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Abstract
Background and Aim: One of the most significant public health concerns is multidrug-resistant (MDR) microorganisms. 
Klebsiella spp. have been at the forefront of causing different types of infections such as bacteremia, urinary tract infections, 
pneumonia, enteritis, and sepsis in humans as well as animals. This study aimed to determine the genomic similarity between 
Klebsiella spp. isolated from wild animal samples and those described in the Institut Pasteur genomic database to verify 
the spread of resistant clones regionally in the state of Mato Grosso, and to compare the epidemiological data in different 
regions of Brazil and the world.

Materials and Methods: Isolates from various sites of injury in wild animals were identified by sequencing the 16S rRNA 
gene. Antimicrobial susceptibility testing was performed using the disk diffusion method to verify the resistance profile, 
and then, multilocus sequence typing was performed to verify the population structure and compare the isolates from other 
regions of Brazil and the world.

Results: Twenty-three sequence types (STs) were observed; of these, 11 were new STs, as new alleles were detected. 
There was no predominant ST among the isolates. All isolates were MDR, with high rates of resistance to sulfonamides, 
ampicillin, amoxicillin, and nitrofurantoin and low resistance to meropenem, imipenem, and amikacin.

Conclusion: Improving our understanding of the population structure of Klebsiella spp. in wild animals may help determine 
the source of infection during outbreaks in humans or animals, as the One Health concept emphasizes the interlinks between 
humans, animals, and environmental health.
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Introduction

The One Health concept recognizes that human, 
animal, and environmental health are interconnected, 
and one sector can affect the health of others. In addi-
tion to these interlinks, antimicrobial resistance is 
one of the biggest public health concerns worldwide, 
which adds to the crisis as resistant organisms are dif-
ficult to control [1].

Klebsiella spp. belong to the Enterobacteriaceae 
family and are Gram-negative, non-motile and fac-
ultative aerobic bacteria. Klebsiella can be found 
in the environment, from sources such as fresh and 

saltwater, sewage, soil, and vegetation. In addition, it 
is a part of the intestinal microbiota of humans and 
animals and is found in several species of domestic as 
well as wild animals, including mammals, fish, birds, 
mollusks, insects, and earthworms [2]. In a previous 
study in Brazil, with 697 isolates from domestic ani-
mals, the major clinical disorders observed were that 
of the urinary, enteric, mammary, reproductive, and 
respiratory systems, showing opportunistic behavior 
of the pathogen. The pathogenicity of Klebsiella spp. 
may have been attributed to a set of virulence factors 
and resistance genes [3].

Klebsiella spp. can become multidrug-resis-
tant (MDR) due to the presence of resistance genes. 
This is a significant problem in human hospitals [4]. 
The genus Klebsiella has a high population diver-
sity and is divided into seven phylogroups: Kp1 
Klebsiella pneumoniae (sensu stricto), Kp2 Klebsiella 
quasipneumoniae subsp. quasipneumoniae, Kp3 
Klebsiella pneumoniae subsp. similipneumoniae, Kp4 
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Klebsiella variicola, Kp5 Klebsiella variicola subsp. 
tropicalensis, Kp6 Klebsiella quasivariicola, and Kp7 
Klebsiella africanensis [5–10]. However, phylogenetic 
studies of the population diversity have shown that K. 
pneumoniae is closely related to K. quasipneumoniae 
(subsp. quasipneumoniae and subsp. similipneumo-
niae) and K. variicola [8, 11, 12]. These have very 
similar biochemical characteristics; hence, differenti-
ation by biochemical tests and partial sequencing of 
the 16S rRNA gene is not effective. Therefore, phylo-
genetic analysis of the rpoB gene is indicated for such 
differentiation [13].

The data available on infection in wild ani-
mals in the state of Mato Grosso, Brazil, are limited. 
These are divided into three biomes and considering 
the importance of Klebsiella spp., this study aimed 
to verify the population structure of resistant clones 
in this environment and compared it with the popu-
lations isolated from other regions of Brazil and the 
world. In this study, the isolates used were from wild 
animals, including free-living and captive wild birds, 
mammals, and reptiles, that inhabit different ecosys-
tems, such as the Amazon, Cerrado, and Pantanal of 
the state of Mato Grosso, Brazil.
Materials and Methods
Ethical approval

The project was approved by the Ethics and 
Research Committee for the Use of Animals (CEUA) 
under 215 protocol number 23108.236834/2017-13.
Study period and location

This study was carried out from January 2016 
to December 2017. Wild animals were treated at the 
Department of Clinic and Surgery of Wild Animals 
of the Veterinary Hospital and also at the Center 
for Medicine and Research of Wild Animals of the 
Federal University of Mato Grosso (Cuiabá, Mato 
Grosso, Brazil) for medical consultation and eval-
uation. Samples were received and processed at the 
Laboratory of Veterinary Microbiology and Molecular 
Biology.
Isolates

The 25 samples that were collected had been iso-
lated from different lesion sites (Table-1). The isolates 
were seeded on 8% sheep blood agar (Sigma-Aldrich, 
Darmstadt, Germany) and MacConkey agar (Neogen 
Corporation, São Paulo, Brazil) at 37°C under aero-
bic conditions and characterized morphologically and 
biochemically as described by Quinn et al. [14]. 
Molecular identification
Deoxyribonucleic acid (DNA) extraction

The extraction of genomic DNA from the isolates 
was performed by inoculating colonies in brain-heart 
infusion broth and incubated in a shaking incubator 
at 37°C, overnight and then centrifuged at 13.304× g 
for 5 min; the precipitate was resuspended in 1 mL of 
lysis buffer (100 mM NaCl, 25 mM EDTA, 100 mM 
Tris-HCl [pH 8.0], 0.5% sodium dodecyl sulfate, and 

0.1 mg proteinase K) and the extraction of DNA was 
performed by the phenol-chloroform method accord-
ing to Sambrook and Russell [15], 1:1 volume of phe-
nol-chloroform were added and vortexed, after which 
the mixture was centrifuged at 13.304× g for 5 min, 
the supernatant was collected in a fresh Eppendorf and 
0.3 mM sodium acetate was added. This Eppendorf 
was subjected to centrifugation at 13.304× g for 5 min. 
The supernatant was discarded and the pellet was 
washed with 1 mL of 70% ethanol and centrifuged at 
13.304× g for 5 min. The pellet was dried after discard-
ing the supernatant and the DNA was resuspended in 
50 μL of ultrapure water and stored at −20°C.

16S rRNA gene polymerase chain reaction (PCR)
The extracted DNA was subjected to 16S rRNA 

gene PCR analysis. The oligonucleotide sequences used 
were 27F: 5′-AGAGTTTGATCCTGGCTCAG-3′ [16] 
and 1492R: 5′-GGTTACCTTGTTACGACTT-3′ [17]; 
these sequences amplify a 1512 bp fragment. A 25 μL 
reaction volume was obtained by mixing 10 ng DNA, 
20 pmol of each oligonucleotide, 0.2 mM dNTPs, 
3 mM MgCl2, 1× PCR buffer, 1 U Taq DNA poly-
merase (Invitrogen, Carlsbad, California, USA), and 
ultrapure water.

The reactions were performed in a thermal cycler 
machine MyCyclerTM (BioRad) with initial denatur-
ation for 5 min at 95°C; 35 cycles of denaturation for 
45 s at 95°C; hybridization for 1 min at 52°C; and 
extension for 1 min and 30 s at 72°C; and final exten-
sion for 7 min at 72°C.

DNA sequencing
Subsequently, the PCR product was purified 

using an Illustra ExoProStar kit (GE Healthcare Life 
Sciences, Buckinghamshire, UK). It was then used 
in the sequencing reaction, together with BigDye 
Terminator Cycle Sequencing Ready Reaction mix in 
an ABI 3500 Genetic Analyzer (Applied Biosystems, 
Foster City, CA, USA). Finally, the sequences were 
compared and deposited in the GenBank database 
using BLAST on the NCBI server (www.ncbi.nlm.nih.
gov/BLAST) using the accession number 4325327. 
The isolates that had a ≥ 97% similarity with Klebsiella 
spp. were selected. Subsequently,  DECIPHER soft-
ware v2.0 (http://www2.decipher.codes/index.html) 
was used for chimera observation and application in 
other techniques.

Multilocus sequence typing (MLST)
Seven oligonucleotides were used as described 

in the protocol on the Pasteur Institute website http://
bigsdb.pasteur.fr/klebsiella/klebsiella.htmlto per-
form MLST [18]. The primers and fragment sizes are 
described in Annexure-1.

Analysis of MLST data
The combination allele was determined after 

sequencing the seven genes, and the sequence type 
(ST) and clonal complex (CC) were identified. In 
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addition, sequences that were not available in the 
database (new STs) were deposited in the Pasteur 
Institute database (http://bigsdb.pasteur.fr/Klebsiella/
Klebsiella.html).

The genotypes of the isolates were analyzed in 
goeBURST 1.2.1, and the STs were assigned to the 
same group (CC) if they shared 6–7 loci with at least 
one other ST. Concatenate sequence alignment anal-
ysis of MLST genes and nucleotide matrix identity 
were performed on Clustal Omega (www.ebi.ac.uk).

Antimicrobial susceptibility profiling
Antimicrobial susceptibility testing was per-

formed by the agar disk diffusion method, as described 
by Bauer et al. [19]. Nine classes of antimicrobials 
(Oxoid, UK) were tested, namely, penicillins (ampi-
cillin, amoxicillin, and amoxicillin with clavulanate 
acid), cephalosporins (cephalexin), carbapenems 
(imipenem and meropenem), aminoglycosides (ami-
kacin and gentamicin), quinolones (ciprofloxacin), 
phenicols (chloramphenicol), tetracyclines (doxycy-
cline), nitrofurans (nitrofurantoin), and sulfonamides 
(sulfonamides and sulfonamides with trimethoprim). 
Resistance results were classified according to the 

criteria described by the Clinical and Laboratory 
Standards Institute and the Brazilian Committee on 
Antimicrobial Susceptibility Testing [20–22].

The isolates were classified according to their 
resistance profiles as described by Magiorakos et 
al. [23] and defined as MDR when they were resis-
tant to one or more agents in three or more categories 
of antimicrobials and a heatmap was generated for 
visualization.
Results

The isolates were obtained from 13 differ-
ent isolation sites; the most frequent samples were: 
Stool (20%; 5/25), oral cavity (16%; 4/25), and lungs 
(12%; 3/25) (Table-1). In total, there were 25 isolates 
of Klebsiella spp. from wild animals, of which 60% 
(15/25) were from wild birds, 32% (8/25) were from 
mammalian species, and 8% (2/25) from reptiles. 
Sixteen (12 birds, three mammals, and one reptile) of 
these isolates were from free-living animals and nine 
were from animals in captivity (Table-1).

After 16S rRNA gene sequencing analyses, 
76% (19/25) of the isolates were classified as 
K. pneumoniae, 16% (4/25) as K. quasipneumoniae 

Table-1: Klebsiella isolates with species, host, isolation site, ST, and CC of the 25 isolates.

Species Host (scientific name) Host (popular name) Sites ST CC

Klebsiella pneumoniae Ramphastos toco Toco Toucan Oral swab 4526 2654
Klebsiella pneumoniae Buteogallus meridionalis Caboclo Hawk Air bag swab 3440 101
Klebsiella pneumoniae Ara ararauna Blue and yellow Macaw Flood 35 35
Klebsiella pneumoniae Ara ararauna Blue and yellow Macaw Lung 70 70
Klebsiella pneumoniae Ara ararauna Blue and yellow Macaw Airbag swab 70 70
Klebsiella pneumoniae Platycercus eximius Eastern Rosella Lung 4536 147
Klebsiella pneumoniae Anodorhynchus hyacinthinus Blue Macaw Case 76 76
Klebsiella pneumoniae Anodorhynchus hyacinthinus Blue Macaw Brain 4537 340
Klebsiella pneumoniae Anodorhynchus hyacinthinus Blue Macaw Liver 4538 340
Klebsiella pneumoniae Anodorhynchus hyacinthinus Blue Macaw Hind limb injury 4539 340
Klebsiella pneumoniae Cairina moschata Wild duck Oral swab 4544 4544
Klebsiella pneumoniae Caiman yacare Alligator Heart 107 107
Klebsiella pneumoniae Boa constrictor Boa constrictor Skin lesion swab 1661 1661
Klebsiella pneumoniae Puma concolor Puma Urine 1948 35
Klebsiella pneumoniae Sapajus apella Capuchin monkey Rectal swab 1480 37
Klebsiella pneumoniae Cerdocyon thous Crab-eating fox Oral swab 2855 2855
Klebsiella pneumoniae Tapirus terrestris Lowland tapirs Rectal swab 107 107
Klebsiella pneumoniae Amazona aestiva Amazon parrot Lung 3636 Singletons
Klebsiella pneumoniae Nasua nasua Brown-nosed coati Rectal swab 4542 Singletons
Klebsiella 
quasipneumoniae subs 
similipneumoniae

Anodorhynchus hyacinthinus Blue Macaw Hind limb injury 3506 Singletons

Klebsiella 
quasipneumoniae subs 
similipneumoniae

Nyctibius griseus Common potoo Air bag swab 4541 Singletons

Klebsiella 
quasipneumoniae subs 
similipneumoniae

Tigrisoma lineatum Socó Cloacal swab 4543 Singletons

Klebsiella 
quasipneumoniae subs 
similipneumoniae

Myrmecophaga tridactyla Anteater Swab nasal 4677 Singletons

Klebsiella 
quasipneumoniae subs 
quasipneumoniae

Cerdocyon thous Crab-eating fox Rectal swab 3093 Singletons

Klebsiella 
quasipneumoniae subs 
quasipneumoniae

Nasua nasua Brown-nosed coati Rectal swab 4540 Singletons

ST=Sequence type, CC=Clonal complex. *Featured new STs
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subsp. similipneumoniae, and 8% (2/25) 
K. quasipneumoniae subsp. quasipneumoniae.

Using the MLST technique, 23 STs were 
observed, 47.8% (11/23) of which were considered 
new (4526, 4536, 4537, 4538, 4539, 4540, 4541, 
4542, 4543, 4544, and 4677). These STs were grouped 
into 11 CCs and eight singletons (Table-1). In con-
catenated sequences analysis, there were no indels 
or tetra-allelic single-nucleotide polymorphisms 
(SNPs). Matrix identity between isolates range has 
96.58–100%. The number of polymorphic sites was 
188 (6.24%) from 3012 nucleotide positions and 
diversity index (π) 0.01843 (Figure-1).

All isolates were found to be MDR. The results 
showed the highest levels of resistance against sulfon-
amides 100% (25/25) and 96% (24/25) against ampi-
cillin, amoxicillin, and nitrofurantoin. The antibiot-
ics with the lowest resistance rates were meropenem 
(0%), imipenem (8%; 2/25), and amikacin (12%; 
3/25) (Figure-2).
Discussion

Three MDR species of Klebsiella were observed 
in this study, with a predominance of K. pneumoniae, 
mainly in birds, and the isolates presented a great 
clonal diversity. One of the biggest concerns in the 
public health community is the potential risk posed 
by the colonization of bacterial pathogens from wild-
life and the consequent contamination of the environ-
ment, potential transfer to food crops, humans, and 
domestic animals. There is also a risk of dissemina-
tion of zoonotic diseases and transmission of MDR 
pathogens, which is one of the biggest health prob-
lems anticipated by the One Health concept [24].

There exist a few previous studies on genotyp-
ing of Klebsiella in wild animals [25–27], and in this 
study, new STs were found. The genotypes and CCs 
observed in these previous studies show occurrence 
both in human samples and in other domestic animals. 
In samples of beef, pork, chicken, and clinical human 
urine samples, 60 STs were described, and 21 (35%) 
were considered new, probably due to the low number 
of deposits in the database for K. pneumoniae isolates 
from animals [28]. In addition, K. pneumoniae isolates 
have high population diversity [2, 12, 29, 30], and new 
strains were discovered through this study with many 
polymorphic sites (SNP). There was no predominance 
of a strain and a variety of STs were found.

Two free-living blue and yellow Macaw iso-
lates from our study were classified as ST70 belong-
ing to CC70, which has already been identified in 
K. pneumoniae isolate from a human hospital in Rio 
de Janeiro, Brazil [31], and in India [32]; this ST70 
is more associated with nosocomial infections in 
humans [33]. Other studies carried out with parrots 
and silver gulls (Chroicocephalus novaehollandiae) 
found several STs differing from our results [26].

In our study, primate isolate from a Capuchin mon-
key (Sapajus apella) was classified as ST1480, which 
belongs to CC37. This clonal group has been identified 
on inanimate surfaces in a hospital environment in Algeria 
[34]. The first described case, ST1480, was isolated in 
a human blood sample in New York in 2012 (id:8510 
Gomez-Simmonds et al. [35]). In addition, there have been 
other reports of wild primates in captivity in Brazil, such 
as the golden-handed tamarin (Saguinus midas midas) and 
non-human primates (Alouatta clamitans) with different 
STs from the ones found in our study [25, 27].

Figure-1: Percent identity and divergence score matrix of the seven concatenated gene nucleotide sequence type of 
Klebsiella spp. from wildlife animals.
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Two isolates from our study belonged to CC35; 
these isolates were from animals in captivity. One 
ST35 isolate was from a blue and yellow Macaw, 
and the other ST1948 was from a puma. K. pneumo-
niae ST35 is an MDR clone and has been identified 
in humans from several countries [33, 36, 37]. It is 
also found in feces, milk from [id: 3084, id: 13421), 
broiler and turkey in Norway [38], urban rodents in 
China [39], and wastewater in Romania [40]. In addi-
tion, the ST1948 strain was described in blood isolate 
from a hospital in Taiwan and Laos [12, 41] and found 
in crows in Italy (id:13729).

We also found two isolates of K. pneumoniae 
ST107 in captive alligators and free-living tapirs. 
Furthermore, the same ST was observed in hospitals 
in China with several virulence factors and resis-
tance genes, such as K. pneumoniae carbapenemase 
2 (bla-KPC2) and New Delhi metallo-beta-lactamase 
9 (bla-NDM9) [42, 43]. This ST107 has never been 
described before in animals; the first case of this strain 
was in the USA (id:80) and has been deposited on the 
website of Pasteur Institute.

There have been previous reports of K. 
pneumoniae ST76 infections worldwide. It has been 
identified in various cases such as a bird tracheal 
sample in the Netherlands [33], dogs in Italy, pigs in 
Thailand and Switzerland, and humans in countries 
such as Brazil, the United States, Italy, and Vietnam 

(Database of the Pasteur Institute) [12, 44], the same 
ST76 has been described in our study, in hyacinth 
macaws with caseous lesions.

The high rate of beta-lactam resistance, particularly 
ampicillin resistance, is due to the intrinsic resistance of 
K. pneumoniae (SHV-1) [12]. However, there was a low 
resistance to carbapenems. Notably, imipenem resistance 
was found in two free-living animals and was probably 
acquired from the environment in which these animals 
lived. We hypothesize that resistance to imipenem has 
been acquired from an environment contaminated with 
resistant pathogens and exchange of resistance genes 
since the use of carbapenems in animals is still limited to 
treating serious diseases in companion animals [29, 45]. 
As for the isolates of human origin, they have shown a 
high rate of resistance due to the presence of the KPC 
enzyme, as previously described [46].

Among the aminoglycosides, amikacin had a 
lower resistance rate than gentamicin. This may be 
due to the reduced presence of the methylase genes, 
armA and rmtB, which are the genes mainly involved 
in amikacin resistance in Klebsiella spp. [47]. Notably, 
this drug has been widely used to treat nosocomial 
infections [29, 46, 48].

The increase in MDR pathogens in wild, 
companion, and production animal species as well as 
in the environment has created a significant problem 
because of the transmission of these MDR pathogens 

Figure-2: Heat map of antimicrobial resistance profile of complex Klebsiella spp. isolates by means of agar disk diffusion. 
AMO=Amoxicillin, AMC=Amoxicillin + clavulanic acid, AMP=Ampicillin, CFE=Cephalexin, MPM=Meropenem, IPM=Imipenem, 
GEN=Gentamicin, AMI=Amikacin, CIP=Ciprofloxacin, CLO=Chloramphenicol, DOX=Doxycycline, NIT=Nitrofurantoin, 
SUL=Sulfonamides, SUT=Sulfonamide+trimethoprim. *Samples classified as intermediate were regrouped with those 
classified as resistant.
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between humans and animals [49, 50]. The proxim-
ity of human activities influences the emergence of 
antimicrobial resistance in wild animals, contributing 
to this worldwide problem in human and veterinary 
medicine [51].

In a study carried out on free-living porpoises 
(Inia geoffrensis) in the Amazon, Brazil, the resis-
tance profile was analyzed to find resistant pathogens 
in these animals, with the aquatic environment acting 
as reservoirs of pathogenic bacteria, and these wild 
animals acting as the vectors, for transmission [51]. 
Monitoring and surveillance of antimicrobial resis-
tance among aquatic life, bacteria, wildlife, domestic 
animals, humans, and the environment are essential to 
prevent the further emergence and spread of antimi-
crobial resistance [52].

The presence of antibiotic-resistant bacteria in 
wild animals may be evidence of the impact of human 
activities on natural ecosystems [24]. For example, 
wild birds can acquire these bacteria by ingesting food 
with these MDR pathogens through the fecal-oral 
route, and with this, they can act as sentinels of these 
MDR pathogens and spread to other places [52–54].

MDR K. pneumoniae isolates from animals are 
a major concern because they possess clinically rel-
evant antimicrobial resistance genes; thus, these ani-
mals serve as reservoirs of the important determinants 
of resistance. This is worrisome as the previous study 
has shown that Klebsiella species are prone to noso-
comial spread [55]. Therefore, it is advisable to avoid 
the spread of these high-risk clonal strains into the 
population [45]. This concern increases when it comes 
to wildlife environmental conservation.
Conclusion

Klebsiella isolates from wild animals used in 
this study were MDR with a high rate of resistance 
to several antimicrobials. The population structure 
had great genetic diversity, and there was no pre-
dominance of one genotype. The presence of MDR 
Klebsiella in wild animals poses significant risks to 
public health, as these animals can act as reservoirs of 
MDR K. pneumoniae and K. quasipneumoniae strains 
and can be transferred to the environment and food 
through feces. Thorough knowledge of Klebsiella 
population structure is needed to determine the rela-
tionship between MDR organisms and the source of 
infection during outbreaks, providing data for greater 
control in public health and reducing the spread of 
resistant clones to avoid environmental propagation 
as observed in wild captive and free-living animals. 
Further research is needed to investigate the resistance 
genes and virulence factors to verify the pathogenicity 
of these isolates.
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Annexure-1: Oligonucleotides, sequences, and base pairs to be analyzed by polymerase chain reaction.

Gene Sequence (5’ – 3’) Product (pb)

rpoB F-GGCGAAATGGCWGAGAACCA
R-GAGTCTTCGAAGTTGTAACC

501

gapA F-TGAAATATGACTCCACTCACGG
R-CTTCAGAAGCGGCTTTGATGGCTT

450

mdh F-CCCAACTCGCTTCAGGTTCAG
R-CCGTTTTTCCCCAGCAGCAG

477

pgi F-GAGAAAAACCTGCCTGTACTGCTGGC
R-CGCGCCACGCTTTATAGCGGTTAAT

432

phoE F-ACCTACCGCAACACCGACTTCTTCGG
R-TGATCAGAACTGGTAGGTGAT

420

infB F-CTCGCTGCTGGACTATATTCG
R-CGCTTTCAGCTCAAGAACTTC

318

tonB F-CTTTATACCTCGGTACATCAGGTT
R-ATTCGCCGGCTGRGCRGAGAG

414

Sequencing pgi F- CTGCTGGCGCTGATCGGCAT
R- TTATAGCGGTTAATCAGGCCGT

420

Sequencing infB F- ACTAAGGTTGCCTCCGGCGAAGC 318

********
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