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Abstract
Background and Aim: Apigenin (API) is an estrogenic compound found in many plants. Sertoli cells reside in the testis 
and are a key target of environmental toxicants. This study aimed to examine the cytotoxicity, especially oxidative stress of 
API in mouse Sertoli TM4 cells.

Materials and Methods: Mouse Sertoli TM4 cells were treated with 50 and 100 µM API for 48 h. Cell viability, lactate 
dehydrogenase (LDH) activities, glutathione reductase (GR) activities, production of reactive oxygen species (ROS), and 
malondialdehyde (MDA) levels were evaluated using various assays.

Results: Treatment with API at both 50 and 100 µM decreased viability and GR activity but increased LDH activity, ROS 
production, and MDA levels in mouse Sertoli TM4 cells.

Conclusion: Exposure to API induced oxidative stress in mouse Sertoli TM4 cells.
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Introduction

Over the past few decades, bioactive compounds 
in plants have attracted increasing interest from the 
public and scientific community due to their vast 
therapeutic benefits [1-3]. Notably, pharmacologi-
cal studies have discovered that 4’,5,7,-trihydroxy-
flavone or apigenin (API), an estrogenic flavonoid 
found abundantly in oranges, grapefruit, onions, cel-
ery, parsley, wheat sprouts, green tea, chamomile, 
spearmint, and thyme [4-13], possesses anti-inflam-
matory [9,14-21], antioxidant [8,9,17,19,21], anti-
microbial [14-16,18,20], anticancer [9,14-18,20,22], 
hepatoprotective [23], renoprotective [8], and neuro-
protective [24] properties.

In contrast, emerging evidence has shown that 
Sertoli cells are particularly sensitive to harmful sub-
stances in food [25], hormonal treatments [25-27], 
and environmental toxicants. These cells are located 
in the seminiferous tubules of the testis and provide 
nutrients and structural support for developing sper-
matids [28,29]; therefore, disrupting them through 
xenobiotic-induced toxicity might compromise male 
reproductive health and function [30].

To the best of our knowledge, some studies 
have reported the effects of phytoestrogen on male 
reproduction. However, information about cyto-
toxic effects, especially oxidative stress of API is 

scarce. This study aimed to examine the cytotoxicity, 
especially oxidative stress of API in mouse Sertoli 
TM4 cells.
Materials and Methods
Ethical approval

No experiments in this study were conducted on 
live animals, so ethical approval was unnecessary.
Study period and location

The study was conducted from March to 
December 2020 at the Department of Veterinary 
Technology, Kasetsart University, Thailand.
Cells and chemicals

Mouse Sertoli TM4 cells were purchased from 
the American Type Culture Collection (Manassas, 
VA, USA). MTS cell proliferation assay kit, lac-
tate dehydrogenase (LDH)-cytotoxicity assay kit II, 
2’7’-dichlorofluorescin diacetate (DCFDA) cellu-
lar reactive oxygen species (ROS) detection assay 
kit, lipid peroxidation assay kit (malondialdehyde 
[MDA]), and GR assay kit were purchased from 
Abcam (Cambridge, MA, USA). API was purchased 
from Sigma-Aldrich (St. Louis, MO, USA) and mixed 
with dimethyl sulfoxide solution (DMSO) before 
being filtered.
Cell culture

Mouse Sertoli TM4 cells were cultured in 
complete Dulbecco’s Modified Eagle Medium/F-12 
supplemented with 5% horse serum, 2.5% fetal bovine 
serum, 100 U/mL penicillin, and 100 U/mL streptomy-
cin in a humidified atmosphere with 5% CO2 at 37°C.
MTS assay

Cell viability was determined using the MTS 
cell proliferation assay kit. Briefly, mouse Sertoli 
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TM4 cells were seeded into 96-well plates at a density 
of 5-10×103 cells/well at a final volume of 200 µL/well 
and incubated for 24 h. Next, the cells were treated 
with API at concentrations of 0, 20, 40, 60, 80, 100, 
120, 140, and 160 µM or DMSO. In this test, we used 
two controls: Zero concentration of API and DMSO. 
The result showed DMSO has no influence on cells. 
However, we calculated the results between the zero 
concentration and API treatment groups. Then, the 
cells were further incubated for 24, 48, and 72 h in a 
humidified atmosphere with 5% CO2 at 37°C. After 
this incubation, 20 µL MTS reagent was added to each 
well, and the cells were further incubated for 1-2 h at 
37°C in the dark. Finally, absorbance was measured 
using an automated microplate reader (Bio-Rad, USA) 
at 490 nm. The results were expressed as a percentage 
of viable cells compared with the control.
LDH leakage assay

LDH leakage was measured using an LDH 
cytotoxicity assay kit. Briefly, mouse Sertoli 
TM4 cells were seeded into 96-well plates at a den-
sity of 5-10×103 cells/well at a final volume of 
200 µL/well. After cells became attached to the well, 
the medium was replaced with 100 µL medium con-
taining 50 and 100 µM API, and then, the cells were 
incubated for 48 h. At the end of incubation, the plate 
was gently shaken to ensure that LDH was evenly dis-
tributed in the culture medium. Next, the cells were 
centrifuged at 600×g for 10 min, and the precipitate 
was transferred into new 96-well plates (10 µL/well). 
Then, 100 µL LDH reaction mix was added to each 
well, and the plate was incubated for 60 min at 25°C. 
After incubation, the absorbance was measured using 
an automated microplate reader (Bio-Rad) at 450 nm.
Determination of intracellular ROS production

ROS was measured using a DCFDA cellular 
ROS detection kit. Briefly, mouse Sertoli TM4 cells 
were seeded into 96-well plates at a density of 
5-10×103 cells/well at a final volume of 200 µL/well. 
After the cells became attached to the well, the medium 
was replaced with 100 µL medium containing 50 and 
100 µM API, and then, the cells were incubated for 48 h. 
Next, each well was washed with 100 µL 1×buffer and 
stained with 100 µL 25 µM DCFDA in 1×buffer for 
45 min at 37°C in the dark. Finally, this solution was 
removed from the cells, and 100 µL 1×buffer was 
added to each well for measuring fluorescence at 
Ex/Em=485/535 nm in endpoint mode.
Determination of lipid peroxidation

Lipid peroxidation was measured using an MDA 
assay kit. Briefly, mouse Sertoli TM4 cells were seeded 
into 96-well plates at a density of 5-10×103 cells/well at 
a final volume of 200 µL/well. After the cells became 
attached to the well, the medium was replaced with 
100 µL medium containing 50 and 100 µM API, and 
then, the cells were incubated for 48 h. Next, thiobar-
bituric acid was added to the wells, and the cells were 
incubated for 60 min at 95°C. Finally, the cells were 

cooled in an ice bath for 10 min, and the absorbance 
was measured using an automated microplate reader 
(Bio-Rad) at 532 nm.
Determination of GR activity

GR activity was measured using a GR assay 
kit. Briefly, mouse Sertoli TM4 cells were seeded at 
1-5×105 cells and treated with 50 and 100 µM API 
or nothing for 48 h before being homogenized with 
0.2 mL cold assay buffer. The cells were centrifuged 
at 10,000×g for 15 min at 4°C, and then, the superna-
tant was collected and stored at −80°C until further 
testing. Before performing the GR assay, the samples 
were treated with 3% H2O2 and catalase to destroy 
glutathione (GSH). Then, the samples were seeded 
into 96-well plates and mixed with 50 µL reaction 
mixture. The absorbance was measured using an auto-
mated microplate reader (Bio-Rad) at 405 nm.
Statistical analysis

All experiments were repeated at least thrice, 
and values are expressed as mean±standard deviation. 
Paired t-tests were employed to determine when dif-
ferences between values were statistically significant, 
with p<0.05 regarded as statistically significant.
Results
Effect of API on the viability of TM4 cells

The results indicated that API was cytotoxic to 
TM4 cells in a time- and concentration-dependent man-
ner, as the half-maximal inhibitory concentration (IC50) 
values were 95.5, 47.7, and 40.9 µM at 24, 48, and 72 h 
of incubation, respectively (Figure-1). According to our 
review of literature, we used the API concentrations of 
0-100 µM for 24-114 h to test human hepatoma cells 
and human leukemia cell lines [31,32]. Moreover, note 
that 48 h was selected as the optimal time because the 
IC50 value was not high, and the concentrations of API 
at 50 and 100 µM were used in later experiments.
Effect of API on LDH activity in TM4 cells

The findings showed that the addition of 50 and 
100 µM API to the medium significantly increased 
LDH activity in TM4 cells compared with no treat-
ment (control). In addition, a striking increase in LDH 
activity was observed in cells treated with 50 µM API 
relative to DMSO (Figure-2).
Effect of API on ROS production in TM4 cells

The results showed that the addition of 50 and 
100 µM API to the medium significantly increased 
ROS levels in TM4 cells compared with no treatment 
(control) (Figure-3).
Effect of API on MDA levels in TM4 cells

The findings indicated that the addition of 50 and 
100 µM API to the medium significantly increased 
MDA levels in TM4 cells compared with no treatment 
(control) (Figure-4).
Effect of API on GR activity in TM4 cells

The results showed that the addition of 50 and 
100 µM API to the medium significantly decreased 
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GR activity in TM4 cells compared with no treatment 
(control) and DMSO treatment (Figure-5).

Discussion

In this investigation, mouse Sertoli TM4 cells 
exposed to various concentrations of API experienced 
significant increases in oxidative stress. Cytotoxicity 
assays are advantageous for determining a compound’s 

potential to invoke apoptosis (i.e., cell death) [33]. 
Here, LDH leakage and MTS assays were used, which 
are superior to MTT assays because their reagents are 
added directly to the culturing medium without mul-
tiple steps. From these kits, analyses demonstrated 
that API was cytotoxic to TM4 cells in a time-de-
pendent manner. Copious research has established 
that API increases LDH activity levels in TM4 cells 
while decreasing the proliferation of numerous cell 
lines, such as human hepatocarcinoma HepG2 cells 
[31], human leukemia [32], human hepatocarcinoma 
Hep3B and HepG2 [34], human cholangiocarcinoma 
[35], and human breast carcinoma [36].

Oxidative stress result from an imbalance 
between the production and accumulation of ROS 
inside cells and an individual’s inability to detox-
ify ROS. Hence, ROS generation and increased 
lipid peroxidation are signs of oxidative stress [37]. 
In this study, we found that the addition of API to 
the culturing medium significantly increased ROS 
levels in TM4 cells, which agrees with the findings 
from comparable investigations that exposure to 
API elevates ROS levels in human hepatocarcinoma 
HepG2 cells [31], human leukemia [32], human hepa-
tocarcinoma Hep3B and HepG2 [34], and human 
breast carcinoma [36]. Furthermore, our data revealed 
that API increased MDA levels (the end product of 
oxidative injury and an indicator of lipid peroxida-
tion) and decreased GR activity (an enzyme involved 
in the GSH redox cycle) in TM4 cells. According to 
our review of literature, we reported that API-induced 

Figure-1: TM4 cell viability was determined using an MTS assay after incubation with varying concentrations of apigenin 
for 24, 48, and 72 h (mean±SD). *p<0.05; **p<0.005; and ***p<0.001 compared with no treatment. All results are the 
mean values obtained from at least three independent experiments.

Figure-2: Lactate dehydrogenase (LDH) activity in 
TM4 cells was determined using an LDH cytotoxicity assay 
after incubation with 50 and 100 µM apigenin for 48 h 
(mean±SD). *p<0.05 compared with no treatment (the 
control) and dimethyl sulfoxide treatment. All results are 
the mean values obtained from at least three independent 
experiments.
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GR activity inhibits ethanol-induced oxidative stress 
and lipopolysaccharide (LPS)-induced inflamma-
tory cytokine production in cultured rat hepatocytes 
[38]; API-induced GR activity inhibits d-galac-
tosamine/LPS-induced liver injury by upregulating 
hepatic Nrf-2 and peroxisome proliferator-activated 
receptor γ expressions in mice [39]; GR activity has 
antioxidant properties and superoxide dismutase and 
GR activities in HepG2 cells after the addition of a 
fungal endophyte producing API from pigeon pea 
(Cajanus cajan (L.) Millsp.) [40]. In this study, we 
used a GR assay kit because GR catalyzes the nico-
tinamide adenine dinucleotide phosphate-dependent 
reduction of the oxidized GSH (a non-enzymatic 

antioxidant) to reduce GSH ratio, which plays an 
important role in the GSH redox cycle. A high oxi-
dized GSH/reduced GSH ratio is essential for protec-
tion against oxidative stress.

This study has strengths and limitations that 
should be mentioned. Regarding study strengths, 
mouse Sertoli TM4 cells were selected because they 
share features with human Sertoli cells [41] and are 
useful in evaluating the impact of API exposure in vitro. 
The main disadvantage of an in vitro study is the lack 
of systemic effects, while that of an in vivo study is the 
animal welfare legislation, which is currently appli-
cable in most countries to prevent misuse of animals 
and decrease the number of animals required in toxi-
cological testing. Hence, Sertoli cells are essential for 
spermatogenesis and are a major target for various tox-
icants; thus, they serve as an ideal model for toxicity 
studies on the male reproductive system.
Conclusion

This study demonstrated that exposure to API 
induces oxidative stress in mouse Sertoli TM4 cells, 
as evidenced by reductions in cell viability and GR 
activity and increases in LDH activity, ROS produc-
tion, and MDA levels.
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 Figure-4: Malondialdehyde (MDA) levels in TM4 cells were 
determined using an MDA assay after incubation with 50 
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**p<0.001 compared with no treatment (the control). All 
results are the mean values obtained from at least three 
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 Figure-5: Glutathione reductase (GR) activity in TM4 cells 
was determined using a GR assay after incubation with 
50 and 100 µM apigenin for 48 h (mean±SD). *p<0.05; 
**p<0.01; and ***p<0.001 compared with no treatment 
(the control) and dimethyl sulfoxide treatment. All 
results are the mean values obtained from at least three 
independent experiments.
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