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Introduction

Sheep are efficient converters of unutilized poor
quality grass and crop residues into meat and skin.
Growth is a trait of economic importance in sheep as
sheep rearing is an important livelihood for a large
number of small and marginal farmers in India.
Information about growth model parameters is very
useful for selection studies. Growth in farm animals
has been investigated for many years [1, 2]. Madras
Red sheep, a native breed of Tamilnadu state of India
and distributed in the northern parts of the state is
known for its valuable meat and skin quality [3]. The
growth performance of Madras Red sheep under
farmer's flock was studied previously [4, 5].

In animal growth studies, body weight measure-
ments, which are good indicators of growth rate, is
often measured on the same animal at various ages
(time points) such as weekly/monthly resulting in

longitudinal growth data. Such data, collected on a
group of animals, has many advantages as it can
provide vital information about individual changes.
That is, by collecting data over many time points, it can
separate changes over time within individual animals
from differences between animals yielding valuable
information on the animals. The main goal here is to
characterize the way the outcome changes over time,
and to identify the predictors of that change. Recent
developments in longitudinal data analysis have been
discussed in detail in previous studies [6, 7].

Longitudinal growth data pose challenges for
statistical analysis as the responses are correlated (not
independent) and also the responses that are closer in
time are more correlated than responses that are farther
apart. In addition, variance of repeated measures often
change and increase steadily with time (heteroscedas-
ticity). So, these correlation and variation patterns
combine to produce complicated covariance structure
of repeated measurements which needs to be modeled
suitably for drawing correct inferences. Under these
circumstances, the standard ANOVA, MANOVA and
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The present study was conducted to compare the predictive ability of artificial neural network (ANN) models developed
using multilayer perceptron (MLP) and radial basis function (RBF) architectures with linear mixed-effects model for the
longitudinal growth data of Madras red sheep.

Repeated monthly body weight measurements from birth to 24 months of age of 1424 sheep were
used for the analysis. Linear mixed-effects model was developed by progressively fitting unconditional linear growth,
unconditional quadratic growth, conditional quadratic growth model and conditional quadratic growth models
accommodating different error variance- covariance structures. The time invariant covariates such as gender of lamb, season
of birth and dam's weight at lambing were also used for the analysis. The best model was identified using Akaike Information
Criterion. Subsequently, ANN models using MLP and RBF architectures were developed for the same data and the predictive
ability of the two modeling procedures were compared using different evaluation criteria.

Conditional quadratic model with heterogeneousAutoregressive of order 1 (AR(1)) covariance structure fitted using
mixed model approach was found to be good with covariates, gender of lamb and dam's weight at lambing showing marked
influence on all the growth parameters. Season of birth was found to be significant only for growth rate and not for the average
birth weight. Between the two ANN architectures, MLP performed better than RBF and also ANN model based on MLP
architecture was better than the best linear mixed model identified in this study.

In this study, the potential of ANN as an alternative modeling technique was evaluated for the purpose of
predicting unbalanced longitudinal growth data of Madras Red sheep. As the predictive ability of the ANN model with MLP
architecture yielded better results, ANN models can be considered as an alternative tool by animal breeders to model
longitudinal animal growth data.
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regression models are unsuitable for the analysis of
longitudinal growth data as the usual statistical
assumptions required are not met. Random coefficient
model [8] using linear mixed model approach, which
allows the growth parameters of each animal to be
treated as random effects in the model, is an attractive
way to describe longitudinal data. Individual animal
level time-invariant covariates can be added to the
model and the error covariance structure of the
repeated measurements can also be specified in the
model to determine their effects on the response.

Artificial neural network (ANN), which has been
shown to be a powerful modeling tool in a wide range
of applications, is a type of computational model that
uses a set of interconnected processing elements,
known as neurons or nodes and behaves like a
biological brain with millions of neurons working in
parallel, each trying to solve a tiny bit of a complex
problem. ANN can easily recognize patterns in data.
The major advantages of using ANN are that they can
be fitted to any kind of data set, does not require any
model assumption and also there is no need to specify a
particular model form and the model is adaptively
formed based on the features presented from the data

[9] Detailed information on ANN can be found in

earlier publications [10, 11].
There is currently a huge literature available where

ANN technique has been successfully used and proved
in many cases to be superior compared to various
statistical methods in predicting cross-sectional or time
series data. However, there is shortage of information
regarding the use of ANN in analyzing longitudinal or
repeated measures data. A neural network designed for
longitudinal data on progression of Alzheimer's
disease called mixed effects neural network (MENN)
was proposed by Tandon et al [12]. The capability of
ANN to model simulated repeated measures data was
studied recently [13].

Because there is hardly any work in evaluating
ANN models for analyzing longitudinal animal growth
data, this work was carried out to compare the
performance of LMM and ANN models for predicting
longitudinal growth data of Madras Red sheep.

Data pertaining to monthly body
weight measurements from birth to 24 months of age of
1424 sheep were used for the analysis. Number of
measurements for each animal was different
(unbalanced). Animals with at least 3 body weight
measurements were considered for analysis. The time
invariant covariates that do not change across time,
such as gender of lamb (coded 0 for female and 1 for
male), season of birth (coded 0 for main season (Oct. –
Mar.) and 1 for off season (Apr.-Sep.), dam's weight at
lambing (coded 0 for <30 kg and 1 for 30 kg) were
also used for the analysis. The time variable (t), which
indicates the month of measurement of body weight,
took on values from 0 to 24.All births in this study were

single and no twinning was recorded. While setting up
the data for analysis, there are usually two formats used
namely wide and long. For the mixed model analysis,
data has to be in long format (person-period format)
wherein each animal will have one record for every
time point at which measurement was made with time
of measurement in one column and the body weight
measurement in another column. Covariates that don't
change would have repeated values across the rows in
additional columns.

Since each animal grows at a
different trajectory, to account for possible variation
between animals, we can treat the regression
coefficients as random variables. This type of model is
called Random coefficient model. Here time variable
( ) is treated as a continuous predictor and the means
across time follow a particular shape [14]. Individual
animals are assumed to follow the same curve shape
but are allowed to vary in the parameters that describe
this curve (random effects). These models also indicate
the degree of subject variation that exists in the
population of subjects. The general form of mixed-
effects model, proposed by [8] is y = X Zu + , where
y is the response vector, is the fixed effects vector, u is
the random effects vector with mean 0 and variance-
covariance matrix G, is the random error vector with
mean 0 and variance-covariance matrix R, X is the
design matrix corresponding to the fixed effects
relating y to . Z is the design matrix corresponding to
the random effects relating y to u.
Thus, y ind. N(X ,V); u MVN(0,G) and

MVN(0,R), with u independent of .
E(y) = X , E(u) = 0, E( ) = 0, V(y) = V = ZGZ' + R
V(u) = G, V( ) = R

The usual structure of G and R matrices is diagonal.
and

N, total number of observations, a, number of levels of
u. The solutions derived from mixed model equations
are and

The estimators are known as Best Linear
Unbiased Estimator (BLUE), and the predictors u
are known as Best Linear Unbiased Predictors (BLUP).

Mixed-effects model controls the covariance
structure directly and provides valid standard errors.
The covariance specification is important because the
test statistic for the fixed effects is a function of
covariance structure of the residuals. Different residual
structures can result in different regression estimates
along with different standard errors. Thus it is
important to identify the best error structure. In this
work, we approached growth modeling through
random coefficient modeling framework by building
models progressively starting from unconditional
linear, unconditional quadratic, conditional growth
model and also models accommodating different
variance covariance structures.

Unconditional linear growth model is the baseline
model that examines individual variation in intercept

.
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and growth rates and is given by

where denotes the i animal body weight at month
is the mean birth weight and is the individual

animal deviation from this mean. Similarly, is the

mean growth rate and is the deviation from this

mean.
In the next stage, as the individual growth

trajectories are usually non-linear over time, a
quadratic model was considered which is given by

Inclusion of predictors in the model results in
conditional growth models. The model below includes
gender as one time invariant covariate.

Subsequently, this model was expanded to add
other covariates like season of birth and dam's weight
at lambing to evaluate their effect on the response. For
identifying the most appropriate within animal error
covariance structure, Autoregressive of order 1 [AR
(1)], TOEPLITZ, Heterogeneous AR(1), Hetero-
geneous TOEPLITZ and Ante Dependence ANTE(1)
covariance structures were specified in the model one
by one to evaluate its performance.

Because the true error structure is usually
unknown, some goodness-of-fit criterion is necessary
to select the best error structure [15]. Graphical
diagnostics and subject matter knowledge can be of
some help in the selection. However, the best model

can be identified based on the Akaike information
criterion [16] given by (-2 log likelihood + 2q ),

measures the relative fit of competing models with
different covariance patterns, where, q is the number

of covariance parameters. Model with the lowest score
onAIC is selected as best.

ANN is a computer
algorithm developed based on the way the information
is processed in the nervous system. A typical neural
network is composed of 3 layers of neurons or nodes,
each of which is connected to the neuron in the next
layer (Fig.1). The layers are described as input, hidden
and output layers, consisting of , and number of
processing nodes, respectively where
corresponds to the number of independent (input) and

dependent (output) variables respectively. Hidden

layers in a neural network are known as feature
detectors. The number of hidden nodes ( ) in a hidden
layer is an adjustable parameter which is usually
determined based on the performance of the network.

Each node in the input (hidden) layer is linked to
all the nodes in the hidden (output) layer using
weighted connections. In addition to the number of
input and hidden nodes, the network architecture also
possesses a bias node (with fixed output of +1) in its
input and hidden layers which are also connected to all
the nodes in the subsequent layer and they provide
additional adjustable parameters (weights) for model
fitting. Depending on the structure of the network,
connecting neuron weights are adjusted in order to fit a
series of inputs to another series of known outputs.
When the weight of a particular neuron is updated, it
means that the neuron is learning. The process by
which neurons are made to learn using a learning
algorithm is called training. The goal of the learning or
training process is to find the set of optimum weight
values that will cause the output from the neural
network to match the actual target values as closely as
possible. The two most widely usedANN architectures
which are chosen for evaluation here is the multi-
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layered perceptron (MLP) using back propagation
algorithm and Radial Basis Function (RBF).

The MLP is a feed-forward ANN based on back-
propagation algorithm [17]. Here, input values in the
first layer are weighted and passed on to the hidden
layer. Neurons in the hidden layer produce outputs by
applying an activation function to the sum of the
weighted input values plus a bias value. The output
layer produces the desired results by applying the
output layer activation function to the weighted sum of
outputs from the hidden layer plus the bias term. The

output of the j neuron in the hidden layer is given by

are the synaptic weights between input

and the hidden layer, is the input value from the

input node and is the bias value (=1). Similarly, the

output of the neuron in the output layer is given by

where, is the activation function used in the
output layer, is the synaptic weights between hidden

layer and the output layer, is the output value from

the hidden node and is the bias value. Activation

functions are mathematical formulae that introduce a
degree of nonlinearity that is important for most ANN
applications. Logistic and hyperbolic activation
functions are usually used as they are continuously
differentiable, an important feature of neural network
theory. The purpose of this function is to prevent output
from reaching very large value which can 'paralyze'
neural networks and thereby inhibit training.

RBF neural networks can perform nonlinear tasks
the same way as MLP networks can. Using RBF, any
nonlinear function can be modeled with the help of a
single hidden layer, which removes some design
decisions regarding numbers of hidden layers to be
used. Thus, RBF is a three-layer feed-forward network
trained using k-means algorithm. The input layer is
simply a fan-out layer and does no processing. The
hidden layer performs nonlinear mapping using a
Gaussian transfer function. The argument of the
transfer function is the Euclidian distance between the
input vector and the center of the radial function. The
final layer performs a simple weighted sum with a
linear output.

Training a network is a recursive process using an
algorithm in which the network is given the inputs
along with the desired outputs. Back propagation
algorithm, which is basically a gradient descent
method and the network parameters are determined by
minimizing the error function where,

where is the actual output (desired) and is

the output from the network. Back propagation refers
to the process by which derivatives of network error
with respect to the networks, are fed back to the
network and used to adjust the weights so that error
decreases with each iteration and the model improves
to produce the desired outputs (within a reasonable
margin of error). All the connection weights are
readjusted based on the chosen learning rate parameter
value to produce a smaller error.

The building of a back-propagation network
involves the specification of several parameters
namely the number of hidden layers, number of
neurons in each hidden layer, learning rule, activation
function, the learning rate, momentum parameter,
random number seed, error minimization algorithm,
and the number of learning cycles. For the purpose of
building an ANN model with validation capabilities,
the sample data set was divided into 2 subsets: a
training set (70%), used to develop the neural model,
and a testing set (30%) used to test the behavior of the
model with unseen data. The accuracy of the model
was measured at each phase. The evaluation criteria

used to assess ANN models were R , Mean Absolute
Error (MAE), Mean Square Error (MSE), Mean
Absolute Percentage Error (MAPE) as given by,

where, and are the observed and estimated
values; and are the number of time points and
number of parameters in a model, respectively. The

model that provides higher R and smaller MAE, MSE
and MAPE was considered better for prediction.

For comparing ANN with linear mixed model
(LMM), a ratio computed using the residual sum of
squares of the two competing models proposed by H.
Theil [18] known as as given below.

It can be used to measure the efficiency of a
prediction model. U value less than 1 indicates that the
error obtained in ANN is lower than that obtained in
LMM. The statistical analysis was carried out using the
statistical software PASW Statistics for Windows,
Version 18.0 [19]. The parameters in linear mixed
models were estimated using restricted maximum
likelihood method (REML). The details are given in
[20]. TheANN models were fitted using MLP and RBF
architectures.

Graphical methods can be used to obtain some
insights into the structure of the data. The individual
animal growth pattern depicted (up to 12 months of
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age) using profile plot or spaghetti plot is shown in
Fig.2 which clearly indicates that the growth pattern of
different animals exhibits different trajectories. The
animals vary not only in their initial status (birth
weight) but also in their growth rate. Variance across
time is also observed to be non-constant and was found
to increase as the time increases.

The various models specified before namely
Unconditional linear growth model (Model-a),
Unconditional Quadratic growth model (Model-b),
Conditional Quadratic growth model (Model-c) and
Conditional Quadratic growth model with within
animal covariance structure (AR1, TOEP, ARH1,
TOEPH and ANTE1) – (Model-d (i)-(v)) were fit. The
parameter estimates along with standard error (SE) and
significance levels are given in Table 1. The summary
of the performance of the various models is given in
Table-2.

From the results of model-a (Table-1), the
estimate of intercept (average birth weight) is observed
to be 5.27 kg which is slightly unrealistic and the slope

(average change) is 1.26 kg. Both the estimates were
found to be highly significant. Inspection of random
effects indicate that the estimates of variance of
intercept, slope and error which are 2.637, 0.166 and
3.974 were found to be statistically highly significant
(Wald Z test) confirming that the initial status (birth
weight) and linear growth rates were not constant. The
estimate of the information criterionAIC for this model
was found to be 80627 and the number of parameters
needed to be estimated was 6.

From the results of the unconditional quadratic
model (Model-b in Table-1), we can see that the
residual variance went down from 3.974 to 2.340 (41%
reduction) suggesting a better fit. The variance of
intercept, slope and quadratic slope were also found to
be significant suggesting that the variability in these
parameters could be explained by between-animal
predictors. The estimate of AIC has reduced to 73262
and the number of parameters estimated was 10.

The results of conditional quadratic growth
model with predictors, gender, season of birth and

Table-1. Model parameter estimates (SE) for the various linear mixed models

Fixed Effects Model-a Model-b Model-c Model-d(iii)

Intercept 5.27 (0.053)*** 3.64   (0.038)*** 3.64 (0.059)*** 2.25 (0.021)***
Time 1.26 (0.013)*** 1.97   (0.021)*** 1.63 (0.031)*** 1.70 (0.019)***

Time - -0.05  (0.001)*** -0.04  (0.002)*** 0.03 (0.001)***
Gender - -0.43 (0.075)*** 0.20 (0.026)***
Season of birth - 0. 41 (0.107)*** 0.02 (0.036) ns
Dam’s  weight - 0.42  (0.078)** 0.24 (0.027)***
Gender * Time - 0.47  (0.039)*** 0.32 (0.026)***
Season of birth* Time - 0.51  (0.058)*** 0.31 (0.037)***
Dam’s  weight * Time - 0.11 (0.041)*** 0.11 (0.026)***

Gender * Time - -0.01(0.003)*** -0.004 (0.002)*

Season of birth* Time - -0.04 (0.004)** -0.02 (0.002)***

Dam’s  weight * Time - -0.004 (0.003)ns -0.002(0.001)ns
Random Variance
Intercept 2.637(0.143)*** 0.768 (0.069)*** 0.664(0.065)***
Slope 0.166(0.008)*** 0.454(0.025)* 0.365(0.021)**
Quadratic Slope - 0.002(0.0001)*** 0.002(0.000)***
Residual 3.974(0.046)*** 2.340(0.028)*** 2.337(0.028)***

2

2

2

2

* p<0.05; **p<0.01;***p<0.001, ns- not-significant, Model-a: Unconditional Linear; Model-b: Unconditional Quadratic;

Model-c: Conditional Quadratic; Model-d(iii): Conditional Quadratic with Heterogeneous Autoregressive of order 1 covariance structure

Figure-2. Graphing change using profile or spaghetti plot
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dam's weight at lambing added are given under Model-
c in Table-1. The estimate of intercept, slope and
quadratic slope are found to be significant and so are
their variance estimates. Further, the AIC has reduced
to 72771 and the number of parameters needed to be
estimated was 19.

To describe how the error is distributed, the within
animal error covariance structures discussed above
were introduced one by one to the model-c as speci-
fying appropriate covariance structure in the model
improves the predictions. The summary of the perfor-
manceofall thecompetingmodels aregiven inTable-2.

When we choose the best model for the data, we
need to focus on smaller AIC value and lesser number
of parameters to be estimated (parsimony). So striking
abalancebetween these twoaspects, conditionalquadratic
model with heterogeneous AR1 error covariance
structure [model d (iii) in Table-2] was found to be
more appropriate for describing the growth profile of
Madras Red sheep. The predicted values found using
this model were very close to the observed values. The
estimates of intercept, slope and quadratic slope of
model d (iii) were found to be significant and more
realistic (Table-1). The covariates gender and dam's
weight at lambing were significantly associated with
birth weight (intercept), while the covariate season of
birth was not found to be significantly associated with
birth weight even though we expect the animals born
during off season to be slightly heavier at birth. All the
three covariates gender, season of birth and dam's weight
at lambing are significantly associated with linear
growth rate. Gender and season of birth are
significantly associated with quadratic slope. However,
dam's weight at lambing is not associated with
quadratic slope. This indicates that gender and dam's
weight at lambing are important in predicting the initial
status and the growth trajectory. Using these estimates
from Table-1, we can construct prediction equations
for the different combinations. Thus, the predictive
equation for female lambs born in main season with
dam's weight < 30 kg. is y = 2.251+ (1.702) t – (0.033)

t . Similarly, for male lambs born in off season with dam's
weight 30 kg, the equation is
y = (2.251+0.199+0.018+0.24)+(1.702+0.317+0.310

+ 0.106) t– (0.033+0.004+0.016+0.002) t .

That is, y = 2.708 + (2.435) t – (0.055) t .

Similarly, the prediction equation for the other
combinations can also be derived and effectively used.

Thus the steps outlined above for building a
growth model may seem to require a lot of analysis, yet
they need to be carried out to identify the parsimonious
model that fits the data well.

The same longitudinal growth data of sheep were
used for developing ANN models using feed forward
architectures, MLP and RBF with back propagation
training using Levenberg-Marquardt method of error
function optimization. In both MLP and RBF, the
number of hidden layers used was one and the number
of nodes in the hidden layer was varied to identify the
best combination. In MLP, the activation function used
in the hidden layer and output layer was hyperbolic
tangent and identity function, respectively. In RBF, the
activation function used was exponential in the hidden
layer and identity in the output layer. Between the two
ANN architectures, MLP performed better with higher

R and lower values of MAE, MSE and MAPE (Table- 3).
It can also be seen from Table 3 that ANN model

using MLP is better than LMM with heterogeneous
AR1 structure, clearly scoring better in all the
performance indicators. The performance ofANN over
LMM as measured by Thiel's U is 0.9264 indicating
that ANN gives slightly improved fit compared to
LMM for this data.

In this study, the potential of ANN as an
alternative modeling technique to the conventional and
more statistically appropriate linear mixed modeling
was evaluated for the purpose of predicting unbalanced
longitudinal growth data of Madras Red sheep.
Conditional quadratic model with heterogeneous
AR(1) covariance structure fitted using mixed model
approach was found to be good with covariates gender
of lamb and dam's weight at lambing showing marked
influence on the growth parameters. Season of birth
was found to be significant only for growth rate and not
for the average birth weight. Between the two ANN
architectures, MLP performed better than RBF and
also MLP was better than the best linear mixed models
identified in this study. Thus, ANN models provide
another promising tool to analyze longitudinal growth
data which can be exploited by animal breeders to bring
about overall improvement in productivity.

RG, PD, PK and CK were involved in the design of the
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Table-2. Summary of the performance of the various linear

mixed models

Model AIC No. of Parameters

a. Unconditional Linear 80627 6
b. Unconditional Quadratic 73262 10
c. Conditional Quadratic 72771 19
d. Conditional Quadratic with error

covariance structure
Autoregressive of order 1 (AR1) 66392 14
TOEPLITZ 66233 37
Heterogeneous AR1 62768 38
Heterogeneous TOEPLITZ 62660 61
ANTE Dependence of order 1 61641 61

Table-3. Values for coefficients of accuracy

Model R MAE MSE MAPE Theil’s U
2

Linear Mixed Model 83.6 2.232 8.697 16.334 -
ANN-Multilayer 85.9 2.052 7.455 16.133 0.9264

ANN-Radial Basis 80.9 2.344 10.18 17.64 -
Perceptron
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