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Abstract
Background and Aim: The cattle breeding system is facing severe problems associated with the increased negative impact 
of various human activity areas on the environment and the bodies of farm animals. The use of heavy metals in different 
production areas leads to their accumulation in the environment due to the ingestion of animals and humans through animal 
products. This study aimed to assess the elemental composition of the hair and milk of black-spotted cows and to identify 
the relationship between the content of toxic and essential elements and the state of the intestinal microbiome.

Materials and Methods: The element status was estimated by studying the chemical composition of the biosubstrates using 
inductively coupled plasma-mass spectroscopy. Based on the analysis of hair, the elemental composition, and the use of the 
coefficient of toxic load, two groups of animals were formed: Group I, which included cows with a lower load factor, and 
Group II, which included cows with a higher load factor.

Results: An increase in the heavy metal concentrations in the hair and milk of animals in Group II was observed. The As, 
Fe, Pb, Al, Co, Ni, and V concentrations in the hair of cows from Group II increased relative to Group I by 19%, 29%, 
24.5%, 32.3%, 35.6%, 21.5%, and 18.2%, respectively. There was a significant increase in the level of Fe by 11.5%, Cr by 
8.25%, Mn by 17.6%, Pb by 46.1%, and Cd by 25% in Group II compared with Group I in the assessment of elemental milk 
composition. There were no apparent changes in the intestinal microbiome of Group II.

Conclusion: Some heavy metals were accumulated in the bodies and milk of animals. This shows a high probability of 
heavy metals causing harm to the health of animals and humans.

Keywords: breeding, heavy metals, intestinal microbiome, probability.

Introduction

In recent decades, dairy farming has been 
gaining momentum in producing milk and dairy prod-
ucts worldwide [1, 2]. Dairy and other animal prod-
ucts play an essential role in the human diet. They are 
critical in children’s nutrition as good sources of pro-
tein, vitamins, sugars, and minerals [3, 4]. Milk pro-
duction and quality are reduced by the deterioration of 
environmental conditions, affecting the level of real-
ization of the genetic potential of animals. The cattle 
breeding system is currently facing severe problems 
associated with the increased negative impact of var-
ious areas of human activity on the environment and 
the bodies of farm animals [5, 6]. Heavy metals use in 
multiple production areas leads to their environmen-
tal accumulation, resulting in the ingestion of animals 

and humans through animal products [7]. The signif-
icant content of toxic chemical elements in livestock 
products is a highly urgent problem for both develop-
ing and developed countries [8–10]. Increased content 
of several heavy metals in the human body leads to 
disruption of the liver, kidneys, circulatory system, 
and central nervous system [11, 12]. In addition, the 
impact of heavy metals on the body of children is the 
cause of the development of neurodegenerative dis-
eases [13–15]. Connected with the above, control of 
the physiological state, including mineral metabolism 
of essential and toxic elements, is an integral part of 
assessing the health of animals in the production of 
meat and dairy products.

Hair is a material frequently used to assess the 
elemental status of animals. The use of hair as an 
indicative biomaterial is associated with its informa-
tive value as a long-term parameter for determining 
the state of mineral metabolism [16, 17]. The micro-
biome of the gastrointestinal tract is one indicator of 
changes in the internal homeostasis of ruminants. The 
gut microbiome of cattle plays a fundamental role 
in the metabolic functions of the host and the func-
tioning of the immune system [18, 19]. Changes in 
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the composition of the intestinal microbiota of cattle 
closely correlate with indicators of productivity and 
the physiological state of animals [20, 21].

This study aimed to assess the elemental compo-
sition of the hair and milk of black-spotted cows. In 
addition, this study aimed to identify the relationship 
between the content of toxic and essential elements 
and the state of the intestinal microbiome.
Materials and Methods
Ethical approval

The Ethics Committee of the Federal Research 
Centre for Biological Systems and Agrotechnologies 
of the Russian Academy of Sciences approved the 
experimental design (No. 5 of 02/05/2021). All animal 
studies were performed following the ethical stan-
dards laid down in the 1964 Declaration of Helsinki 
and its later amendments.
Study period and location

This study was conducted from June to August 
2021. Experiments were conducted at the cen-
ter of collective sharing of Biological Systems 
and Agrotechnologies of the Russian Academy of 
Sciences.
Experimental animals

The studies were conducted on a model of 
black-spotted cows (n = 70; age 4–6 years; live weight 
610–640 kg; and lactation stage 30–55 days after calv-
ing) in JSC “Kalinina.” (Tashlinsky District, Russia). 
All animals were clinically healthy. All animals were 
under the same conditions and pasture management. 
The diet of the black-spotted cows during the experi-
ment is shown in Table-1.
Analysis of microelements

Animal hair and milk samples were used as bio-
substrates to study elemental status. Hair samples 
weighing at least 0.4 g were taken from the upper part 
of the animals’ withers according to the standard tech-
nique. The proximal portion of hair was cut off 15 mm 
long from the root within the period closest to sam-
pling to assess the elemental status of the organism.

The collected hair samples were washed in ace-
tone (Khimmed, Russia) within 10–15 min. Then, 
the hairs were washed thrice in deionized water 
(18 MΩ • cm). Deionized water was obtained using an 
electric distiller with a combined membrane set DVS-
M/1НА-1(2)-L (Mediana-Filter, Podolsk, Russia). 
Later, samples were dried at 60°C until they reached 
an air-dry state. The corresponding sample weights 
(about 0.05 g) were treated with 5 mL of nitric acid 
(Khimmed) in a Multiwave 3000 microwave system 
(Perkin Elmer-A. Paar, Austria) using the following 
mode: The temperature was raised to 200°C for 5 min 
and remained stable for 5 min at 200°C. Then, the tem-
perature was cooled to 45°C. The split solutions were 
poured into 15 mL polypropylene tubes. Labels and 
caps were washed three times with deionized water. 
The rinsed samples were included in the appropriate 

tubes. Finally, the solutions were filled up to 15 mL 
with deionized water and thoroughly mixed by shak-
ing closed tubes [22].

Raw milk samples were taken individually from 
each cow, placed in sterile containers, and cooled to 
5°C. The obtained samples were diluted (1: 15; v/v) 
with an acidified (pH = 2.0) diluent consisting (v/v) of 
1% 1-butanol (Merck KGaA, Darmstadt, Germany), 
0.1% Triton X-100 (Sigma-Aldrich, Co., St. Louis, 
USA), and 0.07% HNO3 (Sigma-Aldrich) in distilled 
deionized water (18 MΩ cm-1) (Merck Millipore, 
Billerica, MA, USA) [22].

Analytical studies of the microelement composi-
tion of hair and milk according to 25 elements (e.g., Ca, 
Cu, Fe, Li, Mg, Mn, Ni, As, Cr, K, Na, P, Zn, I, V, 
Co, Se, Ti, Al, Be, Cd, Pb, Hg, Sn, and Sr) were con-
ducted in the laboratory of the ANO Center for Biotic 
Medicine (Moscow). The atomic emission (Optima 
2000DV, PerkinElmer Corp., USA) and mass spectral 
(Elan 9000”, “PerkinElmer Corp.,” USA) analyses 
were conducted with inductively coupled plasma.

The coefficient of the total toxic load (Ktox) was 
calculated to assess the magnitude of the toxic load on 
the cows’ bodies. The sum of the coefficients of some 
heavy elements (e.g., Mn, Fe, Cu, Zn, As, Sr, Pb, Cd, 
and Hg) was used to calculate the coefficient of the 
toxic load (Ktox):

Кtox = KMn + KFe + KCu + KZn + KAs + KSr + KPb 
+ KCd + KHg,

Table-1: Ingredients and mineral compositions of the diet.

Ingredients g of dry matter/ 
kg of body weight

Cereal-leguminous grass 44.5
Compound feed 11.6
Beet molasses 0.5
Table salt 0.07
Mineral composition

Ca 184.8 g
P 110.6 g
Mg 41 g
K 178 g
Na 3514 g
Al 958.6 mg
As 1.79 mg
B 118.5 mg
Cd 1.83 mg
Co 23.9 mg
Cr 4.31 mg
Cu 290 mg
Fe 2023 mg
Hg 0.048 mg
I 27.9 mg
Li 2.05 mg
Mn 1801 mg
Ni 34.3 mg
Pb 3.81 mg
Se 2.01 mg
Si 1853 mg
Sn 0.69 mg
Sr 249 mg
V 2.15 mg
Zn 1789 mg
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Where KMn….KHg is the ratio of the content of an 
element in the hair of a particular cow to the content 
corresponding to the 50th percentile.

After dividing the total number of cows into 
groups according to Ktox (Group I [n = 32] and Group II 
[n = 38]), five animals were selected from each group 
to study the intestinal microbiome. However, the appar-
ent limitation of our study was the small number of ani-
mals included in the analysis. This occurred due to the 
design of the main research and the remarkably high 
cost. Nevertheless, these data provide new insights into 
the intestinal microbiome. The study of the microbi-
ome was conducted in the large intestine (gut content) 
of cows. Samples were taken with a sterile instrument 
into a test tube with a preservative solution (DNA/RNA 
Shield, USA). Finally, the samples were frozen.

Total DNA extraction
The samples were homogenized on a TissueLyser 

LT (Qiagen, Hilden, Germany) with a Lysing Matrix Y 
(MP Biomedicals, Solon, USA). DNA extraction from 
samples was performed using a QIAamp Fast DNA 
Stool Mini Kit (Qiagen) according to the manufactur-
er’s instructions. The quality of the extracted DNA was 
assessed using electrophoresis in 1% agarose gel and a 
Nanodrop 8000 (Thermo Fisher Scientific, Waltham, 
MA, USA). The DNA concentration was quantified 
using a Qubit 4 Fluorometer (Life Technologies, 
Carlsbad, CA, USA) with a dsDNA High Sensitivity 
Assay Kit (Life Technologies).

Library preparation and sequencing
Preparation of the DNA libraries was made 

according to the Illumina protocol (Part #15044223, 
Rev. B.) with primers targeting the V3–V4 regions 
of the SSU ribosomal RNA (rRNA) gene, S-D-Bact-
0341-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′) 
as the forward primer and S-D-Bact-0785-
a-A-21 (5′-GACTACHVGGGTATCTAATCC-3′) as 
the reverse primer. The reaction mixture (25 μL) con-
tained both primers (0.2 μM of each). The mixture also 
contained 80 μM dNTPs and 0.2 U Q5 High-Fidelity 
DNA Polymerase (New England Biolabs, Ipswich, 
MA, USA). The following PCR program was used: 
95°C for 3 min, 25 cycles: 95°C for 30 s, 56°C for 
30 s, 72°C for 30 s, and final extension 72°C for 5 min. 
The DNA libraries were cleaned using Agencourt 
AMPure XP beads (Beckman Coulter, Brea, CA, 
USA). They were validated by capillary electropho-
resis on a Qiaxcel Advanced System (Qiagen) using 
the QIAxcel DNA Screening Kit (Qiagen). Paired-end 
2 × 251 bp sequencing was performed on the MiSeq 
platform (Illumina, San Diego, CA, USA) with the 
Reagent Kit v.2 (Illumina, San Diego, CA, USA).

DNA library preparation, sequencing, and bio-
informatics treatment were performed in the Center 
of Shared Scientific Equipment “Persistence of 
Microorganisms” from the Institute for Cellular and 
Intracellular Symbiosis UrB RAS (Orenburg, Russia).

Bioinformatic Processing
In the first stage, the raw reads obtained as a 

result of sequencing were evaluated using FastQC v. 
0.11.7 (Babraham Institute, UK). The evaluation was 
necessary to determine the parameters of further pro-
cessing and included an assessment of the quality and 
length of reads and the presence of adapter sequences. 
Paired-end reads were merged using USEARCH 
v10.0.240_win32 (drive5.com/usearch), using the 
“-fastq_mergepairs” command with the “-fastq_max-
diffs 10 -fastq_pctid 80 options.” After merging and 
adapter removal, the reads were re-evaluated with 
FastQC v. 0.11.7. Subsequent treatment of merged 
reads was conducted with Usearch v10.0.240_win32 
(drive5.com/usearch) [1] and included quality filter-
ing (expected error or maxee <1.00) and amplicon 
size selection (420 bp of minimal size). The filtering 
quality was evaluated with FastQC v. 0.11.7.

The next stage included dereplication and clus-
tering of the filtered reads using the UPARSE algo-
rithm. As a result of dereplication and clustering, 
operational taxonomic units (OTUs) were formed. 
Chimeric sequences were detected and removed 
using the UCHIME2 algorithm [2] during the clus-
tering phase. Final OTUs were aligned to the ini-
tial merged reads using global alignment (usearch_
global tool) at a 97% level of similarity. As a 
result of global alignment, the number of merged 
reads corresponding to every OTU was estimated. 
Contaminant OTUs were identified and removed 
through the “usearch_ublast” command by match-
ing the sequences of the trial samples and the neg-
ative control samples. The taxonomic classification 
of sequences was conducted using the ribosomal 
database project reference database (rdp.cme.msu.
edu/index.jsp) [3]. The visualization of the results 
of bioinformatic processing was implemented using 
a microbiome analyst [4]. After filtering and assign-
ing taxonomic affiliations, the resulting OTUs 
were used to calculate alpha (e.g., Chao1, equita-
bility, abundance-based coverage estimated [ACE], 
Fisher’s alpha, Simpson, and Shannon2 indexes 
[statistical method: Analysis of variance]) and beta 
(e.g., ordination method: non-metric multidimen-
sional scaling; distance method: Bray-Curtis index; 
statistical method: Permutational Multivariate 
Analysis of Variance [PERMANOVA]) diversities.
Statistical analysis

The data were processed using the methods of 
variation statistics and the statistical package Statistica 
10 (StatSoft, USA). The differences regarding the 
data on the taxonomic composition of the intestinal 
microbiome were considered statistically significant 
at p ≤ 0.05 using Student’s t-test.

For data on the elemental composition of hair 
and milk, compliance with the normal distribution 
law was verified using the Kolmogorov goodness-
of-fit test. The hypothesis that the data belonged to a 
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normal distribution were rejected in all cases, with a 
probability of 95%. Therefore, the use of nonparamet-
ric procedures for statistically processing populations 
was justified, allowing the use of the Mann–Whitney 
U test. The data obtained are shown as median (Me) 
and 25–75th quartiles (Q25–Q75).
Results

According to the Ktox calculation, two groups 
were formed. Group I included cows with a lower load 
of Ktox <8.95 relative to the studied sample. Group II 
included cows with a higher load factor Ktox >8.95 rel-
ative to the study sample. Significant differences in 
Table-2 were revealed in the analysis of the chemical 
elements in the hair of dairy cows.

The regularity of the increase in the average 
values of individual element concentrations with the 
increase in Ktox was revealed by the content evaluation 
of chemical elements in cows’ hair. The As, Fe, Pb, 
Al, Co, Ni, and V concentrations in the hair of cows 
from Group II have significantly increased relative to 
Group I by 19%, 29%, 24.5%, 32.3%, 35.6%, 21.5%, 
and 18.2%, respectively. In addition, an increase in the 
level of several other elements (e.g., Hg, Mn, Zn, Si, 
and Mg) was observed in experimental Group II in 
comparison with group I. A decrease in the concentra-
tion of the elements Ca, K, Na, P, Se, B, and Sr was 
the exception when Groups I and II were compared.

There were no significant differences between 
the experimental groups for most of the studied ele-
ments of the composition of the cows’ milk, according 
to the analysis of the elements (Table-3). At the same 
time, significant changes in values were observed for 

several chemical elements contained in milk. There 
were significant increases in the levels of Fe (11.5%), 
Cr (8.25%), Mn (17.6%), Pb (46.1%), and Cd by 25% 
in Group II compared with Group I. However, there 
was a 21.8% decrease in Zn levels (Figure-1).

There were significant Spearman correlations 
between changes in the content of several chemical ele-
ments in hair and those in milk (Table-4). There were 
strong negative correlations between Al concentration 
in hair and Cr in milk (r = −0.86) and Mn in hair and 
Fe in milk (r = −0.94). Moderate negative correlations 
were observed for As in hair and Fe in milk (r = −0.54), 
Pb in hair and Zn in milk (r = −0.67), and Fe in air 
and Cr in milk (r = −0.68). Finally, there were moder-
ate positive correlations for Pb in hair and Cd in milk 
(r = 0.61), Al in hair and Pb in milk (r = 0.67), Fe in 
hair and Fe in milk (r = 0.57), Cd in hair and Cd in milk 
(r = 0.58), and Mn in hair and Mn in milk (r = 0.56).

There was a high diversity of taxonomic groups 
in the analysis of the intestinal microbiota of cows. As 
a result of sequencing, 301,938 reads were obtained, 
from 26,613 to 33,808 initial reads per sample. After 
the merging and filtering steps, 253,319 reads were 
included in the analysis. After clustering, a total of 
516 OTUs were obtained. After removing singletons 
and doublets from the samples, 496 OTUs remained. 
It should be noted that 21 OTUs were found in only 
one of the ten samples. Therefore, they were removed 
from further analysis.

Based on the obtained sequences and OTUs, 
the resolution curves were plotted. The resolution 
curves of all samples tended to plateau to a maximum, 
indicating the sufficiency of the sequencing depth 

Table-2: The content of chemical elements in the hair of cows, depending on the value, Кtox, μg/g.

Elements in hair Group I Group II

As 0.145 (0.125–0.155) 0.172 (0.158–0.193)*
Cd 0.008 (0.007–0.009) 0.009 (0.008–0.01)
Cu 7.73 (7.68–8.1) 7.71 (7.52–9.34)
Fe 220.0 (160.0–247.0) 284.0 (240.0–326.0)*
Hg 0.005 (0.004–0.007) 0.007 (0.005–0.008)
Mn 8.36 (7.58–9.31) 9.345 (8.07–10.88)
Sr 4.51 (3,66–5.17) 4.185 (3.79–4.6)
Zn 114.0 (110.0–117.0) 124.0 (114.0–130.0)
Pb 0.159 (0.157–0.183) 0.198 (0.185–0.215)*
Al 110.0 (104.0–124.0) 145.5 (124.0–172.0)*
B 0.808 (0.662–0.829) 0.77 (0.638–0.954)
Ca 1 318.0 (1 042.0–1 406.0) 1 188.0 (1 083.0–1 264.0)
Co 0.101 (0.089–0.117) 0.137 (0.121–0.15)*
Cr 0.664 (0.562–0.799) 0.782 (0.701–0.828)
I 0.399 (0.332–0.521) 0.409 (0.359–0.454)
K 813.0 (778.0–1 055.0) 769.5 (655.0–939.0)
Li 0.297 (0.233–0.299) 0.284 (0.257–0.307)
Mg 212.0 (166.0–258.0) 224.5 (192.0–237.0)
Na 349.0 (256.0–562.0) 262.0 (223.0–364.0)
Ni 0.386 (0.34–0.421) 0.469 (0.426–0.499)*
P 243.0 (195.0–251.0) 205.0 (177.0–233.0)
Se 0.19 (0.16–0.197) 0.183 (0.149–0.221)
Si 16.67 (15.74–23.89) 18.9 (14.76–20.04)
Sn 0.014 (0.014–0.028) 0.014 (0.012–0.021)
V 0.445 (0.404–0.471) 0.526 (0.483–0.57)*

*р ≤ 0.05‑I in comparison with II
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for characterizing ruminal microbiota in this study 
(Figure-2). The resulting OTUs were taxonomically 
grouped from the phylum to the genus levels and 
assigned to 12 phyla, 22 classes, 27 orders, 43 fami-
lies, and 92 genera in Group I and 11 phyla, 21 classes, 
26 orders, 42 families, and 91 genera in Group II.

Firmicutes (32.1%) and Bacteroidetes (60.1%) 
were the most numerous phyla in samples from cows 
in Group I. Proteobacteria (3.98%) and Spirochaetes 
(1.37%) were among the least frequent phyla (Table-5). 

At deeper taxonomic levels in the samples of the 
intestinal microbiota of cows, numerous taxa were the 
following classes: Bacteroidia (32.1%) and Clostridia 
(58.8%), families Ruminococcaceae (46.1%), 
unclassified Bacteroidales (13%), Lachnospiraceae 
(8, 72%), and Bacteroidaceae (8.35%). The most 
abundant classified microorganisms at the genus level 
belonged to unclassified Ruminococcaceae (41.6%) 
and unclassified Bacteroidales (13%). A similar ratio 
of the main taxonomic groups of microorganisms of 
the intestinal microbiota was observed in samples of 
cows in Group II. There was a significant decrease 
in the number of microorganisms belonging to the 
class Gammaproteobacteria (Ruminobacter) by 2% 
(p = 8.82) (Figure-3).

Considering the alpha diversity calculations, 
it was possible to assess the richness, diversity, and 
homogeneity of the intestinal microbiota of cows in 
experimental Groups I and II (Table-6). The values of 
the Chao1, ACE, and Simpson indices indicated the 
taxonomic richness of the intestinal microbiota of the 
experimental groups and the absence of a predomi-
nance of one large OTU in the samples. At the same 
time, no significant differences between the exper-
imental groups were observed according to Chao1, 
ACE, and Simpson indices. Similarly, no significant 
differences between the experimental groups were 

Table-3: Content of chemical elements in milk of cows from Groups I and II, μg/g.

Element Group I Group II

Al 0.09 (0.07–0.12) 0.097 (0.07–0.11)
As 0.001 (0.0008–0.002) 0.001 (0.0008–0.002)
B 0.19 (0.18–0.21) 0.184 (0.16–0.2)
Ca 1053 (1000–1120) 982.5 (896–1114)
Co 0.002 (0.0018–0.0022) 0.0021 (0.0018–0.0024)
Hg 0.00018 (0.00016–0.00048) 0.00018 (0.00016–0.00047)
I 0.0057 (0.0044–0.009) 0.0052 (0.0043–0.0087)
K 1576 (1522–1686) 1640 (1533–1701)
Li 0.03 (0.02–0.04) 0.034 (0.02–0.044)
Mg 113.5 (99.3–120.5) 111 (96.7–118.2)
Na 460.5 (419.7–510.5) 478 (431–524.3)
Ni 0.04 (0.03–0.05) 0.04 (0.03–0.06)
P 1080 (1006–1110) 1124 (1020–1173)
Se 0.027 (0.025–0.031) 0.026 (0.025–0.03)
Si 1.93 (1.82–2.26) 1.89 (1.81–2.2)
Sn 0.00068 (0.00011–0.0037) 0.00068 (0.00011–0.0036)
Sr 0.86 (0.7–1.01) 0.88 (0.71–1.01)
V 0.0096 (0.0082–0.01) 0.0096 (0.0081–0.01)
Cu 0.028 (0.025–0.0315) 0.0285 (0.0265–0.0335)
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Figure-1: Significant changes (p ≤ 0.05) in the content 
of a number of chemical elements in the milk of Group II 
relative to the indicators of Group I.

Table-4: Spearman’s correlation coefficient between the content of heavy metals in hair and milk of cows of Group II.

Milk elements Hair elements

Al As Pb Cd Mn Fe Zn

Fe −0.29 −0.54* 0.18 −0.21 −0.94* 0.57* −0.06
Zn −0.34 0.08 −0.67* 0.27 0.32 0.05 0.15
Mn −0.44 −0.38 −0.18 −0.34 0.56* −0.33 0.2
Cr −0.86* −0.39 −0.33 0.12 −0.27 −0.68* 0.13
Pb 0.67* 0.40 0.27 −0.41 0.24 0.4 −0.1
Cd −0.25 −0.36 0.61* 0.58* −0.34 −0.45 −0.27

*The correlation is significant at the level of p ≤ 0.05
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indicated by the diversity indices (i.e., Shannon2 and 
Fisher’s alpha). There was no significant effect of 
the level of heavy metal loading on the Bray-Curtis 
distance according to the PERMANOVA analysis for 

assessing beta diversity (Figure-4). There were no 
significant differences in the organization of intes-
tinal bacterial communities between samples from 
Groups I and II (p > 0.05).

Figure-2: Sequence-based resolution curves for gut microbiota samples from Groups I (right) and II (left).

Table-5: Taxonomic diversity of intestinal microbiota of the black-spotted cows, %.

Group Taxon

Phylum Class Family Genus

I Firmicutes 
(60.1 ± 1.01)

Clostridia  
(58.8 ± 1.13)

Lachnospiraceae (8.72 ± 0.77) unclassified_Lachnospiraceae 
(5.99 ± 0.62)

Ruminococcaceae (46.1 ± 0.93) unclassified_
Ruminococcaceae  
(41.6 ± 0.95)

Proteobacteria 
(3.98 ± 0.41)

Gammaproteobacteria 
(3.0 ± 0.23)

Succinivibrionaceae (3.0 ± 0.23) Ruminobacter (2.74 ± 0.27)

Bacteroidetes 
(32.1 ± 1.21)

Bacteroidia  
(32.1 ± 1.21)

Bacteroidaceae (8.35 ± 0.42) Phocaeicola (6.9 ± 0.39)
Muribaculaceae (1.54 ± 0.83) -
Paludibacteraceae (4.26 ± 0.55) Paludibacter (4.26 ± 0.55)
Prevotellaceae (1.71 ± 0.53) -
Rikenellaceae (3.53 ± 0.16) Alistipes (3.34 ± 0.15)
unclassified_Bacteroidales  
(13.0 ± 1.27)

unclassified_Bacteroidales 
(13.0 ± 1.27)

Spirochaetes 
(1.37 ± 0.43)

Spirochaetia  
(1.37 ± 0.43)

Spirochaetaceae (1.23 ± 0.42) -

Others (2.45 ± 
0.24)

Others (4.73 ± 0.45) Others (8.56 ± 0.86) Others (22.2 ± 1.03)

II Firmicutes 
(61.9 ± 0.89)

 Clostridia  
(60.1 ± 1.41)

Lachnospiraceae (8.81 ± 1.68) unclassified_
Lachnospiraceae  
(6.1 ± 1.24)

Ruminococcaceae (47.5 ± 1.95) unclassified_
Ruminococcaceae  
(42.9 ± 1.92)

Proteobacteria 
(2.2 ± 1.02)

Gammaproteobacteria 
(0.88 ± 0.07*)

Succinivibrionaceae  
(1.0 ± 0.19*)

Ruminobacter (0.7 ± 0.06*)

Bacteroidetes 
(32.2 ± 1.0)

Bacteroidia  
(32.2 ± 1.0)

Bacteroidaceae (7.81 ± 0.33) Phocaeicola (6.12 ± 0.28)
Muribaculaceae (2.0 ± 0.09) -
Paludibacteraceae (4.07 ± 0.42) Paludibacter (4.07 ± 0.42)
Prevotellaceae (2.24 ± 0.44) -
Rikenellaceae (3.11 ± 0.33) Alistipes (3.01 ± 0.32)
unclassified_Bacteroidales  
(13.1 ± 1.29)

unclassified_Bacteroidales 
(13.1 ± 1.29)

Spirochaetes 
(1.96 ± 0.34)

Spirochaetia  
(1.96 ± 0.34)

Spirochaetaceae (1.95 ± 0.36) -

Others  
(1.74 ± 0.43)

Others (4.86 ± 0.39) Others (8.41 ± 0.62) Others (24.0 ± 0.83)

*Differences between groups are significant at p ≤ 0.05 (according to Student’s t‑test)
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Discussion

The intake of heavy metals in the bodies of farm 
animals is one of the most critical issues in modern 
agricultural production. Heavy metal accumulation in 
soil caused by human economic activities leads to the 
inevitable entry of these elements into the bodies of 
farm animals. Therefore, it is necessary to assess the 
condition of animals and food products of animal ori-
gin [23, 24].

The content analysis of chemical elements in the 
hair of cows made it possible to divide the experimen-
tal animals into two groups characterized by high and 
low Ktox values. Discrepancies in Ktox values are prob-
ably more due to differences in the level of metabolic 
processes.

A comparison of the content of chemical ele-
ments in the hair of cows from Groups I and II (Q25–
Q75 percentile intervals) was recommended to obtain 
the range of optimal values of the content of chem-
ical elements. It was shown that there were simi-
lar deviations for the animals in both groups in this 
analysis [25]. Higher contents of Na, K, Mg, I, and 
Se, and lower levels of Co, As, and Cr in the hair of 
animals were noted in Groups I and II. However, for 
animals from the group with high Ktox, a more pro-
nounced deviation in the content of chemical elements 
in hair from the recommended physiological range 
was observed compared to animals from the group 
with low Ktox. Nevertheless, such discrepancies in the 
content of individual elements in the hair of cows with 
the recommended physiological standard were proba-
bly due to more differences in the geographical zones 
of animal habitation, the level of metabolic processes, 
age, and the genotype of animals [26–28].

It was shown in the comparison of the experimen-
tal data obtained from both groups that a higher con-
tent of heavy metals in the hair of animals is accompa-
nied by a change in the metabolism of other chemical 
elements in cows’ hair. Indeed, the elemental hair 
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Figure-3: Comparative chart of the microbial community.

Table-6: Alpha-diversity of the intestinal microbiota of 
cows of Groups I and II.

Indicator Group I Group II p-value

chao1 356.4 362.6 0.75
ACE 358.8 362.4 0.75
Fisher’s alpha 67.425 67.44 0.73
simpson 0.04 0.04 0.67
shannon 6.65 6.63 0.98

Figure-4: Beta diversity of intestinal microbiotas in cows 
of Groups I and II using Permutational Multivariate Analysis 
of Variance statistical method, non-metric multivariate 
scaling and Bray-Curtis dissimilarity.
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profile of dairy cows from Group II was characterized 
by increased heavy metals. Thus, as Ktox increased, 
many of the assessed macro-and microelements in the 
hair of individuals from Group II exceeded the same 
level in individuals from Group I or were significantly 
reduced. Previously, similar results were obtained for 
Holstein cows. Against the background of an increase 
in Pb levels in hair, higher concentrations of Co, Cr, 
Fe, Mn, and I were registered [29]. The trend toward 
high levels of Cd, Hg, and Zn in animal hair was 
accompanied by a high concentration of Co and I in 
hair, and reduced content of Ca, K, P, and Se [30]. 
Similar results were obtained for the racehorse model. 
As the content of toxic metals in the hair of horses’ 
mane increased, there was a significant increase in Co, 
Fe, Mn, V, and As concentrations and a decrease in B 
and I concentrations [31].

Such changes in the level of chemical elements 
in the body of animals are of particular interest, given 
research data on their correlation with changes in the 
productivity of animals and the quality of milk. An 
increase in the content of several heavy metals in hair 
correlates with a decrease in cows’ milk production, 
according to previous studies [30]. An increased intake 
of heavy metals into the body of cattle was registered 
in several studies to be correlated with a change in the 
elemental composition of milk and with a decrease in 
quality indicators of dairy products, such as protein, 
percentage of fat, and lactose of milk [32].

However, deviations in the metabolism of sev-
eral elements in the body of cows of Group II were 
insufficient for a pronounced change in the composi-
tion of their intestinal microbiome. It was noted that 
there were no differences in the taxonomic richness of 
the intestinal microbiomes of cows in Groups I and II. 
Perhaps the absence of apparent changes in the intesti-
nal microbiome against the background of an increase 
in the concentration of heavy metals is due to the high 
resistance of specific bacterial strains and their ability 
to detoxify them [33].

Among the significant changes in the intesti-
nal microbiome of Group II cows, there was a ten-
dency to increase the number of bacteria belonging 
to the class Gammaproteobacteria (Ruminobacter). 
The prerequisites for an increase in the number of 
Ruminobacter species, which destroy polysaccharides 
in the gastrointestinal tract of cattle, are probably due 
to the ability of some heavy metals to reduce the activ-
ity of gastric enzymes, such as alpha-amylase [34].

A likely consequence of changes in the elemental 
composition of hair, indicating the presence of devia-
tions in the metabolism of several chemical elements 
in the body of cows, was a change in the level of some 
elements in milk. An increase in Fe, Mn, Pb, and Cd 
contents in milk was registered. The percentage of 
increase in Mn, Pb, and Cd in the milk of animals 
from Group II was significantly higher than in hair 
by 5.8%, 21.6%, and 12.5%, respectively, which was 
probably due to the cumulative effect. The exception 

was Fe, which accumulated 17.5% less in milk than in 
the cows’ hair. We have noted a correlation (moderate 
and strongly pronounced) between changes in toxic 
metal concentrations in hair and milk. A similar pat-
tern was observed in other studies. An increase in the 
content of Cd and Pb in the blood and urine of animals 
is significantly correlated with an increase amounting 
to these metals in milk [35, 36].

The observed increase in the concentration of 
several toxic elements in the hair and milk of animals 
from Group II requires clarification about the proba-
ble sources of heavy metals and the reasons for their 
accumulation in the bodies of the analyzed animals. As 
part of the study, there was no artificial introduction 
of supplements with a high concentration of several 
heavy metals in the diet. In this regard, the most prob-
able sources for the production of heavy metals were 
water and fodder obtained under free-range condi-
tions (pasture maintenance). A significant correlation 
between the levels of some elements (e.g., As, Pb, and 
Cd) in animal feed, water, and milk has been noticed 
in previous studies [32]. Despite their low concen-
trations in diet and water, the increase in the content 
of toxic metals in the bodies of animals is probably a 
cumulative effect, which is noted for some of them. In 
the literature, we have found that low Cd and Pb con-
sumption in feed does not lead to their sharp accumu-
lation in dairy products but leads to their accumulation 
and preservation for a long time in the kidneys, liver, 
and bones. At the same time, the increased concentra-
tion of some heavy metals in milk and the body has 
been described [37].

The probable reason for the accumulation of cer-
tain metals in the body of some cows under the same 
conditions of keeping may be differences in the level 
of metabolic processes in the body. For example, it 
was noted in previous studies that elements such as 
Cu, Mn, and Zn accumulate in higher concentra-
tions in multiparous cows compared to primiparous 
cows [38]. The interrelation of the concentration of 
some heavy metals in the hair of cows with their pro-
ductivity was noted. For example, low productivity 
indicators correlate with increased concentrations of 
lead in the hair of cows [39]. Therefore, it is likely 
that fluctuations in the pool of elements in the body 
of animals indirectly depend on factors affecting pro-
ductivity. Among these factors, oxidative stress can be 
indicated, the development of which is closely related 
to milk yield. Highly productive cows develop oxida-
tive stress at the lactation peak, which is reflected in 
an increase in the malondialdehyde level in milk and 
a decrease in nutritional value. After lactation peak, 
metabolic status stabilizes, and malondialdehyde lev-
els decrease. Cows producing substantial amounts of 
milk are more likely to be exposed to oxidative stress, 
affecting milk yield, quality, and all bodily metabolic 
processes [40].

At the same time, the metabolic activity of the 
rumen and intestine microbiomes of cows is also one of 
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the factors of differences in metabolic processes in their 
bodies. The metabolic outcome of toxic substances from 
the environment may be altered by the microbiome of 
the gastrointestinal tract, altering the absorption rate of 
these substances [41]. In addition, changes in the meta-
bolic pool of toxic elements may be due to the efficiency 
of the cows’ heavy metal detoxification system, which is 
represented by metallothionein proteins [42, 43].
Conclusion

We observed an increase in the concentration of 
heavy metals in the hair and milk of animals in Group II. 
However, we did not observe significant changes in 
the concentrations of most of the essential elements 
(e.g., Ca, P, Na, Co, K, and Se) in animal milk. In con-
trast, their content in animal hair was reduced. We also 
did not observe reorganization signs of the intestinal 
microbiome in animals with an increased coefficient 
of toxic load. Changes in the metabolism of elements 
in the organism of animals in Group II were not criti-
cal. A more extended period of exposure would prob-
ably be required for the appearance of apparent shifts 
in the mineral composition of milk. At the same time, 
a high probability of a negative impact on the health 
of animals and humans may be shown by the tendency 
to accumulate heavy metals in hair and milk. In this 
regard, it is necessary to monitor the state of animals 
further and dynamically observe a broader range of 
animal health indicators. Such indicators include anal-
ysis of the activity of metal-specific proteins in the 
blood of animals, metabolic pathways of the intestinal 
microbiome, and the relationship between levels of 
oxidative stress and changes in the metabolic pool of 
micro and macronutrients.
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