling the type of polar metabolites in EBN. This is because the number and the type of metabolites detected are the highest in eHMG extracts among the four evaluated extraction methods. Furthermore, the presence of key metabolites of sialic acid has further defined the suitability of eHMG extraction method. Therefore, the findings in this study could offer great potential for enhancement in the industrial EBN extraction process and hence improve the overall EBN yield and bioactivities. Nevertheless, the validation of the structure elucidation and functional assays of interesting metabolites shall be carried out in the future.

Authors' Contributions

YML conceived the study design. SRT conducted all the designed experiments, data processing, and analysis. THL contributed to the sample collection and performed the in-house extraction method (eHMG and pHMG) for the study. SRT prepared the manuscript with critical feedback from the coauthors. THL, SKC, and YML supervised the study and provided input and advice in the project. All authors have read and approved the final manuscript.

Acknowledgments

This project is funded by the Ministry of Agriculture and Agro-Based Industry (MOA), Malaysia. Besides, UTAR also provided financial support through UTAR Research Fund (UTARRF) with vote number of IPSR/ RMC/UTARRF/2016-C2/L12. The authors show the gratitude to all the ranchers of swiftlet's house for providing the EBN samples in this study, as well as the University Laboratory Management Centre (PPMU) in UTM for technical support.

Competing Interests

The authors declare that they have no competing interests.

Publisher's Note

Veterinary World remains neutral with regard to jurisdictional claims in published institutional affiliation.

References

- 1. Ma, F. and Liu, D. (2012) Sketch of the edible bird's nest and it's important bioactivities. *Food Res. Int.*, 48(2): 559-567.
- 2. Marcone, M.F. (2005) Characterization of the edible bird's nest the "Caviar of the East". *Food Res. Int.*, 38(10): 1125-1134.
- Norhayati, M.K., Azman, O. and Wan Nazaimoon, W.M. (2010) Preliminary study of the nutritional content of Malaysian edible bird's nest. *Malays. J. Nutr.*, 16(3): 389-396.
- 4. Lee, T.H., Wani, W.A., Tan, T.T.E., Adnan, N.A., Yong, L.L. and Aziz, R.A. (2015) Investigations into the physicochemical, biochemical and antibacterial properties of edible bird's nest. *J. Chem. Pharm. Res.*, 7(7): 228-247.
- 5. Wang, C.C. (1921) The composition of Chinese edible birds' nests and the nature of their proteins. *J. Biol. Chem.*, 49: 429-439.
- 6. Seow, E.K., Ibrahim, B., Muhammad, S.A., Lee, L.H. and Cheng, L.H. (2016) Differentiation between house and cave edible bird's nests by chemometric analysis of amino acid composition data. *LWT Food Sci. Technol.*, 65: 428-435.
- 7. Wong, R.S.Y. (2013) Edible bird's nest: Food or medicine? *Chin. J. Integr. Med.*, 19(9): 643-649.
- 8. Rashed, A.A. and Wan Nazaimoon, W.M. (2010) Effect of edible bird's nest on Caco-2 cell proliferation. *J. Food Technol.*, 8(3): 126-130.
- Guo, C.T., Takahashi, T., Bukawa, W., Takahashi, N., Yagi, H., Kato, K., Hindari, K.I.P., Miyamoto, D., Suzuki, T. and Suzuki, Y. (2006) Edible bird's nest extract inhibits influenza virus infection. *Antiviral Res.*, 70(3): 140-146.
- Matsukawa, N., Matsumoto, M., Bukawa, W., Chiji, H., Nakayame, K., Hara, H. and Tsukahara, T. (2011) Improvement of bone strength and dermal thickness due to dietary edible bird's nest extract in ovariectomized rats. *Biosci. Biotechnol. Biochem.*, 75(3): 590-592.
- 11. Abidin, F.Z., Chua, K.H., Ng, S.L., Ramli, E.S.M., Lee, T.H. and Ghafar, N.A. (2011) Effects of edible bird's nest (EBN) on cultured rabbit corneal keratocytes. *BMC Complement Altern. Med.*, 11(1): 94.
- 12. Land, M.F. and Fernald, R.D. (1992) The evolution of eyes. *Annu. Rev. Neurosci.*, 15: 1-29.
- Hou, Z., Imam, M.U., Ismail, M., Azmi, N.H., Ismail, N., Ideris, A. and Mahmud, R. (2015) Lactoferrin and ovotransferrin contribute toward antioxidative effects of edible bird's nest against hydrogen peroxide-induced oxidative stress in human SH-SY5Y cells. *Biosci. Biotechnol. Biochem.*, 79(10): 1570-1578.
- 14. Yida, Z., Imam, M.U. and Ismail, M. (2014) *In vitro* bioaccessibility and antioxidant properties of edible bird's nest following simulated human gastro-intestinal digestion. *BMC Complement Altern. Med.*, 14: 468.
- Roh, K., Lee, J., Kim, Y., Park, J., Kim, J., Lee, J. and Park, D. (2011) Mechanisms of edible bird's nest extract-induced proliferation of human adipose-derived stem cells. *Evid. Based Complement Alternat. Med.*, 2012: Article ID 797520.
- Kong, Y.C., Keung, W.M., Yip, T.T., Ko, K.M., Tsao, S.W. and Ng, M.H. (1987) Evidence that epidermal growth factor is present in swiftlet's (Collocalia) nest. *Comp. Biochem. Physiol.*, 878(2): 221-226.
- 17. Chua, K.H., Lee, T.H., Nagandran, K., Yahaya, N.H.M., Lee, C.T., Tan, E.T.T. and Aziz, R.A. (2013) Edible Bird's nest extract as a chondroprotective agent for human chondrocytes isolated from osteoarthritic knee: *In vitro* study. *BMC Complement. Altern. Med.*, 13(1): 19.
- Aswir, A.R. and Wan Nazaimoon, W.M. (2011) Effect of edible bird's nest on cell proliferation and tumor necrosis factor-alpha (TNF-α) release *in vitro*. *Int. Food Res. J.*, 18(3): 1123-1127.
- 19. Liu, F., Gan, P.P., Wu, H., Woo, W.S., Ong, E.S. and Li, S.F.

(2012) A combination of metabolomics and metallomics studies of urine and serum from hypercholesterolaemic rats after berberine injection. *Anal. Bioanal. Chem.*, 403(3): 847-856.

- Theodoridis, G., Gika, H.I., Franceschi, P., Caputi, L., Arapitsas, P., Scholz, M., Masuero, D., Wehrens, R., Vrhovsek, U. and Mattivi, F. (2011) LC-MS based global metabolite profiling of grapes: Solvent extraction protocol optimisation. *Metabolomics*, 8(2): 175-185.
- Pongsuwan, W., Fukusaki, E., Bamba, T., Yonetani, T., Yamahara, T. and Kobayashi, A. (2007) Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. *J. Agric. Food Chem.*, 55(2): 231-236.
- Chua, Y.G., Bloodworth, B.C., Leong, L.P. and Li, S.F.Y. (2014) Metabolite profiling of edible bird's nest using gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. *Rapid Commun. Mass Spectrom.*, 28(12): 1387-1400.
- 23. Oda, M., Ohta, S., Suga, T. and Aoki, T. (1998) Study on food components : The structure of N-linked asialo carbohydrate from the edible bird's nest built by *Collocalia fuciphaga. J. Agric. Food Chem.*, 46: 3047-3053.
- Goh, D.L.M., Chua, K.Y., Chew, F.T., Seow, T.K., Ou, K.L., Yi, F.C. and Lee, B.W. (2001) Immunochemical characterization of edible bird's nest allergens. *J. Allergy Clin. Immunol.*, 107(6): 1082-1088.
- 25. Ho, Y.S. (2016) Elucidation of Nutritional and Metabolite Profiles and Regenerative Effect of Edible Bird's Nest on Neuron Cells. Master Dissertation. Universiti Tunku Abdul Rahman, Malaysia.
- Xiao, J.F., Zhou, B. and Ressom, H.W. (2012) Metabolite identification and quantitation in LC-MS/MS-based metabolomics. *TRAC-Trend Anal. Chem.*, 32: 1-14.
- 27. Sandra, K., Pereira, A.S., Vanhoenacker, G., David, F. and Sandra, P. (2010). Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. *J. Chromatogr. A*, 1217(25): 4087-4099.
- Cruickshank-Quinn, C., Quinn, K.D., Powell, R., Yang, Y., Armstrong, M., Mahaffey, S., Reisdorph, R. and Reisdorph, N. (2014) Multi-step preparation technique to recover multiple metabolite compound classes for in-depth and informative metabolomics analysis. *J. Vis. Exp.*, 89(89): e51670.
- Sellick, C.A., Knight, D., Croxford, A.S., Maqsood, A.R., Stephens, G.M., Goodacre, R. and Dickson, A.J. (2010) Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: Matching extraction approaches to cell type and metabolite targets. *Metabolomics*, 6(3): 427-438.
- Xu, Y.Q., Ji, W.B., Yu, P., Chen, J.X., Wang, F. and Yin, J.F. (2017) Effect of extraction methods on the chemical components and taste quality of green tea extract. *Food Chem.*, 248: 146-154.
- Mtewa, A.G., Deyno, S., Kasali, F.M., Annu, A. and Sesaazi, D.C. (2018) General extraction, isolation and characterization techniques in drug discovery: A review. *Int. J. Sci. Basic Appl. Res.*, 38(1): 10-24.
- 32. Gupta, A., Naraniwal, M. and Kothari, V. (2012) Modern

extraction methods for preparation of bioactive plant extracts. *Int. J. Appl. Nat. Sci.*, 1(1): 8-26.

- 33. Quek, M.C., Chin, N.L., Yusof, Y.A., Law, C.L. and Tan, S.W. (2018) Characterization of edible bird's nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities. *Food Res. Int.*, 109: 35-43.
- Chan, G.K., Zheng, K.Y., Zhu, K.Y., Dong, T.T. and Tsim, K.W. (2013) Determination of free N-acetylneuraminic acid in edible bird nest: A development of chemical marker for quality control. *J. Ethnobiol. Tradit. Med.*, 120: 620-628.
- Marni, S., Marzura, M.R., Norzela, A.M., Khairunnisak, M., Bing, C.H. and Eddy, A.A. (2014) Preliminary study on free sialic acid content of edible bird nest from Johor and Kelantan. *Malays. J. Vet. Res.*, 5(1): 9-14.
- 36. Saengkrajang, W., Matan, M. and Matan, N. (2013) Nutritional composition of the farmed edible bird's nest (*Collocalia fuciphaga*) in Thailand. J. Food Compos. Anal., 31(1): 41-45.
- Huda, M.Z.N., Zuki, A.B.Z., Azhar, K., Goh, Y.M. and Suhaimi, H. (2008) Proximate, elemental and fatty acid analysis of pre-processed edible bird's nest (*Aerodramus fuciphagus*): A comparison between regions and type of nest. J. Food Technol., 6(1): 39-44.
- Saavedra, J.E., Billiar, T.R., Williams, D.L., Kim, Y.M., Watkins, S.C. and Keefer, L.K. (1997) Targeting nitric oxide (NO) delivery *in vivo*. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-α-induced apoptosis and toxicity in the liver. *J. Med. Chem.*, 40(13): 1947-1954.
- Li, C., Liu, J., Saavedra, J.E., Keefer, L.K. and Waalkes, M.P. (2003) The nitric oxide donor, V-PYRRO/NO, protects against acetaminophen-induced nephrotoxicity in mice. *Toxicology*, 189(3): 173-180.
- 40. Maslak, E., Zabielski, P., Kochan, K., Kus, K., Jasztal, A., Sitek, B., Proniewski, B., Wojcik, T., Gula, K., Kij, A., Walczak, M., Baranska, M., Chabowski, A., Holland. R.J., Saavedra. J.E., Keefer L.K. and Chlopicki, S. (2015) The liver-selective NO donor, V-PYRRO/NO, protects against liver steatosis and improves postprandial glucose tolerance in mice fed high-fat diet. *Biochem. Pharmacol.*, 93(3): 389-400.
- 41. Zhang, Y., Mustapha, U.I., Maznah, I., Oii, D.J., Nadarajan, S., Nur Hanisah, A., Norsharina, I., Chan, K.W., Hou, Z.P. and Norhayati, Y. (2015) Edible bird's nest prevents high fat diet-induced insulin resistance in rats. *J. Diabetes Res.*, 2015: 11.
- 42. Nakagawa, H., Hama, Y., Sumi, T., Li, S.C., Maskos, K., Kalayanamitra, K., Mizumoto, S., Sugahara, K. and Li, Y.T. (2007) Occurrence of a nonsulfated chondroitin proteoglycan in the dried saliva of *Collocalia* swiftlets (edible bird'snest). *Glycobiology*, 17(2): 157-164.
- 43. Vasiliadis, H.S. and Tsikopoulos, K. (2017) Glucosamine and chondroitin for the treatment of osteoarthritis. *World J. Orthop.*, 8(1): 1-11.
- 44. Huskisson, E.C. (2008) Glucosamine and chondroitin for osteoarthritis. *J. Int. Med. Res.*, 36(6): 1-19.
