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Abstract
Background and Aim: Some individuals in Indonesia consume intact goat gallbladder to prevent and treat malaria. The 
acute and subacute toxicity tests of goat bile (GB) have shown mild diarrhea in mice. Therefore, this study aimed to evaluate 
the suppressive effect of GB on parasitemia, splenomegaly, hepatomegaly, and blood biochemistry to assess liver and 
kidney function in BALB/c mice infected with Plasmodium berghei ANKA.

Materials and Methods: Fifty healthy mice were infected with P. berghei ANKA and divided into five groups. Mice in 
three groups were administered 0.5 mL of 25%, 50%, or 100% of GB by gavage. Animals in Group 4 were administered 
187.2 mg/kg BW of dihydroartemisinin-piperaquine phosphate as a positive control (POS Group). Mice in fifth group 
were administered sterile water as negative (NEG) controls. Further, 30 uninfected mice were divided into groups 6-8 and 
administered GB as were mice in the first three groups. Group 9 included 10 uninfected and untreated animals as healthy 
controls. Treatments were administered in a 4-day suppressive test followed by daily observation of Giemsa-stained blood 
smears. On day 7, mice were sacrificed to measure the length and weight of spleens and livers, plasma levels of aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine.

Results: GB suppressed parasitemia but did not affect the size and weight of spleens or livers or plasma levels of AST and 
ALT compared to uninfected GB-treated and healthy control animals. Conversely, plasma levels of BUN and creatinine 
were suppressed and remained in the normal range in all groups of mice.

Conclusion: GB suppresses parasitemia with no significant impact on hepatic enzymes in GB-treated infected mice. Liver 
dysfunction in GB-treated infected mice was due to P. berghei rather than GB treatment.
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Introduction

Malaria is a parasitic infection caused by pro-
tozoa in the genus Plasmodium. Human malaria is 
caused by four Plasmodium species, Plasmodium 
falciparum, Plasmodium vivax, Plasmodium ovale, 
and Plasmodium malariae [1]. Plasmodium knowlesi 
is a fifth human parasite [2] after transmission from 
Macaque was identified in Borneo, Malaysia [3]. 
Globally 229 million malaria cases were estimated in 

2019 in 87 countries where malaria is endemic. This 
number declined from an estimated 238 million in 
2000. Twenty-nine of these 87 countries account for 
95% of malaria cases globally [4]. Malaria eradication 
in Indonesia reached the halfway point in 2018, largely 
due to accelerated progress in the past decade [5]. 
Annual parasite incidence showed a national decline 
from 1.8 in 2009 to 0.84 in 2019. However, a small 
increase to 0.93 was reported in 2019, even though 
nationally 300 districts/cities were declared malar-
ia-free. This number increased from 285 districts/cities 
declared malaria-free in 2018 [6]. Other issues, such 
as asymptomatic and submicroscopic malaria in some 
areas of Indonesia, have not been addressed [7-9]. 
Malaria control in Indonesia still faces the emergence 
of parasite resistance to antimalarial drugs, such as 
chloroquine (CQ), sulfadoxine-pyrimethamine, and 
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artemisinin combination therapy [10]. Alternatively, 
traditional medicines from natural ingredients, such 
as herb extracts, are being explored. In Indonesia, 
some individuals consume intact goat gallbladder 
to prevent and treat malaria [11]. Goat meat is com-
monly consumed and gallbladder is readily available 
in slaughterhouses or during Eid Al-Adha, an Islamic 
celebration day. Gallbladder is not consumed due to 
its bitter taste.

The gallbladder is a small organ that stores bile. 
Bile is a digestive fluid secreted by hepatocytes. Bile 
contains water and electrolytes, organic compounds, 
such as bile salts, cholesterol, phospholipids, biliru-
bin, and ingested compounds, such as proteins. Bile 
acids are important for the digestion and absorp-
tion of fats and fat-soluble vitamins from the small 
intestine [12,13]. Animal bile has been used in tradi-
tional Chinese medicine (TCM) for centuries to treat 
chronic and acute infectious and non-infectious dis-
eases, including malaria. Bile supports liver function, 
dissolves gallstones, and inhibits bacterial and viral 
multiplication. Bile also exhibits anti-inflammatory, 
anti-pyretic, and anti-oxidant properties [14]. Bear 
bile is used to treat liver disease [15]; however, no his-
tory is available for the use of goat bile (GB) to treat 
and cure malaria.

The acute and subacute toxicity tests of GB have 
shown mild diarrhea in BALB/c mice [11]. Therefore, 
this study aimed to evaluate the suppressive effect of 
GB on parasitemia, splenomegaly, hepatomegaly, and 
blood biochemistry in mice infected with Plasmodium 
berghei ANKA.
Materials and Methods
Ethical approval

The study was approved by the Ethics Committee 
of Faculty of Medicine, Universitas Airlangga 
(No. 195/EC/KEPK/FKUA/2018).
Study period and location

The study was conducted from May to July 2018 
in the Faculty of Medicine, Universitas Airlangga. 
Malaria infection in mice was done in the Experimental 
Animal Laboratory. Determination of parasitemia 
was done in the Department of Medical Parasitology. 
Measurement of blood biochemistry was performed in 
the Department of Clinical Pathology of Dr. Soetomo 
Hospital.
Preparation of GB

Goat gallbladders were from a local animal 
slaughterhouse in Surabaya, East Java Province. The 
goat Java strain is most raised in Surabaya. Goat 
gallbladders were isolated from seven healthy male 
goats. Gallbladders were sprayed with 70% alcohol; 
then bile was removed by syringe, transferred, and 
pooled in a clean tube, and diluted with distilled water 
to prepare 100% (GB100), 50% (GB50), and 25% 
(GB25) [11]. Samples were stored at 4°C before and 
during experiments.

Suppressive test
The study was a 4-day suppression test [16]. 

Healthy male mice aged ±7 weeks and weighing ±25 g 
were active and without morphological abnormalities 
(inclusion criteria). Mice that died during the exper-
iment were excluded (exclusion criteria). The same 
inclusion and exclusion criteria were applied to mice 
in positive and negative control groups. P. berghei 
ANKA-infected blood was obtained from donor mice 
that showed parasitemia levels of 15-20%. Inocula 
were prepared based on percentage parasitemia and 
number of erythrocytes counted using a Neubeaur 
hemocytometer. After 1 week of acclimatization, 
50 mice were injected with 1×106 P.berghei ANKA-
infected erythrocytes in 0.2 mL of blood suspension. 
Mice were then divided randomly into five groups 
prior to treatment. Three groups –GB25, GB50, 
and GB100 –were administered GB25, GB50, and 
GB100, respectively. Group 4 was a positive control 
(POS) administered 187.2 mg/kg BW of dihydroarte-
misinin-piperaquine phosphate (DHP) (Mersipharma, 
Sukabumi, Indonesia). Group 5 was a negative control 
(NEG) administered sterile water. Simultaneously, 
30 uninfected mice were divided into three groups 
–NOR25, NOR50, and NOR100 –and treated with 
GB25, GB50, and GB100, respectively. In addition, 
ten uninfected mice were treated with sterile water 
and maintained as the normal (NOR) group. GB treat-
ment was administered in 0.5 mL of GB/25 g BW per 
day for four consecutive days, followed by observa-
tion of parasitemia on Giemsa-stained thin tail blood 
films. Percent parasitemia and percent suppression 
were calculated as per formula [17]:

Number of infected 
erythrocytesParasitemia 100%
Total number of 
erythrocytes count

= ×

Mean parasitemia of NC –  
Mean parasitemia in TG% Suppression 100

Mean parasitemia in NC
= ×

NC: Negative control; TG: Treated Group
Splenomegaly and hepatomegaly

On day 7, mice were sacrificed after induction of 
general anesthesia by chloroform inhalation. Spleens 
and livers were removed and weight and length mea-
sured to assess splenomegaly and hepatomegaly. 
Length was measured with a ruler and weight with an 
analytical scale [18]. Plasma was collected for hepatic 
and renal enzyme evaluation.
Liver and kidney function

Liver and kidney function was assessed using 
plasma levels of aspartate aminotransferase (AST) 
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and alanine aminotransferase (ALT) activity, blood 
urea nitrogen (BUN), and creatinine using an auto-
matic hematology analyzer. Blood biochemistry anal-
ysis was performed in the Department of Clinical 
Pathology, Dr. Soetomo Hospital/Faculty of Medicine, 
Universitas Airlangga using standard operating proce-
dures for daily laboratory activities. Fifty microliters 
of plasma were used for analysis of AST, ALT, BUN, 
and creatinine.
Statistical analysis

Data were entered into a Microsoft Excel spread-
sheet, exported, and analyzed using SPSS version 20 
(IBM Corp., NY, USA). Estimation of survival time 
of mice was analyzed using Kaplan–Meier test. 
Comparisons among treatment, negative and positive 
control mice were assessed using one-way analysis 
of variance (ANOVA) for normally distributed data. 
When ANOVA showed a significant difference, post 
hoc Bonferroni, or Games Howell multiple com-
parison tests were used to assess differences among 
groups. The Mann–Whitney U-test was used to assess 
differences when data were not normally distributed. 
Correlations among parasitemia and splenomegaly, 
hepatomegaly, and blood biochemistry were analyzed 
using Pearson or Spearman correlation tests depend-
ing on data distribution. Differences were considered 
statistically significant at a 95% confidence level 
(p<0.05).
Results
Toxicity and survival rate

GB caused mild diarrhea in non-infected ani-
mals [11]. Diarrhea also was seen in some, but not all, 
P. berghei ANKA-infected-mice treated with GB in the 
present study. The highest dose of GB (GB100) caused 
diarrhea in the largest number of mice (Table-1). The 
survival rate of infected-mice treated with GB is also 
shown in Table-1. Kaplan–Meier estimation of sur-
vival time is summarized in Figure-1. Survival rate of 
mice in GB100 was 100%, as same as in POS. Two 
mice in GB50 died on day 5 post-treatment and gave 
80% survival rate. Two mice of GB25 died on day 2, 
other 2 mice died on day 4, resulted in 60% survival 
rate, while in NEG one mouse died on day 5 and all 
mice died on day 7 (0% survival rate).
Suppressive effect of GB

Oral administration of 25%, 50%, and 100% 
of GB suppressed parasitemia in a dose-dependent 

manner by 42.99%, 86.92%, and 96.90%, respectively 
(Table-1). Animals that received GB showed reduced 
parasitemia (Figure-2). Observation of parasitemia 
continued for 2 days post-treatment. Daily parasitemia 
in negative control mice (NEG) developed in a typi-
cal fashion and increased sharply to 34.24% on day 
6 post-treatment. Parasitemia in GB25-treated mice 
was similar. Parasites appeared on day 2 post-treat-
ment and reached 19.52% (p=0.000) parasitemia in 
GB50-treated mice appeared on day 3 post-treatment 
and reached 4.48% (p=0.000). GB100 treated mice 
showed suppression similar to mice treated with DHP. 
Parasitemia reached 1.06% (p=0.030). DHP-treated 
animals (POS) showed complete suppression of par-
asitemia on day 4; however, a few erythrocytes were 
infected by day 5 and parasitemia reached 0.04% on 
day 6. DHP treatment reduced infection by 99.88% 
(p=0.043) (Table-1, Figure-2).
Splenomegaly and hepatomegaly

The appearance of spleen and liver in infect-
ed-mice treated with GB, DHP (POS), and in 
untreated animals (NEG) was similar. However, a 
significant difference was seen in length of spleen 
in POS animals compared with NOR25 (uninfected) 
(p=0.035), NOR50 (p=0.028), NOR100 (p=0.028), 
and NOR (p=0.033) animals. Spleen weight in POS 

Table-1: Number of mice with diarrhea, survival rate, parasitemia, and suppressive effect of GB in mice infected with 
Plasmodium berghei ANKA.

Group of treatment Number of mice 
with diarrhea (%)*

Survival rate 
of mice (%)*

Parasitemia±SD 
(%)**

Suppression 
(%)**

GB25 2 (20) 60 19.52±3.58 42.99
GB50 1 (10) 80 4.48±2.40 86.92
GB100 8 (80) 100 1.06±0.88 96.90
POS 0 (0) 100 0.04±0.01 99.88
NEG 0 (0) 0 34.24±1.34

*n=10, **n=5, at day 6 post-treatment with GB. GB: Goat bile

Figure-1: Kaplan-Meier survival estimate of Plasmodium 
berghei ANKA-infected mice treated with goat bile (GB) 
compared with controls. All mice in GB100 were survived 
and gave 100% survival rate as those in POS (blue and 
purple lines are overlapping). Two mice in GB50 died on 
day 5 post-treatment and gave 80% survival rate. Two 
mice of GB25 died at day 2, other two 2 mice died on day 
4, resulted in 60% survival rate, while in NEG one mouse 
died on day 5 and all mice died on day 7.
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mice was significantly different from weights in 
NOR50 (p=0.032), NOR100 (p=0.019), and in NOR 
(p=0.015) mice. Comparison with NEG mice, only 
the weight of spleens from GB100-treated uninfected 
mice (NOR100) and NOR was significantly differ-
ent (p=0.037 and p=0.033, respectively); but were 
not significantly different from DHP-treated mice 
(POS). Interestingly, the length and weight of spleen 
and liver of GB25, GB50, and GB100-treated animals 
were significantly different from organs of NOR25, 
NOR50, NOR100, and NOR mice (p=0.009-0.047). 
No significant differences in length and weight of 
spleen or liver among NOR25, NOR50, NOR100 
animals were observed, except for liver length in 
NOR50 animals compared to NOR25 (p=0.046) and 
NOR100 (p=0.046) mice (Figure-3). Further, correla-
tions between parasitemia and lengths and weights of 
spleen and liver were found only for spleen weights 
(p=0.046), a positive correlation was observed 
between length and weight of spleen (p=0.000).
Liver and kidney function

Plasma levels of ALT and AST activity from 
infected-mice treated with GB and untreated mice 
(NEG) were much higher compared with levels of 
untreated normal mice (NOR) and uninfected mice 
treated with GB (NOR25. NOR50, NOR100). The 
latter results were within the normal range [19]. 
ANOVA and post hoc Tukey analysis resulted for all 
GB-treated mice (GB25, GB50, and GB100), POS, 
and untreated infected mice (NEG) showed a signif-
icant difference in AST (p=0.000-0.001) compared 
with those of NOR25, NOR50, NOR100, and NOR 
animals, and with POS mice (Table-2) [19]. Plasma 
levels of ALT in GB50 and GB100 were, respectively, 
significantly different when compared with that of 
POS animals (p=0.007 and 0.011), NOR25 (p=0.004 
and 0.002), NOR50 (p=0.004 and 0.0.002), NOR100 
(p=0.002 and 0.001), and NOR (p=0.004 and 0.002). 
However, significant differences were not observed 
in comparison with NEG animals (p=0.603). Plasma 
levels of ALT and AST among GB-treated uninfected 
(NOR25, NOR50, and NOR100) and untreated (NOR) 
mice were not significantly different. Levels of ALT, 

AST, BUN, and creatinine in all infected animals in 
GB25, GB50, GB100, POS, and NEG animals were 
not correlated with parasitemia (p>0.05).
Discussion

The antimalarial activity of GB is verified [20]. 
GB treatment caused mild diarrhea within 2 days 
post-treatment in uninfected mice [11]. This same 

Table-2: Plasma level of ALT, AST, BUN, and creatinine of Plasmodium berghei ANKA-infected, uninfected, and normal 
mice treated and untreated with GB25, GB50, and GB100 compared with those of POS and NEG groups.

Group of mice ALT AST BUN Creatinine

GB25 619.2±188.23 1261.6±118.8a,b 18.4±0.89 0.23±0.07
GB50 599.8±82.27a 210.4±96.86a,b 29.4±11.01 0.332±0.14
GB100 581.8±233.73a 257.4±66.68a,b 28.6±8.62 0.204±0.11
NEG 511.8±91.36 141.0±79.69a,b 25.8±3.89 0.188±0.06
POS 170±58.70 43.20±13.23 15.6±1.67 0.182±0.04
NOR25 104.4±28.23 46.0±16.69 16.8±1.92 0.098±0.07
NOR50 103.2±17.94 46.0±6.52 20.8±5.45 0.124±0.017
NOR100 119±7.84 33.8±7.29 17.8±2.59 0.088±0.05
NOR 95.8±5.22 43.4±4.04 17.24±0.78 0.156±0.02
[19] 54-298 17-77 8.0-33 0.2-0.9

The gray shaded-area is plasma levels of ALT, AST that exceeded normal levels [19]. The following codes are significantly 
different (p<0.05) with: a. POS, NOR25, NOR50, NOR100, and NOR; b. NEG. Without codes are non-significantly different 
(p>0.05). AST: Aspartate aminotransferase, ALT: Alanine aminotransferase, BUN: Blood urea nitrogen, GB: Goat bile
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response also occurred in P. berghei ANKA-infected 
mice treated with GB [20]. Normally, excess bile acid 
in the human colon causes classic signs and symp-
toms of bile acid malabsorption, including watery 
stool, increased bowel frequency, urgency, nocturnal 
defecation, excessive flatulence, abdominal pain, and 
stool incontinence [21]. Oral treatment of mice with 
GB also caused malabsorption of bile acids and mild 
to watery diarrhea. Other symptoms, such as the fre-
quency of bowel movements, were not recorded. No 
formal report of diarrhea in humans caused by con-
sumption of whole goat gall bladder to treat malaria 
or increase stamina is available.

Parasitemia in POS mice was almost totally sup-
pressed by the administration of the antimalarial drug, 
DHP, showing that the drug is an appropriate positive 
control [22]. Parasitemia in GB100-treated mice was 
somewhat higher than levels in these control animals 
but significantly lower than levels in untreated NEG 
mice. Such efficacy was previously reported [22]. 
GB100 treatment showed significant suppression of 
parasitemia (96.88%), suggesting efficacy similar to 
DHP. Lower concentrations of GB were less effective, 
indicating a dose-response relationship. Survival of 
Plasmodium infected-mice was also proportional to 
GB dose. Higher concentrations of GB were associ-
ated with increased survival. Survival of infected-mice 
treated with GB100 was 100%, as same as seen for 
mice treated with DHP. However, GB100 adminis-
tration caused a higher incidence of diarrhea (eight 
mice). GB50 administration caused diarrhea in only 
one mouse. A dose equivalent to GB50 might provide 
a significant reduction in parasitemia (86.92%) with 
lower toxicity. Observed antimalarial activity of GB 
is consistent with the traditional use of GB to treat 
malaria by indigenous people in Indonesia, where the 
whole gallbladder is consumed directly without any 
preparation (100% GB) [11].

The mechanism of action of GB in suppressing 
parasite multiplication in erythrocytes needs further 
investigation. This activity might reflect the complex-
ity of bile components, such as amphipathic properties 
of bile acids that are associated with both benefits and 
toxicity. Hydrophilic bile acids, ursodeoxycholic acid 
(UDCA), and tauroursodeoxycholic acid, help repair 
damage and protect against the toxicity of hydropho-
bic bile acid, deoxycholic acid [11]. The high pH of 
bile may create an alkaline condition in the parasite 
acidic food vacuole. Alkalinization of the vacuole is 
the mechanism of CQ action in killing malaria para-
sites [23], susceptibility of malaria parasites to CQ in 
humans is pH dependent [24]. Accumulation of CQ 
in vacuoles is governed by the weak basic property of 
CQ [23,24]. Malaria parasite consumes hemoglobin in 
erythrocytes and digests this food in acidic vacuoles. 
Changes in pH inhibit breakdown of hemoglobin by 
cysteinase and thus starve parasite.

GB treatment generally showed no significant 
effect on splenomegaly or hepatomegaly in P. berghei 

ANKA-infected mice; however, length and weight 
of spleen and liver were significantly different when 
compared with either uninfected mice treated with GB 
(NOR25, NOR50, and NOR100) or untreated unin-
fected mice (NOR). GB treatment thus did not affect 
spleen or liver size in uninfected mice. Thus, enlarge-
ment of these organs in infected mice was caused 
by malarial parasites (Figures-3 and 4). Further, sta-
tistically, no significant correlation between length 
and weight of spleen or liver with parasitemia was 
observed (p>0.05).

Plasma levels of ALT and AST in P. berghei 
ANKA-infected-mice treated with GB (GB25, GB50, 
and GB100) and untreated mice (NEG) were much 
higher than activities in DHP-treated (POS), unin-
fected mice, and normal mice treated with GB (NOR25, 
NOR50, NOR100, and NOR). The latter mice showed 
enzyme activities in the normal range [19]. Elevated 
ALT and AST of P. berghei ANKA-infected mice 
indicate that DHP is a potent drug that suppresses the 
growth of parasites and restores plasma ALT and AST 
levels to normal. Furthermore, high plasma hepatic 
enzyme activities were not caused by GB treatment. 
Instead, malarial infection caused enzyme release 
from the liver. ALT and AST levels remained normal 
in GB-treated and untreated uninfected mice (NOR25, 
Nor50, NOR100, and NOR).

Degenerative changes in hepatocytes caused by 
malaria parasites may cause hepatic dysfunction, a 
common feature of severe malaria [25]. This condi-
tion is characterized by significant increases in liver 
enzyme activities, such as plasma ALT, AST, and 
alkaline phosphatase in plasma [26]. GB treatment 
did not affect plasma enzymes in GB-treated infected 
mice.

Conversely, kidney function in all mice remained 
normal, as plasma levels of BUN and creatinine 
remained in the normal range [19]. Plasma levels of 
BUN and creatinine in treated uninfected and untreated 
mice also remained normal. Thus, GB treatment did 
not adversely affect kidney function. Consumption of 
fish gall bladder caused acute renal failure (ARF) in 
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India [27], China [28], Vietnam [29], Cambodia [30], 
and, rarely, in Japan [31]. In Indonesia, Java Barb 
fish gallbladder caused both acute renal and hepatic 
injury [32]. Fish gallbladder is consumed to improve 
vision and treat rheumatism and asthma. Still, poi-
sonous fish gallbladder also causes ARF and induces 
damage to the heart, liver, and gastrointestinal tract. 
Thus, fish gallbladder may produce multiple organ 
dysfunction syndrome (MODS) with accompany-
ing mortality [28,33]. Sodium Cyprinol sulfate is a 
highly potent toxin in the bile of grass carp, which can 
induce MODS [34]. However, cases of MODS were 
not observed in the present study. To date, no cases of 
poisoning due to consumption of goat gallbladder are 
available. The constraint to ingestion is the size of the 
goat gallbladder might cause difficulty swallowing 
and choking.

A limitation of this research is the use of whole 
bile without characterization of its components [11]. 
Small volumes of bile in single goat gallbladders 
were not sufficient for the entire study, and bile from 
several gallbladders was pooled. Composition of GB 
may vary among individual goats. Male goats of the 
same strain were used to minimalize such variation. 
Bile used in TCM to treat liver dysfunction likely 
varies. [15]. The make-up of bile will be crucial to 
determining the qualities needed for treating disease. 
Thus, the characterization of bile is the next in further 
development of GB as an antimalarial drug.

A new series of bile acid-based 1,2,4-trioxanes 
have been synthesized as possible antimalarial agents. 
These compounds have been assayed for antimalarial 
activity against multiple drug-resistant Plasmodium 
yoelii in Swiss mice. The 1,2,4-trioxanes were chosen 
to develop synthetic substitutes for artemisinin. This 
latter agent is isolated from Artemisia annua and owes 
its antimalarial activity to the 1,2,4-trioxane moiety. 
This moiety is active against both chloroquine-resis-
tant and chloroquine-sensitive Plasmodium spp [34]. 
Human bile is suggested to be highly effective in 
treating malaria-type diseases in the ancient Chinese 
materia medica [14]. Bile acids have also been used 
for drug delivery to take advantage of their particular 
physicochemical properties and biocompatibility, and 
as drug absorption enhancers, for both drug solubi-
lization and permeation [35]. Further, UDCA, a bile 
component, was used in a clinical trial with COVID-
19 patients in the USA [36].

Mild toxicity was observed in the present study, 
yet GB was effective in treating malaria in mice. 
Unadulterated GB, GB100, suppressed parasite-
mia nearly as well as DHP. Consumption of GB in 
Indonesia involves swallowing gallbladder whole 
without further processing. Testimonial conversations 
with several consumers of bile suggested that fevers 
disappeared, mosquitoes did not bite, malarial infec-
tion regressed, and stamina increased after consuming 
GB. These individuals also reported no side effects 
(unpublished).

Conclusion

GB might be developed as an antimalarial 
drug. The fluid suppressed parasitemia and did not 
cause liver or kidney dysfunction in uninfected mice. 
However, GB might cause toxicity if consumed too 
often. Such use should be avoided pending further 
investigation.
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