
Veterinary World, EISSN: 2231-0916 3119

Veterinary World, EISSN: 2231-0916
Available at www.veterinaryworld.org/Vol.14/December-2021/7.pdf

RESEARCH ARTICLE
Open Access

Validation of single-step genomic predictions using the linear regression 
method for milk yield and heat tolerance in a Thai-Holstein population

Piriyaporn Sungkhapreecha1 , Ignacy Misztal2 , Jorge Hidalgo2 , Daniela Lourenco2 , 
Sayan Buaban3 , Vibuntita Chankitisakul1,4  and Wuttigrai Boonkum1,4

1. Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Thailand; 2. Department of Animal and
Dairy Science, University of Georgia, USA; 3. The Bureau of Animal Husbandry and Genetic Improvement, Pathum Thani, 

Thailand; 4. Network Center for Animal Breeding and Omics Research, Khon Kaen University,  Thailand. 
Corresponding author: Wuttigrai Boonkum, e-mail: wboonkum@gmail.com

Co-authors: PS: pat_sungkhapreecha@hotmail.com, IM: ignacy@uga.edu, JH: jorgeangel.hidalgomoreno@uga.edu, 
DL: danilino@uga.edu, SB: buaban_ai@hotmail.com, VC: vibuch@kku.ac.th

Received: 06-08-2021, Accepted: 02-11-2021, Published online: 15-12-2021

doi: www.doi.org/10.14202/vetworld.2021.3119-3125 How to cite this article: Sungkhapreecha P, Misztal I, Hidalgo J, 
Lourenco D, Buaban S, Chankitisakul V, Boonkum W (2021) Validation of single-step genomic predictions using the linear 
regression method for milk yield and heat tolerance in a Thai-Holstein population, Veterinary World, 14(12): 3119-3125.

Abstract
Background and Aim: Genomic selection improves accuracy and decreases the generation interval, increasing the selection 
response. This study was conducted to assess the benefits of using single-step genomic best linear unbiased prediction 
(ssGBLUP) for genomic evaluations of milk yield and heat tolerance in Thai-Holstein cows and to test the value of old 
phenotypic data to maintain the accuracy of predictions.

Materials and Methods: The dataset included 104,150 milk yield records collected from 1999 to 2018 from 15,380 
cows. The pedigree contained 33,799 animals born between 1944 and 2016, of which 882 were genotyped. Analyses were 
performed with and without genomic information using ssGBLUP and BLUP, respectively. Statistics for bias, dispersion, 
the ratio of accuracies, and the accuracy of estimated breeding values were calculated using the linear regression (LR) 
method. A partial dataset excluded the phenotypes of the last generation, and 66 bulls were identified as validation 
individuals.

Results: Bias was considerable for BLUP (0.44) but negligible (−0.04) for ssGBLUP; dispersion was similar for both 
techniques (0.84 vs. 1.06 for BLUP and ssGBLUP, respectively). The ratio of accuracies was 0.33 for BLUP and 0.97 for 
ssGBLUP, indicating more stable predictions for ssGBLUP. The accuracy of predictions was 0.18 for BLUP and 0.36 for 
ssGBLUP. Excluding the first 10 years of phenotypic data (i.e., 1999-2008) decreased the accuracy to 0.09 for BLUP and 
0.32 for ssGBLUP. Genomic information doubled the accuracy and increased the persistence of genomic estimated breeding 
values when old phenotypes were removed.

Conclusion: The LR method is useful for estimating accuracies and bias in complex models. When the population size is 
small, old data are useful, and even a small amount of genomic information can substantially improve the accuracy. The 
effect of heat stress on first parity milk yield is small.
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Introduction

The development of a sustainable animal 
production system in tropical countries in the face of 
climate change is challenging. Heat stress is an import-
ant concern in dairy production systems in places that 
are always hot and humid, such as Thailand [1]. The 
effects of heat stress on animals include decreased 
production and fertility, as well as health issues. Heat 
stress can be addressed by managing the animals’ 
housing and nutrition [2-7]. However, this requires 
expensive technology and is both temporary and not 
sustainable. The genetic component of heat stress 
can be estimated using a random regression animal 

model with the temperature-humidity index (THI) as 
a covariable [8]. Genetic selection for heat tolerance is 
cumulative and permanent and represents a powerful 
tool that could be used to improve the performance and 
fitness of dairy cattle [1]. The selection of heat-toler-
ant animals would be a cheap input technology that 
could play a key role in lessening the harmful impacts 
of abiotic factors on agricultural production [9,10].

Genomic selection relies on genomic estimated 
breeding values (GEBV) based on dense single nucle-
otide polymorphism (SNP) information. Genomics 
increases the genetic gain through more accurate breed-
ing values and by reducing the generation interval [11], 
especially for young dairy bulls with no daughter 
records. Genomic selection can therefore significantly 
reduce economic costs compared with the traditional 
progeny testing schemes. Single-step genomic best 
linear unbiased prediction (ssGBLUP) has become the 
method of choice for genomic evaluations [12] because 
it combines all pedigree information, genotypes, and 
phenotypes to compute GEBV, providing more accurate 
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predictions [13-15]. To assess the accuracy of predic-
tions, Legarra and Reverter [16] proposed the linear 
regression (LR) method, which relies on the compari-
son of (G)EBV obtained from a partial dataset in which 
validation bulls do not have daughters with phenotypic 
records, with (G)EBV predicted from a whole dataset 
(i.e., including phenotypic records of daughters of val-
idation bulls). These authors used cross-validation to 
compare and validate genomic predictions using statis-
tical measures of bias, dispersion, and accuracy. The LR 
method is easy to use, robust, and suitable, especially for 
small datasets [17]. The value of data from distant gen-
erations on the accuracy of predictions for selection can-
didates can be small. Lourenco et al. [18] reported that 
the accuracy of genomic evaluations for the final score 
in U.S. Holsteins did not decrease when excluding data 
from two or three more distant generations (12-17 years 
of data), and there was a reduction in computing cost. 
We hypothesized that the use of genomic information 
improves bias, dispersion, and the accuracy of estimated 
breeding values in the Thai-Holstein population and 
that using the most recent 10 years of data is enough to 
maintain the accuracy of predictions.

This study was conducted to assess the benefits 
of using ssGBLUP for genomic evaluations of milk 
yield and heat tolerance in Thai-Holstein cows and to 
test the value of old phenotypic data to maintain the 
accuracy of predictions.
Materials and Methods
Ethical approval

Animal welfare and use committee approval was 
not needed for this study as datasets were obtained 
from pre-existing databases based on routine animal 
recording procedures. 
Study period and location

The study was conducted from September 2020 
to March 2021. The study was carried at the Laboratory 
of Animal Breeding and Genetics, Department of 
Animal and Dairy Science, College of Agricultural 
and Environmental Sciences, University of Georgia. 
Data

The dataset after editing included 104,150 test-
day milk yield records from the first parity of 15,380 
Thai-Holstein cows recorded from 1999 to 2018. The 
Thai-Holstein is a tropical crossbreed with 75% or 
more Holstein genetics from the United States and 
Canada, and 25% or less Thai Native or Brahman cat-
tle. The Thai-Holstein breed has high fertility, the abil-
ity to adapt to hot and humid conditions, and is resistant 
to parasites and diseases. Test-day milk yield records 
were obtained from the Bureau of Biotechnology in 
Livestock Production of the Department of Livestock 
Development and were collected as part of the Master 
Bull project implemented from 1999 to 2018. Quality 
control on phenotypic data was performed to exclude: 
(1) records taken before 6 days in milk or after 305 days 
in milk; (2) herd-test-date combinations that had records 

coming from <30 cows or daughters of less than three 
sires; and (3) records from herds that used less than 
three sires and from daughters of sires that were used 
in less than three herds. Only cows with at least 5 test 
day records during lactation were used in the analyses.

The pedigree contained 33,799 animals born 
between 1944 and 2016, among which 882 animals 
genotyped using the Illumina BovineSNP50 Bead 
Chip (Illumina Inc., San Diego, CA) were analyzed. 
Quality control of genomic data retained SNP and 
animals with call rates >0.9 and SNP with minor 
allele frequencies >0.05. All the animals and a total of 
43,288 SNP markers were retained for further analy-
ses. The number of animals with pedigree, genotypic, 
and phenotypic information is presented in Table-1.

Climate data were obtained from weather stations 
from the Thai Meteorological Department in all regions 
of Thailand closest to each dairy farm based on postal 
code (no longer than 20 km). These data included daily 
temperature and relative humidity recorded every 3 h, 
which were used to calculate the THI based on the for-
mula used by the National Oceanic and Atmospheric 
Administration [19] as follows:

THI=(1.8T+32)–(0.55–0.0055RH)(1.8T–26),
in which T is the temperature in degrees Celsius 

and RH is the relative humidity as a percentage. The 
mean daily THI for each milk test date was used to 
detect the threshold of heat stress and to estimate genetic 
parameters as suggested by Bohmanova et al. [20].
Analyses and computations

Genetic parameters and breeding values were 
estimated using the REMLF90 program [21] for a 
repeatability model with random regressions on a THI 
function as follows:

Table-1: Data structure and descriptive statistics for milk 
yield in the full dataset (1999-2018) or the last 10 years 
of data (2009-2018) of the Thai-Holstein population.

Item/years of data 1999-2018 2009-2018

Number of contemporary 
groups

Herd×Month×Year 24,928 13,074
Farm×Season 218 125
Breed group×Day in 
milk

30 30

Classes of ages at first 
calving

7 7

Number of breed groups 3 3
Number of animals with 
records

15,380 8,290

Number of animals with 
pedigree

33,799 21,212

Number of animals with 
genotype

882 882

Descriptive statistics of 
milk yield

Minimum (kg) 5.0 5.0
Maximum (kg) 45.0 44.0
Mean (kg) 14.0 14.4
SD (kg) 4.5 4.5

Number of records 104,150 58,905

SD=Standard deviation
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yijklmn=hmyi+fsj+bgdimk+afcl+bgm[f(THI)i]+an+ahtn 
[f(THI)i]+pn+phtn [f(THI)i]+eijklmn,

in which yijklmn is the test-day milk yield of cow 
n; hmyi is the random effect of the ith combination of 
herd-month-year of the test (i=1-24,928); fsj is the 
fixed effect of the jth combination of farm and calving 
season (j=1-218); bgdimk is the fixed effect of the kth 
combination of the breed group and the days in milk 
group (k=1-30); afcl is the fixed effect of the lth class 
of age at first calving (l=1-7); bgm is a fixed effect of 
the mth breed group (m=1-3); a is a general random 
additive genetic effect (without considering heat tol-
erance); aht is the random additive genetic effect for 
heat tolerance; p is a general random permanent envi-
ronmental effect (without considering heat stress); pht 
is the random permanent environmental effect of heat 
tolerance; e is the random residual effect; and f(THI) 
is a function of the THI defined as follows:
f THI
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The repeatability model with random regressions 
on the THI function captures the effects of heat stress on 
milk yield because it models milk yield as a function of 
degrees of heat stress (reaction norm approach) affecting 
the animals. The intercept additive genetic effect, which 
is independent of the THI function and represents the 
intercept, indicates the animal’s capacity to produce milk 
under thermoneutral conditions. The additive genetic 
effect regressed on the THI function quantifies the ani-
mal’s sensitivity to heat stress; it represents the slope of 
the reduction in milk yield per THI unit increase above 
the threshold of thermoneutral conditions [22]. To define 
the threshold, analysis with the full dataset by ssGBLUP 
was undertaken by varying the THI values from 72 to 80. 
The THI level in the analysis with the lowest −2logL 
value was selected as the threshold (data not shown).

The (co)variance structure among all random 
effects in the model was:
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in which A is the numerator relationship 
matrix; I is the identity matrix; σ2 is the variance; 
σ is the covariance; and a, aht, p, and pht are defined 
as above.

Analyses were performed with and without 
genomic information using ssGBLUP and Best linear 
unbiased prediction (BLUP), respectively. In ssGBLUP, 
the inverse of the pedigree relationship matrix (A) in 
the mixed model equations is replaced by the inverse 
of the realized relationship matrix (H) [13], which is:

H A
G A

− −
− −= +
−









1 1
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In which A
22

1−  is the inverse of the pedigree rela-
tionship matrix for genotyped animals only and G−1  is 
the inverse of the genomic relationship matrix (G), 
constructed as in VanRaden [23] using current allele 
frequencies. To avoid singularity problems, G was 
blended with 5% of A22, the elements for genotyped 
animals in A. The method to analyze scaling to make 
G compatible with A followed by Chen et al. [24].

Estimated breeding values were calculated fol-
lowing [8]:

BV a f THI *aht= + ( ) ,

in which is the regular breeding value, is the 
heat-tolerance breeding value, and f(THI) is defined 
as above. The effects of heat tolerance determine the 
change in breeding values of animals per THI unit 
increase. For example, if aht of one animal is −0.1 kg, 
and it is 0.0 kg for a second animal, the second animal 
has a superiority of 0.1 kg at f(THI)=1 and of 0.5 at 
f(THI)=5, assuming that is equal for both animals.
Validation of predictions

Statistics from the LR method [16] were used to 
validate breeding values with and without account-
ing for heat tolerance. A partial dataset (p) was con-
structed by removing the phenotypes of the last gen-
eration (6 years). The validation group consisted of 66 
bulls born between 1996 and 2011 that did not have 
daughters with milk yield records in the partial dataset 
but had an average of 4 (ranging from 1 to 23) daugh-
ters with records in the whole dataset (w). Validation 
was done assuming predictions were calculated for a 
thermo-neutral environment with a THI of 76 and an 
extreme environment with a THI of 80.

Statistics for bias, dispersion, the ratio of accura-
cies, and accuracies were calculated as follows.

Bias was computed as:

µwp p wu u= − 

in which up and uw are the mean estimated 

breeding values obtained with the partial and whole 
datasets, respectively; μwp has an expected value of 0 
if the evaluation is unbiased.
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The slope or dispersion of the regression of ûw  
on ûp  is expected to be 1 if there is no over/under 
dispersion. It was computed as:

b
cov
varw p

w p

p
,

( , )

( )
=

û û
û

,

In which cov w p( , )û û  is the covariance between 
breeding values obtained with the whole and partial 
datasets, and var p( )û is the variance of estimated 
breeding values obtained with the partial dataset.

An estimator of the ratio of accuracies was calcu-
lated as the correlation between ûp  and ûw as follows:

ρp w
p w

w p

cov
var var,

( , )

( ) ( )
=

û û
û û

,

The ratio of accuracies is an estimator of the 
consistency between subsequent evaluations, and a 
greater value indicates more stable predictions.

The accuracy of genomic predictions was 
calculated as follows:

Acc
cov

F
w p

a

 =
−
( , )

( )
,

û û
1

2σ

in which F  is the average inbreeding coefficient 
in the individuals in the validation group, and σ a

2 is 
the additive genetic variance.

Results and Discussion

The threshold for heat stress in this popula-
tion was estimated to be a THI of 76, which means 
that milk yield began to decrease at this THI level. 
To define the threshold, analysis with the full 

dataset was undertaken by varying the THI val-
ues from 72 to 80. The THI level in the analysis 
with the lowest −2logL value was selected as the 
threshold (data not shown; supplementary data is 
available from https://doi.org/10.3168/jds.2021-
20151). The estimate for intercept additive genetic 
variance at a THI of 76 was 4.89±0.03 kg2, and 
for the slope genetic variance of heat tolerance, 
it was 0.004±0.002 kg2. Therefore, considerably 
low genetic variation was found for heat toler-
ance. This is possibly because the Thai-Holstein 
population is composed of crossbred animals, and 
the local breeds that are crossed with Holstein are 
well-adapted to hot environments. In addition, this 
population has been under selection for heat tol-
erance since 1992. Aguilar et al. [25] found that 
genetic variance for heat tolerance doubled from 
first to second parity and increased by ~20% from 
second to third parity. Because only first parity 
records were available in our study, future research 
is needed to evaluate the genetic variation for heat 
tolerance on later parities.

Statistics for bias, dispersion, the ratio of 
accuracies, and accuracy are presented in Table-2. 
Bias was considerable (0.44) for BLUP evalua-
tions but was marginal (−0.04) for ssGBLUP eval-
uations. For a THI of 76, dispersion was 0.84 for 
BLUP and 1.06 for ssGBLUP, indicating inflation 
of EBV estimates, whereas GEBV were only mar-
ginally deflated. Tsuruta et al. [26] suggested that 
values of dispersion close to 1 indicate that early 
evaluations are successful in predicting the actual 
magnitude of differences among animals and 
stated that deviations of ±15% from 1 are in gen-
eral acceptable. The ssGBLUP in our study yielded 
estimates within this range.

The ratio of accuracies is a metric of the stability 
of genetic evaluations. It can also be interpreted as the 

Table-2: Statistics from the LR validation of predictions obtained with traditional BLUP and ssGBLUP for a THI of 76 and 
80 using data from 1999 to 2018 or the past 10 years of data (2009-2018).

Years of data 1999-2018 2009-2018

Method BLUP ssGBLUP BLUP ssGBLUP

LR statistics
THI of 76

Bias 0.44 −0.04 0.54 -0.10
Slope or dispersion 0.84 1.06 0.75 1.00
Ratio of accuracies 0.33 0.97 0.13 0.95
Accuracy 0.18 0.36 0.09 0.32
−2logL 483,163.91 483,145.90 275,019.18 275,004.30
AIC 483,179.91 483,161.90 275,035.18 275,020.30

THI of 80
Bias 0.36 −0.04 0.45 -0.10
Slope or dispersion 0.89 1.07 0.66 1.01
Ratio of accuracies 0.34 0.97 0.12 0.96
Accuracy 0.18 0.34 0.08 0.30
−2logL 485,919.19 485,920.17 276,395.05 276,398.67
AIC 485,935.19 485,936.17 276,411.05 276,414.67

AIC=Akaike information criterion, BLUP=Best linear unbiased prediction, LR=Linear regression; ssGBLUP=Single-step 
genomic best linear unbiased prediction, THI=Temperature-humidity index



Veterinary World, EISSN: 2231-0916 3123

Available at www.veterinaryworld.org/Vol.14/December-2021/7.pdf

inverse of the relative gain in accuracy due to the addi-
tion of new phenotypes [27]. As expected, the statistic 
for the ratio of accuracies was lower in BLUP (0.33) 
evaluations than in ssGBLUP (0.97) evaluations, indi-
cating that ssGBLUP evaluations were more stable 
and that GEBV of validation bulls obtained without 
daughter records were estimated more accurately. 
These results are in agreement with those reported by 
Macedo et al. [28] in a research study with a dairy 
sheep population.

In general, the LR statistics deteriorated for a 
THI of 80, especially the bias from BLUP predictions. 
This is possible because of the low genetic variance 
found for heat tolerance. Combining genomic infor-
mation with the data helped to keep bias, dispersion, 
the ratio of accuracies, and accuracy at more similar 
levels under a THI of 76 and 80. Fragomeni et al. [29] 
showed that the accuracy of GEBV was superior to the 
accuracy of estimated breeding values (EBV), even in 
extreme environments, and concluded that genomic 
information helps to better identify animals that per-
form well in a range of environments. Having highly 
accurate GEBV given an extreme THI is important 
when production levels decrease as a result of heat 
stress. The impact of heat stress in this Thai-Holstein 
population was small, probably because: (1) The hous-
ing conditions are proper, so the external THI does not 
reflect the conditions inside the barns; (2) only data for 
the first parity were available; and (3) the population 
is composed of crossbred animals, in which Holsteins 
are crossed with adapted, local breeds.

The accuracy of predictions is a crucial com-
ponent in animal breeding programs because it has 
a direct relationship with the selection response. The 
accuracy of ssGBLUP predictions doubled com-
pared with those from BLUP, which has the potential 
to increase the selection response by two-fold. The 
gain in accuracy due to the use of genomic informa-
tion is explained by more accurate estimates of the 
Mendelian sampling terms [30]. Macedo et al. [28] 
reported an increased accuracy (~33%) for milk yield 
predictions in ssGBLUP compared with BLUP in a 
dairy sheep population. Cesarani et al. [31] showed 
a gain of ~37% in the accuracy for milk ability pre-
dictions in dual-purpose cattle when comparing 
ssGBLUP and BLUP.

There is a question as to why the accuracy dou-
bled despite having only a few genotyped animals. 
First, the accuracies are relatively small because the 
population size is small. The genomic improvement 
with genomic relationships is due to the estimation 
of clusters of chromosome segments [32]. With few 
sires, the number of such clusters could be relatively 
small, and genomic predictions could be accurate 
within the population but not across populations. 
Schultz and Weigel [33] found that the accuracies of 
prediction based on reference from one herd applied 
to that herd could be higher than if the reference pop-
ulation includes several herds.

Another possible factor to explain the two-fold 
increase in the accuracy of predictions is related 
to the identification of “hidden relationships” in 
the pedigree. The percentage of animals with both 
parents missing was 23.1%, and with one parent 
missing, it was 7.2%. Therefore, animals unrelated 
through pedigree relationships may become related 
in the genomic relationship matrix, contributing to a 
more precise estimation of the effects of independent 
chromosome segments. Unknown parent groups are 
widely used in the modeling of missing pedigrees. 
In this method, breeding values of animals with 
missing pedigrees are adjusted according to the frac-
tion of genes originating from each unknown parent 
group [34]. The accurate estimates of unknown parent 
groups rely on having many observations [35,36]. In 
this research study, the small size of the dataset lim-
ited our ability to investigate the differences in the 
accuracy of predictions with and without unknown 
parent groups in the model. This topic deserves 
future research.

The statistics for bias, dispersion, the ratio of 
accuracies, and accuracy (Table-2) in general dete-
riorated when removing the first 10 years of phe-
notypic data compared with using the full dataset. 
The deterioration was more evident for BLUP eval-
uations than for ssGBLUP evaluations. For exam-
ple, accuracy dropped from 0.18 to 0.09 in BLUP 
and from 0.36 to 0.32 in ssGBLUP evaluations when 
assuming a THI of 76. A similar drop was observed 
for a THI of 80. Although there was a drop in pre-
dictions from ssGBLUP, the drop was less than 
from BLUP. Therefore, genomic evaluations were 
more persistent when older data were removed. The 
difference in computing time was negligible when 
using phenotypes from 1999 to 2008 or 2009 to 
2018 (data not shown). Although the deterioration 
was not dramatic for ssGBLUP evaluations, our rec-
ommendation is to use all the data available in the 
breeding program to maximize accuracy and genetic 
progress, given the small size of this population. In 
large populations, the contribution of old data for 
predicting future breeding values of selection candi-
dates is negligible [18,31].

Figure-1 shows the different EBV and GEBV 
estimations for milk yield and heat tolerance traits 
when analyzed from the top 20% of the herd. The 
GEBV was apparently higher than EBV in all breed 
groups. These findings indicate that the rates of 
genetic progress for milk and heat tolerance when 
using the ssGBLUP method are faster than when 
using the BLUP method, a factor that is meaningful 
for decreasing the generation interval, increasing the 
selection accuracy, and reducing the costs of progeny 
testing. However, the number of individuals in the ref-
erence population related to the data set and the num-
ber of SNPs are mainly considered factors for better 
accuracy of this method in genetic evaluation of dairy 
breeding programs.
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Conclusion

Genomic selection could be used to improve 
milk yield production in the Thai-Holstein population 
with the potential to double genetic gain. It is import-
ant to make use of all the available information to 
maximize the accuracy of genomic predictions. The 
accuracy of breeding values for thermo-neutral and 
extreme environments were similar mainly because 
marginal genetic variation was found for heat toler-
ance and a small reference population dataset was 
used. It is important to highlight the necessity of future 
research, including data from more parity to explore 
the potential of genetic progress for heat tolerance.
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