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Abstract
Zebrafish have gained momentum as a leading experimental model in recent years. At present, the zebrafish vertebrate 
model is increasingly used due to its multifactorial similarities to humans that include genetic, organ, and cellular factors. 
With the emergence of novel research techniques that are very expensive, it is necessary to develop affordable and valid 
experimental models. This review aimed to highlight some of the most important similarities between zebrafish and humans 
by emphasizing the relevance of the first in simulating neurological disorders and craniofacial deformity.
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Introduction

The zebrafish (Danio rerio; ZF) are fresh-
water fish belonging to the minnow tribe of the 
Cypriniformes order. It is a tropical fish native to 
Southeast Asia that is about 2.5-4 cm long. It is a 
popular aquarium fish, and it is easily available and 
cheap. ZF have the advantage of being able to toler-
ate water of low ion content [1,2]. They are shallow 
water habitants found in shallow ponds, canals, and 
streams, preferably in stagnant waters or slow flowing 
waters with a temperature between 6°C and 38°C [3]; 
hence, they can be well maintained in aquaria made of 
high-quality plastic and glass [4]. The capacity of the 
tank is determined as per the number of fish housed. 
A maximum of 10-12 ZF can be accommodated in 10 
gal. of water. Soft water is ideal [5] for the housing 
of ZF, particularly when a pH of 7 is maintained [6]. 
ZF (being an omnivorous species) feed on animal 
and plant matter such as zooplankton, insects, algae, 
fish scales, sand, mud, and invertebrate eggs [7]. The 
laboratory ZF are fed with a commercially available 
tropical fish diet [8]. The sexual dimorphism in ZF 
is difficult to assess, but they can be distinguished by 
their body shape and color. Male ZF are more slen-
der and display a golden red shade between their blue 
stripes, whereas female ZF exhibit a protruding belly, 

with their body having alternate blue stripes with sil-
ver stripes [9]. ZF undergo external fertilization and 
embryo development that produces a great number 
of progeny [10]. The optimal temperature for embryo 
production and breeding depends on the advent of 
light, on a 14:10 h light and dark cycle, on maintain-
ing water temperature between 23°C and 28°C, and 
on maintaining water pH between 6.2 and 7.5 [11]. 
The mating processes involve three phases (namely, 
initiatory, receptive, and spawning phase) [12]. The 
female ZF release hundreds of eggs in a clutch at a 
time into the water [13]. They are highly fertile and 
lay offspring at quite an early age . The sexual matu-
rity of the laboratory ZF is attained by the 3rd month 
of their development, whereas their ideal reproduc-
tive age lies between 6 months and 1 year, while their 
lifespan can reach up to 5 years [9]. From the 3rd day 
of fertilization, ZF are eligible for larval experiments. 
In fact, the ZF teleost lives in conditions that can be 
easily replicated ex situ.

ZF are used by many laboratories to substitute 
and/or to supplement higher vertebrate models due 
to their similarities regarding many features of their 
embryonic development and adult anatomy with those 
of humans [14,15]. Their relatively small size and 
radiant feature allow for the observation of the entire 
animal [16]; hence, ZF are an excellent animal model 
for learning the different pathophysiological processes 
in organogenesis, embryogenesis, and carcinogenesis 
as well as for undertaking pharmacological and toxi-
cological studies [17-19]. Their egg size is small, and 
their translucent embryos make experimental manip-
ulations such as cell labeling, lineage tracing, and cell 
transplantation significantly smoother. Unlike higher 
organisms, the ZF organ system is highly minimalistic 
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[10]. The ZF model has benefited from the advances in 
genetics, as ZF tumor cell lines of any kind have been 
established by inducing the related gene expression 
and being able to effectively simulate cancer morphol-
ogy and signaling pathways [20,21]. ZF models enable 
faster and relevant in vivo screening through imaging 
of the pathogenesis, thus providing critical insights 
into the molecular mechanisms of the disease [22,23]. 
The fully mapped ZF genome has revealed extensive 
homology with the human genome, thus making ZF 
an excellent tool for studying human pathologies [24]. 
In fact, ZF exhibit 70% gene homology with humans, 
while 84% of the genes identified in human diseases 
are also expressed in this teleost species [25].

The currently available animal models can sim-
ulate most of the cognitive and molecular aspects of 
human pathologies, but they are time constraint and 
expensive; in contrast, the ZF model is an efficient, 
robust, and unique drug screening tool [26]. Moreover, 
the ZF ventral telencephalon is homologous to the 
human striatum [27]. The ZF immune system is func-
tionally developed within 48 h post-fertilization and, 
in a similar extent to that of mammals, it has neutro-
phils, natural killer cells, monocytes/macrophages, 
and non-specific cytotoxic cells [28]. There is contin-
uous tooth regeneration in ZF, providing us with the 
opportunity to better understand tooth replacement in 
mammals. Even if they are more favorable as mod-
els than rodents in many research areas, ZF lacks 
skin, mammary glands, lungs, and prostate organs. 
However, like vertebrates, ZF have organs and tis-
sues that show equivalent morphology and function to 
humans (heart, kidney, liver, pancreas, gastrointestinal 
tract, and brain) [24]. Studies have also reported that 
the sleep pattern in the brain of ZF is similar to that of 
sleeping humans, which involve rapid eye movement 
(REM) and non-REM sleep [29]. Jeong et al. [30] 
have revealed that the endothelial tight junction-based 
blood-brain barrier (BBB) of ZF is similar to that of 
humans. This BBB and blood-retinal barrier develop 
in ZF embryos by 3 days post-infection on a transgenic 
ZF model has been revealed [31]. This review focuses 
on ZF as a novel model for studying neurodegenera-
tive diseases and craniofacial development.
ZF as Model for the Experimental Simulation 
of Neurological Disorders

The sequencing of the entire ZF genome has 
revealed that 70% of the proteins encoded by human 
genes are related to genes found in ZF, while 84% 
of the ZF genes are known to be associated with 
human diseases [32]. The nervous system of the ZF 
is simple, with individual elements (glutamatergic 
excitatory neurons and GABAergic inhibitory neu-
rons) [33]. Decui et al. [34] have recently presented 
data that reveal that micronized resveratrol can pre-
vent pentylenetetrazole (PTZ)-induced seizure in 
epilepsy, whereas results by Mazumder et al. [35] 
have suggested that the anticonvulsant action of the 

phosphatidylinositol-3-kinase inhibitor LY294002 can 
be highly potential against PTZ-induced convulsions. 
Choo et al. [36] have reported that newer antiepileptic 
drugs can trigger cognitive deficits in a PTZ-induced 
ZF model of epilepsy. It has been demonstrated that 
Orthosiphon stamineus, a leaf extract, has anticon-
vulsant properties and can affect the levels of tumor 
necrosis factor-alpha (TNF-α) and the occurrence 
of seizures in a ZF model of epilepsy [37]. Li et al. 
[38] have evaluated the hazardous effects of nano-sil-
ica and reserpine on ZF, claiming that both can cause 
depression, anxiety-like behavior, disturbed swim-
ming, and exploratory behavior, along with reduced 
locomotion and a depressive phenotype. Furthermore, 
Li et al. [39] have assessed the neurotoxic effects of 
silica nanoparticles as a potential source of neurobe-
havioral toxicity in Parkinson’s disease (PD). On the 
other hand, Cronin and Grealy have developed a ZF 
model to screen drugs with potential neuroprotective 
and neurorestorative effects against PD [40]. Flinn et 
al, [41] have created a ZF model to investigate the 
mechanisms underlying neuronal cell death in early 
onset PD. Exposure to neurotoxins has been shown to 
cause a decrease in dopamine levels in ZF, thus mak-
ing it an ideal teleost for the simulation and study of 
neuropsychiatric diseases, as underlined by Panula et 
al. [42].

Piato et al. [43] have developed a ZF model allow-
ing the study of the effects of chronic stress (lasting 
7-14 days) through the assessment of psychological 
and behavioral responses. Similarly, Chakravarty et 
al. [44] have managed to induce anxiety and mood-re-
lated disorders through the application of unpredict-
able chronic stress in ZF, and observed decreased neu-
rogenesis complicated by mitochondrial dysfunction. 
Rambo et al. [45] have demonstrated that unpredict-
able chronic stress can increase locomotion in female 
ZF, whereas male ZF exhibited higher cortisol levels 
along with increased aggressive behavior. Demin et 
al. [46] demonstrated that the ZF tail immobilization 
test can act as an appropriate tool for the assessment of 
stress. According to Wei et al. [47], long-term expo-
sure to bisphenol S can lead to stress and anxiety-like 
behavior in ZF. These symptoms were shown to be 
alleviated by tryptophan and fluoxetine treatment in a 
study undertaken by Giacomini et al. [48]. Sarasamma 
et al. [49] were able to demonstrate that exposure 
to zinc chloride can induce an impaired short-term 
memory and diminished locomotion that mimicked 
Alzheimer’s disease (AD), along with an induction 
of beta-amyloid (β-amyloid) and tau protein in the 
ZF brain. Koehler and Williams [26] have conducted 
a similar study in which a ZF AD model was gener-
ated using a protein phosphatase 2A inhibitor (okadaic 
acid); in their study, a treatment with lanthionine keti-
mine-5-ethyl ester has shown neuroprotective effects 
[26]. Moreover, Javed et al. [50] have demonstrated 
the potency of casein-coated gold nanoparticles in 
reversing the cognitive and locomotor dysfunction 
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of ZF exposed to the toxicity of β-amyloid in AD. 
Richetti et al. [51] have previously reported the poten-
tial protective effect of quercetin and rutin against 
scopolamine-induced memory impairment in a ZF AD 
model, whereas Yendapalli et al. [52] have evaluated 
the dual effects of Brassica juncea and Cynodon dac-
tylon extracts on the cognitive performance of scopol-
amine-induced amnesic ZF.

Pullaguri et al. [53] have recently found that tri-
closan (an antimicrobial agent) can induce anxiety-like 
behavior in ZF; this behavior was linked to altered 
acetylcholinesterase (AChE) activity in the ZF brain 
and skeletal muscle, in addition to an observed down-
regulation of structural protein in the skeletal muscle. 
Nema and Bhargava [54] have reported that the ZF 
exhibit a frequent freezing behavior after exposure to 
cypermethrin (a pesticide) with no variations in their 
brain superoxide dismutase and AChE activities. Nery 
et al. [55] have injected β-amyloid 1-42 into the hind-
brain ventricle of ZF embryos, resulting in increased 
tau phosphorylation and impaired cognition that were 
reversed by lithium. Prolonged exposure to low doses 
of benzo(a)pyrene (an environmental hazard) has been 
reported to lead to the development of neurodegener-
ative diseases (such as PD and AD) in ZF [56], along 
with locomotor dysfunction [57]. Prenatal exposure to 
the water-soluble fraction of crude oil and lead has 
been shown to cause autism-like behavioral deficits in 
ZF larvae [58].

Moreover, when ZF larvae were exposed to 
valproic acid, they developed autism spectrum-like 
symptoms [59,60]. It can be safely argued that ZF are 
an ideal model for the simulation of deficits that are 
relevant to autism [61]. A study conducted by Gawel 
et al. [62] have proved that ZF should also be con-
sidered an emerging model for schizophrenia [62]. 
Finally, using ZF as a model, Barnhill et al. [63] have 
provided new insights into the pathogenesis of PD that 
can also be extended into mammalian models [63].

The number of ZF utilizing neuroscientific stud-
ies is increasing exponentially, and it is much exceed-
ing that of rodents or other model species. Despite this, 
there is still much resistance regarding using ZF as a 
primary experimental model system. New potential for 
understanding the pathobiology of diverse central ner-
vous system (CNS) impairments continues to emerge 
from studies focusing on the array of the ZF neuronal 
and behavioral capabilities. Although some of these 
models (such as those for anxiety, depression, and 
addiction) are well established in ZF, others (such as 
those for autism and obsessive-compulsive disorders) 
are not as well established. However, accumulating 
evidence suggests that a wide range of CNS disorders 
could be reliably simulated with the use of ZF [64].

Another common misunderstanding is that 
the ZF are exclusively useful for the undertaking of 
genetic and developmental studies. The expanding 
applicability of ZF models in practically every aspect 
of biomedicine, including the modeling of brain 

diseases [65-67], supports the opposite, as evidenced 
by the mounting evidence provided herein. Similarly, 
research using larval ZF has dominated the field for 
decades. This scenario has only recently begun to 
improve, as more and more laboratories recognize the 
significance of adult ZF models for studying brain ill-
nesses that mimic human pathologies [65].
ZF as a Model for the Study of Craniofacial 
Development

The ZF are a promising model for studying both 
the genetic and the environmental interactions occur-
ring in craniofacial malformations such as palatal 
clefts. Over the last decade, the number of ZF genetic 
models for human disease-causing genes, such as those 
causing the cleft lip/palate, has exploded [68,69]. The 
ZF are a common model for visualizing the growth 
of the skull vault and of the cranial sutures. Kanther 
et al. [70] have hypothesized that the frontal and pari-
etal bones of the skull meet and initiate suture forma-
tion after 30 days of development. Thyroid hormones 
are known to play an important role in the morpho-
genesis and ossification of the entire skeleton of ZF, 
according to a report by Keer et al. [71]. Like that 
of humans, the craniofacial mesenchyme is made up 
of migratory neural crest cells and paraxial mesoderm 
(Figure-1) [72]. The palatoquadrate and the poste-
rior end of Meckel’s cage are evolutionarily related 
to the malleus and the incus of the mammalian mid-
dle ear. In ZF, the hyomandibula is the counterpart of 
the mammalian stapes (inner ear). The attachment of 
the stapes to the oval window in the otic capsule in 
humans is represented by the relationship between 
the hyomandibula and the otic cartilage in ZF. The ZF 
neurocranium anterior end is similar to the mamma-
lian hard palate (Figures-2 and 3) [73]. The special-
ized diphyodont and heterodont dentition of humans 
has derived from the polyphyodonty homodont den-
tition of teleosts [15]. The ZF dentition has a rich 
vasculature for the processing of tooth development 
and replacement [74]. Based on these similarities, 
researchers have used ZF to investigate the pheno-
typic variability of human birth defects. A ZF study 
has found that combined exposure to platelet-derived 
growth factor receptor alpha and ethanol can cause 
craniofacial defects similar to those observed in fetal 
alcohol spectrum disorders (FASDs) [75]. According 
to a review conducted by Ellis et al. [76], exposure to 
the total particular matter (TPM) of cigarette smoke 

Figure-1: Craniofacial mesenchyme [72].
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can induce craniofacial malformations in ZF when 
the TPM is >6 g/mL. Moreover, exposure to TPM has 
been shown to increase larval motility, to cause gross 
morphological deformities, and to distort the AhR 
pathway-associated enzyme activity. TPM toxicity is 
known to be influenced in part by genetic factors that 
regulate xenobiotic metabolism [76-78]. The Wnt/β-
catenin signaling is a major pathway for craniofacial 
growth [79,80]. ZF exposed to alcohol during early 
gastrulation and neurulation have developed FASD 
symptoms that comprised differential expression of 
the sonic hedgehog pathway genes and the develop-
ment of craniofacial malformations [81]. When ZF 
larvae were exposed to 100 mM (2.4%) of ethanol, 
they presented with a reduced ethmoid plate width that 
was then rescued by a low dose (1 nM) administration 
of exogenous retinoic acid (RA); moreover, when the 
RA was administered without a previous exposure of 
the ZF larvae to alcohol, the ZF developed a broader 
ethmoid plate [82].

A study conducted by Liu and Semina [83] who 
have demonstrated that a Paired-like homeodomain 
2 transcription pathway deficiency can lead to abnor-
mal ocular and craniofacial development. Treacher 
Collins syndrome,  CHARGE syndrome [coloboma, 
heart defects, atresia choanae (also known as choanal 
atresia), growth retardation, genital abnormalities, 
and ear abnormalities], and Roberts syndrome have 
all been effectively standardized and can be simu-
lated in ZF. These disorders comprise of cleft palate, 
microcephaly, smooth philtrum, and other malformi-
ties [75,84]. Exposure to dibutyl phthalate can induce 
defects in embryonic craniofacial development as 

reported by Jergensen et al. [85], whereas Cedron et. 
al. [86] has suggested that the overuse of acetamino-
phen or paracetamol can lead to the development of 
morphological abnormalities in craniofacial structures. 
Chiquet et al. [87] have used ZF as a powerful tool 
for studying orofacial abnormalities, including that of 
the cleft lip/cleft palate. Küchler et al. [88] have used 
ZF embryos to assess the link between hypoxia and 
oral clefts. Cranial deformity accompanied by oxida-
tive stress was observed in ZF embryos exposed to 
boscalid (a fungicide) in a study conducted by Wang 
et al. [89]. A study has been conducted to examine 
the effect of hormones on craniofacial malforma-
tions on ZF larvae; During early chondrogenesis (1-2 
dpf), ZF larvae exposed to exogenous 17β-estradiol 
(E2) have been shown to exhibit dose- and develop-
mental stage-dependent craniofacial malformations 
with enhanced sensitivity [90]. With a focus on den-
tal applicability, Makkar et al. [91] have studied the 
in vivo molecular toxicity profile of dental materials 
such as the mineral trioxide aggregate and biodentine 
using ZF models, whereas Rajendran et al. [92] have 
shown that zirconium oxide is more toxic to embry-
onic ZF even at low concentrations. The teeth in ZF 
larvae were treated with fluorine to examine them and 
compare the prevalence of dental fluorosis in primary 
and permanent teeth [93]. In an attempt to assess the 
protective effects of these products, Zhao et al. [94] 
have studied the impact of different metal alloy shells 
of Procelian fused metal alloy crowns on the growth 
of ZF embryos and larvae. Bisphenols have recently 
been the subject of a variety of ZF studies. For exam-
ple, bisphenol A is an estrogen-like environmental 

Figure-2: Zebrafish jaw homologous to mammalian middle ear [73].

Figure-3: Zebrafish anterior neurocranium homologous to mammalian palate [73].
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compound that disrupts chondrocyte organization in 
the pharyngeal structures and induces apoptosis in ZF 
larvae, thus causing craniofacial malformations [95]. 
ZF are an excellent translational model for a wide 
range of craniofacial malformations, as well as for the 
assessment of the mechanisms of action associated 
with environmental pollutants and gene-environment 
interactions.
Conclusion

A significant amount of craniofacial growth 
and neurodegenerative research has used the ZF as a 
model. The findings of these experiments have been 
included in this review as a proof of the value of ZF as 
an experimental setup that is cost-effective and easy 
to handle. Furthermore, the study of ZF will be partic-
ularly useful in the discovery and risk assessment of 
new teratogens and assisting in the translation of pre-
clinical data into practice, thus informing our health 
advice to expecting mothers to reduce the risk of cra-
niofacial malformations and developing neurological 
disorders. The latter should encourage new research 
to be conducted on the ZF model with the hope that it 
will prove beneficial for the human race.
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