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Abstract
Background and Aim: Antibiotic resistance has been a progressively documented problem, resulting in treatment failure in 
humans and animals. This study aimed to investigate the antimicrobial susceptibility and virulence of extensively drug-resistant 
(XDR) Aeromonas spp. in wild Mugil cephalus and its surrounding seawater along the coastal road of Port Said, Egypt.

Materials and Methods: Specimens were examined bacteriologically, confirmed biochemically, and tested for their 
sensitivity against 11 antimicrobial agents. Molecular confirmation of the obtained isolates by 16S rRNA was performed, 
followed by the detection of antimicrobial resistance and virulence genes.

Results: Aeromonas spp. was recovered from fish (44%) and water samples (36%). A. hydrophila was the most prevalent 
identified strain, followed by Aeromonas sobria, Aeromonas caviae, and Aeromonas schubertii. Moreover, 90% of the 
tested isolates were multidrug-resistant (MDR), while 26.67% were XDR. Tested isolates were resistant to β-lactams and 
sulfonamides (100%), oxytetracycline (90%), and streptomycin (62.22%) but completely susceptible to cefotaxime. XDR 
isolates successfully amplified resistance genes (blaTEM , sul1, and tetA(A)) but not the (aadA1) gene, although there was 
phenotypic resistance to streptomycin on plates. All XDR isolates carry the cytotoxic enterotoxin gene (act), but alt gene 
was detected in only one isolate (12.5%).

Conclusion: Data in this study provide a recent update and highlight the role of wild mullet and seawater as reservoirs for 
MDR and XDR Aeromonas spp. that may pose a risk to humans as food-borne infection or following direct contact.

Keywords: Aeromonas hydrophila complex, antimicrobial resistance, Mugil cephalus, resistance genes, Seawater, virulence 
genes.

Introduction

Aeromonas species are facultative anaerobic 
Gram-negative bacteria that belong to the fam-
ily Aeromonadaceae [1]. Although these bacteria 
are halotolerant waterborne pathogens and can tol-
erate water salinity of up to 3.0% NaCl, its pres-
ence in seawater is rare compared to that in river 
water [2,3]. Aeromonas species such as Aeromonas 
caviae, Aeromonas veronii, Aeromonas hydrophila, 
and A. salmonicida are responsible for most bacterial 
diseases in fish [4,5]. Motile Aeromonas septicemia 
(MAS) is one of the violent fish bacterial infections 

worldwide. It affects various species of fish and shell-
fish in both fresh and marine water, causing a serious 
problem for fish industry in Egypt and other coun-
tries [6]. Among Aeromonas species, A. hydrophila is 
the key causative agent of MAS in fish, causing mass 
mortality and massive economic losses [7-10]. These 
bacteria, known as opportunistic pathogens, can 
establish themselves only when fish are immunocom-
promised by variable stressors, such as overcrowding 
and concurrent disease [11].

Seawater has been identified as a source of var-
ious types of diseases worldwide. In 2003, cases of 
gastroenteritis and severe respiratory infection had 
been recognized in persons who swam or immersed 
themselves in seawater [12]. Motile Aeromonas are 
food-borne contaminant pathogens that have a micro-
bial food safety concern due to their ability to grow 
at a wide range of temperatures, including refrigera-
tion temperature, with the production of various viru-
lence factors [13]. Infection may be acquired through 
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drinking contaminated water, ingestion of raw or 
improperly cooked contaminated food, and close 
contact with infected animals [14,15]. In humans, the 
bacteria cause diseases ranging from mild to dysen-
tery-like diarrhea to meningitis and septicemia [16]. 
Moreover, infection may occur extraintestinal, such as 
wound infections [17]. A recent study reported a mul-
tidrug-resistant (MDR) A. hydrophila to cause bilat-
eral necrotizing fasciitis in an immunocompromised 
patient [18]. In general, Aeromonas spp., Vibrio spp., 
and Shewanella spp. had been identified to cause nec-
rotizing fasciitis in patients after consumption of raw 
or undercooked seafood or following direct exposure 
to seawater along with coastal areas [19].

The enormous distribution of antibiotic resistance 
genes in nature among livestock, fish, vegetables, and 
plants makes it easily transmissible to humans through 
direct contact or ingestion of contaminated food [20]. 
This is facilitated by the high prevalence of gastroin-
testinal diseases in developing countries and routine 
use of antibiotics, resulting in the emergence of antibi-
otic resistance among enteric pathogens. In this way, 
horizontal gene transfer facilitates the spread of resis-
tance even to other antibiotic classes, especially when 
the genes responsible for such resistance share the 
same transmissible element locations [21]. The abil-
ity of Aeromonas to cause disease is related to several 
complicated and multiple virulence factors [22], and 
Aeromonas virulence depends mainly on the secretion 
of exotoxins [23]. This includes a cytotoxic heat-la-
bile enterotoxin (act) (known as aerolysin/hemoly-
sin), cytotonic heat-labile enterotoxin (alt) (known as 
lipase, extracellular lipase, and phospholipase), and 
cytotonic heat-stable enterotoxin (ast) [24].

Antimicrobial resistance in marine water and 
its animals is always an issue of concern because 
they have no history of antimicrobial exposure [25]. 
Although numerous studies clarified the prevalence of 
Aeromonas spp. from Mugil cephalus in Egypt, there 
have been minimal data on mullets from the wild envi-
ronments [26]. Port Said is a city in Egypt’s northeast 
region that extends approximately 30 km (19 miles) 
along the Mediterranean Sea’s coast, north of the Suez 
Canal. It is the most important source of fish to inhab-
itants of the city. M. cephalus is the widely consumed 
and preferable edible fish species in this area due to 
its high-quality flesh, large size, and superior growth. 
Moreover, fishing lovers in the city usually practice 
fishing along its coast and enjoy eating what they 
harvest.

This study aimed to determine the extent to 
which Aeromonas isolates from the wild environ-
ments are resistant to the most commonly used anti-
biotics among humans, animals, and fish in the study 
area and characterize the extensively drug-resistant 
(XDR) strains by detecting their antibiotic resistance 
genes and exploring enterotoxin production.

Materials and Methods
Ethical approval

Protocols for sample collection and laboratory 
testing for this study were reviewed and approved 
by the Scientific Research Committee and Bioethics 
Board of Suez Canal University, Faculty of Veterinary 
Medicine, Ismailia, Egypt.
Study period and location

The samples were collected from July 2019 
to September 2020. Samples were collected from 
Mediterranean seawater along the international coastal 
road of Port Said Governorate. Collection locations 
were the common places where local fishermen cus-
tomarily collect fish in Port Said Governorate. The 
samples were processed at the Department of Food 
Hygiene Laboratory, Animal Health Research Institute, 
Port Said Branch, in Port Said Governorate, Egypt.
Samples

A total of 100 apparently healthy M. cephalus 
were caught directly from seawater from different 
districts along the coast of Port Said Governorate. 
Moreover, 25 seawater samples (100 mL each) were 
also collected in sterile screw-capped colorless glass 
bottles from the same locations where fish had been 
caught. Fish and water samples were transported in 
an icebox (4-8°C) to the Department of Food Hygiene 
laboratory, Animal Health Research Institute, Port 
Said Branch, in Port Said Governorate, under complete 
aseptic conditions for bacteriological examination as 
soon as possible. For each fish, swabs were collected 
from the surface, gills, and internal organs (liver, 
spleen, and kidney) for bacteriological examination.
Isolation and identification of Aeromonas spp.

Fish swabs and water samples were enriched in 
alkaline peptone water (Oxoid, Hampshire, UK) that 
were incubated at 25-30°C for 24 h before being plated 
onto Aeromonas agar medium (Oxoid) that had been 
incubated aerobically at 37°C for 18-24 h [27]. Based 
on colony characteristic morphology, suspected typi-
cal colonies (convex translucent, pale green, 0.5-3 mm 
in diameter) were obtained and purified for further 
testing. A complete set of biochemical tests was per-
formed for colonies that were negative in Gram stain-
ing, motile, and positive for oxidase. Aerokey II was 
used for complete identification and biotyping of iso-
lates down to the species level, where each species has 
its unique pattern in biochemical reactions [28].
Antimicrobial susceptibility testing

The disk diffusion method was used to test anti-
biotic susceptibility of isolates on Mueller-Hinton agar 
(Oxoid) using the most commonly used antimicrobi-
als in human, animal, and aquaculture treatment in the 
study area. Briefly, pure colonies from pure 24 h old 
culture were inoculated into 5 mL of Mueller-Hinton 
broth (Oxoid) and incubated for 4-5 h until the tur-
bidity was observed. Then, the bacterial suspension 
was adjusted to a density equivalent to 0.5 McFarland 
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standard. Sterile cotton swabs were used to streak the 
surfaces of Mueller-Hinton agar plates with the bac-
terial suspension, and the plates were left for 30 min. 
Then, antibiotic disks were placed on the surface of the 
plates using an antibiotic dispenser and sterile forceps. 
The following antimicrobials were used: Ampicillin 
(AM) 10 μg, penicillin (P) 10 μg, streptomycin (S) 
10 μg, sulfamethoxazole-trimethoprim (SXT) 25 μg, 
oxytetracycline (T) 30 μg, cefotaxime (CTX) 30 μg, 
norfloxacin (NOR) 10 μg, amikacin (AK) 30 μg, gen-
tamicin (CN) 10 μg, nalidixic acid (NA) 30 μg, and 
chloramphenicol (C) 30 μg (Bioanalyse®, Turkey). 
Then, plates were incubated aerobically at 37°C 
for 24 h. The recommended diameter for the inhibi-
tion zone of the National Committee for Clinical and 
Laboratory Standards Institute was used to classify the 
isolates as resistant, intermediate, or sensitive [29].
Detection of the type of antimicrobial resistance pat-
tern for the isolates

MDR isolates were defined as those that were 
resistant to at least one agent from three or more anti-
microbial classes; however, XDR was used to describe 
isolates that showed resistance to at least one antimi-
crobial agent in most antimicrobials but remained 
susceptible to two or fewer classes of antimicrobials. 
Pandrug resistance (PDR) was used to define bacte-
rial isolates that were not susceptible to any antibiotic 
from all antimicrobial classes [30].
Molecular confirmation and typing of Aeromonas 
spp. isolates

Using QIAamp DNA Mini Kit (Qiagen, Germany, 
GmbH), DNA was extracted from 200 μL of bacterial 
suspension based on kit instructions. Briefly, 200 μL 
lysis buffer was added to the bacterial suspension 
with 20 μL kit protease. After incubation at 56°C for 
10 min, the suspension was passed through the silica 
membrane of the spin column. After several washing 
steps, DNA was finally eluted from the membrane 
by centrifugation using 100 μL elution buffer into a 
new clean 1.5 mL microcentrifuge tube that was kept 
at −20°C for further molecular investigation.

Primer sequences targeting 16S rRNA (Metabion, 
Germany) were used for molecular confirmation of 
the Aeromonas genus. Primers (Metabion) targeting 
blaTEM, sul1, tetA(A), and aadA1 genes for the detec-
tion of antimicrobial resistance genes and act, ast, 
and alt genes for the detection of virulence (entero-
toxin production) were used to investigate virulence 
of the strains according to the previously published 
polymerase chain reaction (PCR) protocols using 
EmeraldAmp GT PCR Mastermix (Takara, Japan) 
(Table-1) [31-35]. Positive isolates were identified by 
detecting specific amplification bands after the ampli-
fication product had been electrophoresed using 1.5% 
agarose gel.
Statistical analysis

Data were handled using Microsoft Excel 2013, 
and Statistical Package for the Social Sciences (SPSS) 

20.0 (IBM-SPSS Inc., Chicago, IL, USA) was used in 
the data analysis. Variables were checked for normality 
using the Shapiro–Wilk test at 0.05 level. Accordingly, 
variables were significant (Shapiro–Wilk test<0.05), and 
data were non-parametric. Differences between groups 
were checked using Chi-square (χ2) test at p≤0.05.
Results
Occurrence of Aeromonas spp. in wild M. cephalus 
and seawater

Based on cultural characteristics and biochemical 
reactions, Aeromonas spp. were identified in 44 (44%) 
of 100 apparently healthy mullets and 9 (36%) of 25 
seawater samples. A total of 97 isolates were obtained 
from mullet and seawater (78 and 19, respectively). 
The most frequently identified species from mullet 
was A. hydrophila (53.85%), followed by Aeromonas 
sobria (26.92%), A. caviae (16.67%), and Aeromonas 
schubertii (2.56%). The same sequence of occurrence 
was also observed in isolates from seawater; however, 
A. schubertii was not recovered (Table-2). Similarly, 
isolates obtained from samples of surface, gills, and 
internal organs of fish follow the same order of distri-
bution for Aeromonas strains (Figure-1). Differences 
between the prevalence of these four Aeromonas 
spp. isolated from mullet and seawater and different 
swabbing sites of fish were highly statistically signif-
icant as revealed by χ2 test (p<0.001***). However, 
the specific presence of each Aeromonas spp. among 
different tissues and swabbing sites of the examined 
fish was not statistically significant as revealed by 
Kruskal–Wallis test (p>0.05).
Antimicrobial sensitivity profile of bacterial isolates

A total of 30 representative isolates (20 from 
M. cephalus and 10 from seawater) were tested 
against 11 types from seven different antimicrobials 
classes. Overall, the tested isolates exhibited complete 
resistance (100%) to AM, P, and SXT; extremely high 
resistance to T (90%); and considerable resistance to 
S (63.33%) (Table-3 and Figure-2). However, a low 
level of resistance (<25%) was observed for NOR, 
AK, CN, NA, and C. None of the isolates were found 
resistant to CTX. Overall, there was a statistically sig-
nificant difference in the resistance profile exhibited 
by various Aeromonas spp. and the tested antimicro-
bial agents. This difference was highly significant 
with oxytetracycline, NOR, and CN (p<0.001***) 
and significant with AK, C, and NA (p=0.001** and 
p=0.003**) as revealed by the χ2 test.
Antimicrobial resistance pattern of the tested isolates

Concerning the resistance pattern of the tested 
isolates (MDR, XDR, and PDR) in the present study, 
27 of 30 isolates (90%) were MDR (11, A. hydroph-
ila; 6, A. sobria; 8, A. caviae; and 2, A. schubertii), 
while eight of 30 isolates (26.67%) were XDR (4, 
A. hydrophila; 2, A. sobria; 1, A. caviae; and 1, A. 
schubertii), which were resistant to all examined anti-
microbial agents, except one or two classes. None of 
the isolates were PDR.
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Molecular confirmation and typing of Aeromonas 
spp. isolates

Molecular verification of the recovered iso-
lates using PCR targeting 16S rRNA gene revealed 
Aeromonas spp. specific band at 953 bp on 1.5% 
agarose gel. XDR isolates (Figure-2) were subjected 
to molecular detection of virulence (enterotoxin 
production) genes (alt, ast, and act) and antibiotic 
resistance genes (blaTEM, sul1, tetA(A), and aadA1) 
corresponding to the highest phenotypic resistance 
observed on plates to the first line of antimicrobial 

treatment in fish, animals, and humans in the study 
area. The results showed that all tested isolates 
(100%) possess the antibiotic resistance genes 
blaTEM, sul1, and tetA(A); however, none had aadA1 
gene. The cytotoxic heat-labile act gene was the only 
virulence gene carried by all isolates; however, only 
one isolate of A. sobria from mullet had the cytotonic 
heat-labile alt enterotoxin gene (Table-4). None of 
the isolates showed the specific amplification band 
of ast gene.

Table-2: Identified Aeromonas spp. strains from M. cephalus and seawater.

Origin and no. of 
samples

Positive 
samples n (%)

Total isolates 
recovered

A. hydrophila A. sobria A. caviae A. schubertii

n (%) n (%) n (%) n (%)

M. cephalus (n=100) 44 (44%) 78a 42 (53.85) 21 (26.92) 13 (16.67) 2 (2.56)
Surface 41 22 (53.66) 11 (26.83) 7 (17.07) 1 (2.43)
Gills 24 13 (54.17) 7 (29.17) 4 (16.67) 0 (0.0)
Internal organs 13 7 (53.85) 3 (23.08) 2 (15.38) 1 (7.69)
Seawater (n=25) 9 (36%) 19a 9 (47.37) 7 (36.84) 3 (15.79) 0 (0.0)
aNumber of isolates exceeded the number of positive samples (44 from fish and nine from seawater) because some fish 
yielded more than 1 strain from different swabbing sites of its body. The same was also observed for water samples. 
M. cephalus=Mugil cephalus, A. sobria=Aeromonas sobria, A. caviae=Aeromonas caviae, A. schubertii=Aeromonas 
schubertii, A. hydrophila=Aeromonas hydrophila

Table-1: Oligonucleotide primer sequences, cycling conditions, and length of the amplified product from Aeromonas spp. 
isolates.

Genes Primer sequences (5’-3’) PCR cycling condition Length of amplified 
product

Reference

16S rRNA CTACTTTTGCCGGCGAGCGG Initial denaturation 94°C/5 min 953 bp [31]
35 cycles: Denaturation at 94°C/30 s

TGATTCCCGAAGGCACTCCC Annealing at 50°C/40 s
Extension at 72°C/50 s

act GGGTGACCACCACCAAGAACA Initial denaturation 94°C/5 min 232 bp [32]
35 cycles: Denaturation at 94°C/30 s

AACTGACATCGGCCTTGAACTC Annealing at 55°C/40 s
Extension at 72°C/30 s

ast TCTCCATGCTTCCCTTCCACT Initial denaturation 94°C/5 min 331 bp
35 cycles: Denaturation at 94°C/30 s

GTGTAGGGATTGAAGAAGCCG Annealing at 55°C/40 s
Extension at 72°C/40 s

alt TGACCCAGTCCTGGCACGGC Initial denaturation 94°C/5 min 442 bp
35 cycles: Denaturation at 94°C/30 s

GGTGATCGATCACCACCAGC Annealing at 55°C/40 s
Extension at 72°C/45 s

blaTEM ATCAGCAATAAACCAGC Initial denaturation 94°C/5 min 516 bp [33]
35 cycles: Denaturation at 94°C/30 s

CCCCGAAGAACGTTTTC Annealing at 54°C/40 s
Extension at 72°C/45 s

Sul1 CGGCGTGGGCTACCTGAACG Initial denaturation 94°C/5 min 433 bp [34]
35 cycles: Denaturation at 94°C/30 s

GCCGATCGCGTGAAGTTCCG Annealing at 60°C/40 s
Extension at 72°C/45 s

aadA1 TATCAGAGGTAGTTGGCGTCAT Initial denaturation 94°C/5 min 484 bp [35]
35 cycles: Denaturation at 94°C/30 s

GTTCCATAGCGTTAAGGTTTCAT Annealing at 54°C/40 s
Extension at 72°C/45 s

tetA (A) GGTTCACTCGAACGACGTCA Initial denaturation 94°C/5 min 576 bp
35 cycles: Denaturation at 94°C/30 s

CTGTCCGACAAGTTGCATGA Annealing at 50°C/40 s
Extension at 72°C/45 s

act=Cytotoxic heat-labile enterotoxin genes, ast=Cytotonic heat-stable enterotoxin genes, alt=Cytotonic 
heat-labile enterotoxin genes, blaTEM=β-lactamase ampicillin resistance gene, sul1=Sulfonamide resistance gene, 
aadA1=Streptomycin-resistant gene, and tetA (A)=Tetracycline resistance gene, PCR=Polymerase chain reaction
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Discussion

This study reports the occurrence, virulence, and 
antibiogram of XDR motile Aeromonas in apparently 
healthy wild M. cephalus and seawater samples in 
Port Said Governorate and its probable hazard to con-
sumers and fish handlers in the study area. Overall, 
the recovery rate of Aeromonas spp. varied from 
44% in M. cephalus to 36% in seawater (Table-2). In 
Egypt, numerous studies have reported various occur-
rence rates of Aeromonas spp. from farmed, retail, 
and frozen fish (88% [36], 14.2% [37], 37% [38], and 
30% [39]), but none of them reported its occurrence 
in wild fish or marine environment. In North Italy, 
Aeromonas spp. was isolated at a lower level (16%) 
from that in the coastal water of Mediterranean Sea 
(North Ionian Sea of Italy) [40].

Although A. hydrophila has gained the most 
attention, A. caviae and A. veronii are the known 
species most commonly isolated from clinical and 
environmental samples [41]. In the current report, 
A. hydrophila was the most prevalent species recov-
ered from M. cephalus and seawater. However, this 
was not the usual pattern in farmed freshwater fish.  In 
a recent study in Egypt, A. sobria (44%), A. caviae 
(28%), A. hydrophila (20%), and A. veronii (8%) were 
the most predominant species from mullet collected 
from different fish farms in Kafr El-Sheikh gover-
norate [42]. However, another study indicated that 

A. caviae dominates in seawater fish (7.2%) [43]. In 
the current study, A. schubertii was the least identi-
fied Aeromonas spp. from M. cephalus (2/78, 2.56%). 
It seems that this species has a lower distribution in 
our area, as indicated in the previous studies [44,45]. 
A possible explanation for these differences is the 
geographical locations where several studies are 
conducted, variable environmental temperature, and 
chemical and physical characteristics of the water [46].

Data in the present study showed a higher occur-
rence of Aeromonas spp. in swabs from the surface of 
the fish and gills. Meanwhile, internal organs showed 
the lowest recovery rate (Table-2 and Figure-1). In 
contrast, A. hydrophila was more commonly recov-
ered from internal organs than gills in an earlier 
report [47]. Regardless of the isolated Aeromonas 
species from different tissue sites of the fish, it is 
noteworthy that high recovery from the surface of the 
fish may represent a potential occupational hazard for 
fish handlers, aquaculture workers, housewives, and 
fishing fans through direct contact, especially if these 
strains are MDR.

Over the past decades, resistance has been 
developed to natural and synthetic antibiotics due 
to massive production and use of antibiotics, a mat-
ter that necessitates frequent investigation of resis-
tant organisms in humans, animals, and the environ-
ment [48]. Findings in this study showed that 90% of 

53.66%
26.83%

17%
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Surface

54.17%29.17%

16.67%

0
Gills

53.85%

23.08%

15.38%

7.69%

Internal organs

A. hydrophila

A. sobria

A. caviae

A. schubertii

Figure-1: Aeromonas spp. recovered from different swabbing sites of Mugil cephalus.

Table-3: Antimicrobial resistance profile of Aeromonas spp. isolates.

Antimicrobial 
class

Antimicrobial 
agent

A. hydrophila 
(n=12)

A. sobria  
(n=7)

A. caviae 
(n=9)

A. schubertii 
(n=2)

No. of tested 
isolates (n=30)

Resistant isolates n (%) n (%)

β-lactams AMN/A 12 (100) 7 (100) 9 (100) 2 (100) 30 (100)
PN/A 12 (100) 7 (100) 9 (100) 2 (100) 30 (100)

Aminoglycosides S 8 (66.67) 4 (57.14) 6 (66.67) 1 (50) 19 (63.33)
AK** 2 (16.67) 2 (28.57) 1 (11.11) 1 (50) 6 (20)
CN*** 1 (8.33) 2 (28.57) 2 (22.22) 0 (0.0) 5 (16.67)

Sulfonamides SXTN/A 12 (100) 7 (100) 9 (100) 2 (100) 30 (100)
Tetracyclines T*** 11 (91.67) 6 (85.71) 8 (88.89) 2 (100) 27 (90)
Cephalosporins CTXN/A 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Quinolones NOR*** 3 (25) 1 (14.29) 1 (11.11) 0 (0.0) 5 (16.67)

NA** 4 (33.33) 1 (14.29) 1 (11.11) 1 (50) 7 (23.33)
Phenicols C** 2 (16.67) 2 (28.57) 2 (22.22) 0 (0.0) 6 (20)

***Highly statistically significant difference; **statistically significant difference, N/Anot applicable. A. sobria=Aeromonas 
sobria, A. caviae=Aeromonas caviae, A. schubertii=Aeromonas schubertii, A. hydrophila=Aeromonas hydrophila, 
AM=Ampicillin, P=Penicillin, S=Streptomycin, SXT=Sulfamethoxazole-trimethoprim, T=Oxytetracycline, 
CTX=Cefotaxime, NOR=Norfloxacin, AK=Amikacin, CN=Gentamicin, NA=Nalidixic acid, C=Chloramphenicol
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the examined Aeromonas spp. isolates were MDR, 
and 26.67% were XDR. This agreed with the find-
ings of Odeyemi and Ahmad [49] who found that 14 
Aeromonas spp. isolates from seawater were 100% 
MDR and specifically showed complete resistance to 
β-lactamases and sulfonamides. In general, the pres-
ence of MDR bacteria is eventually due to various 
human activities, municipal or hospital waste stream, 
livestock enterprise runoff, effluents of pharmaceuti-
cal plants, or disposal of unused drugs that result in 
the spread of resistant bacteria, antibiotic residues, or 
both in the environment [48,50].

In this study, all tested strains were completely 
resistant to AM, P, and SXT (100%) and highly resis-
tant to oxytetracycline (90%), with a considerable 
percentage of resistance (62.22%) to streptomycin. 
Furthermore, tested strains showed lower resistance 
(17-23%) to AK, NOR, C, CN, and NA (Table-3). 
The current finding is consistent with earlier reports 
and can be explained by the inherent resistance of 
Aeromonas spp. to beta-lactams and first-generation 
cephalosporins [51,52]. However, in a recent study on 
seawater samples collected from the South and North 
Coasts of Mediterranean Sea in Italy, less resistant 
isolates were detected with most of them exhibiting 
resistance to a single antibiotic, while only a single 

isolate showed resistance to two drugs and others 
were susceptible to all tested antibiotics [25].

Meanwhile, all Aeromonas isolates in the pres-
ent study were susceptible to CTX, which was in line 
with other reports where Aeromonas are found typi-
cally sensitive to cephalosporins from the later gener-
ation [52,53]. This means that such compounds could 
be indicated in the treatment of confirmed Aeromonas 
diseases in the study area; however, with the increasing 
concerns about newly developed resistant pathogens, 
appropriate antibiotic usage, and alternate therapies 
for Aeromonas spp. infection should be implemented.

Although  β-lactams  are  usually  the  antibiot-
ics of choice for the treatment of bacterial infections, 
their efficacy has declined dramatically in the last 
decade due to the production of β-lactamases by resis-
tant strains of bacteria. blaTEM is the most frequently 
detected β-lactamase. Its expression results in not only 
penicillin resistance but also the development of TEM-
type  extended-spectrum  β-lactamases  due  to  various 
point mutations in blaTEM gene, resulting in combined 
penicillins and broad-spectrum cephalosporin resis-
tance [54]. Data in the present study confirmed the pres-
ence of blaTEM, sul1, and tetA(A) resistance genes in all 
XDR isolates. These findings were consistent with data 
available in the relevant literature, which confirmed the 
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Figure-2: Heat map showing a summary of antibiogram for Aeromonas spp. isolates. Red blocks represent resistance, and 
light blocks represent sensitivity to the antimicrobial agent.
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presence of blaTEM in all Aeromonas isolates (100%) 
[55,56]. In another study in Egypt, blaTEM gene from 
Nile tilapia and cat fish samples has been detected in all 
A. hydrophila studied strains (100%), while 83.33% of 
A. caviae carry the blaTEM gene [57]. Interestingly, in an 
earlier study, blaTEM gene was not detected from these 
Aeromonas strains from rainbow trout although there 
was β-lactam resistance phenotype [58].

Similarly, sul1 resistance gene had been detected 
at a high rate in Aeromonas spp. from rainbow trout 
(87.1%) [58] and Oreochromis niloticus and Clarias 
gariepinus (75%) [57]. In another study, although sul1 
was present in A. hydrophila (41%, 7/17), it cannot 
be detected in A. sobria and A. caviae [59]. While 
variable occurrences of tetA(A) resistance gene had 
been reported in Aeromonas from several studies else-
where, 50% [58], 87.5% [57], and 67.44% [60], in 
another Egyptian study, only A. sobria and A. caviae 
carry tetA(A) resistance gene, but A. hydrophila and 
A. schubertii did not carry it [56].

Although tested Aeromonas isolates were phe-
notypically resistant to streptomycin in the present 
study, the aadA1 gene has not been detected in any of 
them. However, in other studies, aadA1 gene has been 
detected at a higher rate of 70% [58] and 62.5% [57]. 
Such antibiotic resistance genes may end up in hori-
zontal gene transfer between various bacterial species 
and strains, leading to multiple antibiotic resistances. 
This is especially a serious public health concern 
because it leads to treatment failure and weakens the 
effectiveness of drugs [48].

Enterotoxins represented in the cytotoxic gene 
(act) and two cytotonic genes (alt and ast) are declared 
to be crucial products implicated in human diarrheal 
disease [61]. As observed in the present study, all 
XDR Aeromonas carry the cytotoxic act gene (100%); 
however, alt gene was detected in only one A. sobria 
isolate (12.5%) (Table-4). This supports the findings 
in the previous studies where alt gene was confirmed 
in A. sobria but not in A. caviae [62]. Moreover, ast 
gene (6%) and act gene (63%) had been detected in 
Aeromonas spp. from various fish species and water 
in an earlier study [63]. However, alt gene has been 
detected in A. hydrophila from freshwater M. cephalus 
in a recent study in Egypt [42]. We failed to detect ast 

gene in any isolate in the current investigation. This is 
consistent with the finding of the most recent study in 
Vietnam [52]. However, in an earlier study in Egypt 
on channel catfish and tilapia, 70% of A. hydrophila 
isolates carry ast gene [57].

This wide variation in the prevalence of resis-
tance and enterotoxin genes may be due to strain 
geographical dispersion, contamination levels in 
the surrounding effluents, and probably horizontal 
gene transfer [14]. Our findings add data to previous 
reports about MDR bacteria from the marine environ-
ment and suggest that despite the opportunistic and 
ubiquitous nature of A. hydrophila complex in fresh 
and marine water, fish, coastal water, and sewage; we 
may face a terrible ghost of a devastating impact if 
they are converted to be widely distributed MDR or 
XDR pathogens.
 Conclusion

Data in the present study highlight the role of 
environmental Aeromonas strains from wild mullet 
and seawater as reservoirs for antibiotic resistance 
and virulence genes that may pose a risk to human 
consumers either as food-borne infection or through 
contact with public health implications where effi-
cacy of human treatment is in doubt. The high detec-
tion rate of Aeromonas spp. from the surface of the 
fish represents a potential occupational hazard to fish 
handlers through wound contamination in fishermen, 
aquaculture workers, housewives, and fishing fans 
along the coast of Port Said Governorate. The inad-
vertent use of antibiotics generally in all situations, 
including viral infections, is useless and promotes 
the development of bacterial resistance. The presence 
of such XDR and cytotoxic Aeromonas populations 
in fish and water poses a public health concern and 
emphasizes the urgent need for regular and continuous 
monitoring. Data presented in the current study may 
provide a baseline for further epidemiological and 
genetic studies that can better understand the origins 
of these resistant bacteria in the study area.
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