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Abstract
Background and Aim: Yellowfin tuna and swordfish are seafood commodities commonly caught from deep oceans 
worldwide. Therefore, this study aimed to assess the levels of three heavy metals, namely, cadmium (Cd), lead (Pb), and 
mercury (Hg) in yellowfin tuna and swordfish. The results are expected to provide consumers with information on the safety 
of consuming or exporting these fishes caught in the Hindian and Pacific Oceans.

Materials and Methods: Fresh yellowfin and swordfish were obtained from fishermen’s catches in FAO Fishing Zone 57 
(Indian Ocean) and 71 (Pacific Ocean) and then collected at Benoa Harbor, Bali Province. The comparative method was to 
evaluate the levels of heavy metals in each fish. Furthermore, heavy metal concentrations, including Pb, Cd, and Hg, were 
determined using atomic absorption spectroscopy analysis. These results were then used to assess the safety of these fishes 
by calculating the estimated daily intake (EDI) and target hazard quotients-total target hazard quotients (THQs-TTHQs).

Results: The analysis showed that none of the samples exceeded the threshold levels for the three heavy metals, which 
was specified by the Indonesian National Standard (SNI) and European Commission Regulation (CR) No. 1881/2006. The 
EDI and provisional tolerable weekly index (PTWI) obtained in this study were still in the safe range. However, the PTWI 
values for Pb in yellowfin tuna product from the Indian Ocean were higher (0.0038 mg/kg) compared to the recommended 
standard for the adult population. The THQ-TTHQ values of fish caught from these oceans were also within the acceptable 
range specified by the two agencies, indicating that they are safe for consumption by people with various age groups and 
for export purposes.

 Conclusion: The average levels of three heavy metals (Cd, Pb, and Hg) in muscle samples of yellowfin tuna and swordfish 
caught from the Pacific and Hindian Oceans were within the acceptable range as specified by the SNI and CR No. 1881/2006. 
Furthermore, the EDI and THQs values indicated that fishes caught from the Pacific and Hindian Oceans were safe for 
consumption. This research is still limited to assessing two capture fisheries commodities. Further research is needed on the 
assessment of heavy metal levels in other capture fisheries commodities in this capture zone.

Keywords: health risk assessment, heavy metal pollution, seafood products, Tuna.

Introduction

In the past two decades, there has been an increase 
in the consumption of seafood and its derivatives due 
to high protein and low fat content. Furthermore, these 
products provide a rich source of nutrition because they 
contain several essential vitamins and minerals needed 

by the human body [1, 2]. From a health perspec-
tive, omega-3-poly-unsaturated fatty acids have been 
reported to have beneficial effects on the cardiovascu-
lar system, the development of the nervous system in 
children, particularly during the golden age of growth, 
as well as prevention of cancer cell progression [3–5]. 
In several countries, seafood products have been used 
as alternative food sources to address the food crisis 
in many countries. They are also considered excellent 
sources of nutrition, which can be processed into var-
ious seafood derivatives due to their high protein con-
tent [6]. The previous reports showed that Indonesia has 
experienced significant growth in the fish and fisheries 
industries [7] with a focus on the trading of tuna [8].
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In Indonesia, yellowfin tuna (Thunnus alb-
acares) and swordfish (Xiphias gladius) are among 
the most commonly caught and consumed species 
of tuna [9]. The global demand for these species has 
also caused an increase in their catching for export 
commodities from the Indonesian Ocean [9, 10]. 
According to projections by the FAO, Indonesia pro-
vided up to 20% of the global tuna, skipjack, and 
tuna output [11]. However, from an ecosystem point 
of view, these species are among the top predators in 
the marine ecosystem and tend to accumulate high 
levels of anthropogenic materials in their body. This 
can pose a serious risk to human health for those who 
consume these fishes [12–14]. Heavy metals are com-
mon examples of anthropogenic sources that can be 
found in agricultural wastes, industrial wastes, and oil 
spills [15, 16]. These types of pollution can become 
a serious environmental and health problem [17, 18].

Heavy metals have the capacity to accumulate 
in living tissue, and exposure to them through dietary 
sources is a global concern [19]. Cadmium (Cd), lead 
(Pb), and mercury (Hg) have been reported by sev-
eral studies to accumulate within the body of aquatic 
organisms. The previous studies have also explored 
the occurrence of heavy metal contamination in vari-
ous marine fish species throughout the globe [20–23]. 
Therefore, it is important to assess the quality of sea-
food products, such as tuna and tuna-like swordfish, 
particularly those mostly consumed by humans. This 
is due to the following factors; (1) different areas of 
catchment; (2) processing techniques; and (3) tech-
niques of storage that can alter heavy metal concentra-
tion in the samples. Indonesia has two important fish 
catchment areas, namely, FAO Fishing Zones 57 and 
71, which are located around the Hindian and Pacific 
Oceans, respectively [9]. These two areas are also the 
main routes for shipping, and this has the potential to 
contribute to anthropogenic source accumulation in 
the fish obtained.

Therefore, this study aimed to assess the Cd, Pb, 
and Hg contents of yellowfin and swordfish, caught 
from the Hindian and Pacific Oceans. The concentra-
tion of each type of heavy metal was measured and 
compared with those previously reported. Based on 
these results, the ecotoxicological effects of their pol-
lution were determined based on values specified by 
estimated daily intake (EDI) and target hazard quo-
tients (THQ). The measurements were then used to 
assess health risk potentials following the consump-
tion of heavy metals-contaminated fish. The results of 
this study can be used for the early warnings of the 
marine ecosystem pollution caused these three heavy 
metals, or as an ideal indicator in the assessment of 
current marine environmental pollution [24, 25].
Materials and Methods
Ethical approval

Ethical clearance was not required for this study 
because the fish samples were collected from several 

processing units at Benoa harbor, Bali-Indonesia (for 
fishes caught from the Indian Ocean) and Bitung, 
North Sulawesi (for fishes caught from the Pacific 
Ocean) [9].
Study period and location

The study was conducted from January 2016 to 
December 2016. The sampling sites of our study was 
fish caught from FAO Fishing Zones 57 and 71, which 
are located around the Indian and Pacific Oceans, 
respectively, as shown in Figure-1. Furthermore, the 
fish, particularly yellowfin tuna (Thunnus albacores) 
and Swordfish (X. gladius) to be exported to Uni 
European countries and the USA [9] were subjected to 
heavy metal analysis at the Fish Quarantine Inspection 
Agency Denpasar, Bali. A total of 163 fresh fish were 
obtained from both processing industries between 
2012 and 2016. The samples consisted of 40 yellow-
fin tuna and 36 swordfish from the Pacific Ocean as 
well as 51 yellowfin tuna and 36 swordfish from the 
Indian Ocean. The yellowfin tuna and swordfish had 
an average weight of 90 kg and 100 kg, respectively, 
and were stored at −32°C before analysis [26].
Sample preparation

The heavy metal analysis (Pb, Cd, and Hg) was 
carried out based on the Indonesian National Standard 
(SNI) method 2354.5.2011. The first stage was the prepa-
ration of standard solutions of Pb, Cd, and Hg. These 
included a primary standard solution of 1000 mg/L; 
first, second, and third secondary standard solutions of 
10 mg/L, 1 mg/L, and 100 μg/L; standard solution in 
the reading range of the atomic absorption spectroscopy 
(AAS) machine; and a blank solution. Furthermore, 
to prepare the fish for analysis, a total of 1 g of fresh 
samples were ground and homogenized in a grinding 
machine. The prepared samples were then stored in ster-
ile polystyrene containers and kept or stored in a freezer 
until they were required in the analysis.
Analysis of total Cd, Pb, and Hg

The previously prepared samples were wet-de-
structed in a microwave oven. A wet sample weigh-
ing 0.5 g was transferred into a sample tube, while a 
Certified Reference Material-DORM of 0.25 g served 
as the control. These tubes were then sequentially 
added with 8 mL of 65% nitric acid, and 2 mL of 
2% H2O2. Furthermore, sample destruction was car-
ried out by adjusting the program as specified in the 
digestion manual of the microwave. The product was 
then transferred into a destruction flask and its volume 
was adjusted up to 50 mL by adding deionized water. 
The Pb, Cd, and Hg levels were measured using the 
AAS machine at the wavelength of 283 nm, 288 nm, 
and 253 nm, respectively. The results obtained were 
plotted on the standard curve, which was previously 
established. In the case where the reading was higher 
than 0.8, the samples were further diluted when the 
reading exceeded 0.8 to ensure the value obtained was 
within the range of the standard curve. The formula 
below was used to calculate heavy metal levels:
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( ) (D-E) × Fp × VHeavy metal level C  = 
W

where D is the AAS value of the heavy metal 
concentration (μg/L), E is AAS value of blank (μg/L), 
V is final volume of prepared samples (mL), Fp is 
dilution factor, and W is sample wet weight (g).
Public health risk assessment of heavy metals in fish 
sample
Estimated daily intake (EDI)

Estimated daily intake of Cd, Pb, and Hg was 
analyzed based on the average content of heavy met-
als in each fish product consumed daily by people. 
The EDI value was then calculated using the follow-
ing formula [27–29]:

FIR × CEDI = 
BWa

where FIR = rate of daily fish consumption 
(g/person/days), C = average heavy metal content of 
sample (mg/kg), and BWa = average body weight. 
Body weights of 10 kg, 15 kg, 20 kg, 44 kg, and 78 kg 
were used in the calculation of EDI for people aged 
1, 3, 6, and 12 years, as well as adults, respectively. 
Furthermore, total consumption of yellowfin tuna and 
swordfish meat for people aged 1, 3, 6, and 12 years, 
as well as adults was 0.681 g/person, 1.498 g/person, 
3.196 g/person, and 3.140 g/person, respectively. 
The classification was carried out based on the level 
of consumption of tuna or processed tuna or seafood 
products, as specified by Núñez et al. [26].

Provisional tolerable weekly index (PTWI)
The PTWI value is used to emphasize the weekly 

exposure to heavy metals in food consumed for contam-
inants that accumulate in the body. The PTWI value of 

dietary intake of tuna and swordfish meat containing Pb, 
Cd, and Hg is calculated using the following equation:

EWI = (C × EDI)/Bw

Where C = concentration of heavy metals in sea-
food, EDI = daily consumption rate (g/day) of seafood, 
and bw = body weight (age 1 year = 10 kg, age 3 years = 
15 kg, age 6 years = 20 kg, age 12 years = 44 kg, and age 
of the adult population = 78 kg). The estimated weekly 
intake was compared with the temporarily tolerable 
weekly intake value of each heavy metal (Hg = 0.004 mg/
kg, bb/week; Cd = 0.007 mg/kg, bw/week; and Pb = 
0.0025 mg/kg, bw/weeks) [30].

Determination of target hazard quotients-total target 
hazard quotients (THQs-TTHQs)

The THQ is a ratio of the pollutant’s measured value 
to the dose level (references of oral dose). This ratio was 
used as an indicator of health risk assessment that can 
occur as well as in the determination of the carcinogenic 
level of food samples. Furthermore, if the value of THQ 
was <1, the food samples have no side effects on peo-
ple after exposure. This risk calculation was based on 
the assumption that heavy metals at such concentration 
can totally be absorbed and their concentration was not 
affected by cooking processes [31]. The formula below 
was used in the calculation of THQ [32–35]:

3Efr × EDtot × FIR × CTHQ =  × 10
RfDo × BWa × ATn

−

Where Efr = frequency of exposure 
(365 days/year), EDtot = exposure period (adult: 
70 years old, children of 1, 3, 6, and 12 years old), FIR 
= intake food level (g/day), C = average level of Cd, 
Pb, or Hg in fish tissues (ppm), RfDo = references of 
oral dose (Cd = 0.001 mg/kg; Pb = 0.0035 mg/kg; and 

Figure-1: Tuna and swordfish fishing locations. (A) FAO Fishing Zone 57 in the Indian Ocean and (B) FAO Fishing Zone 71 
in the Pacific Ocean [Source: www.d-maps.com].
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Hg = 0.0001 mg/kg) [36, 37], Bwa = average body 
weight based on age groups (70 kg for adult, 10 kg, 
15 kg, 20 kg, and 44 kg for children of 1, 3, 6, and 
12 years old, respectively), and ATn = average expo-
sure period on non-carcinogenic (71.5 years), based 
on average Indonesian people’s life expectancy.

The TTHQ obtained in this study was used to assess 
the bad side effects of exposure to two or more types of 
heavy metals. The TTHQ value was a sum of the THQ of 
each heavy metal, using the following formula [38, 39]:

TTHQ = THQCd+THQPb+THQHg

The higher the TTHQ value, the bigger the toxic 
effect that can occur [40].
Statistical analysis

The level of heavy metal in the fish samples, 
caught from the two sites of catchment, was statis-
tically analyzed using t-test analysis (at p < 0.05) 
with statistical package for the social sciences 23.0 
(IBM Corp., USA) software. Furthermore, graphs 
were generated using GraphPad software Version 8.0 
(GraphPad, USA), and the values of EDI, estimated 
dietary intake (EWI), THQ, and TTHQ were tab-
ulated and analyzed using software MS Excel 2019 
(Microsoft, USA) [22].
Results and Discussion
Heavy metals contents in yellowfin tuna and 
swordfish

The levels of Cd, Pb, and Hg in the muscles of 
fresh yellowfin tuna used in this study are presented 
in Figure-2. The results showed that the Cd level 
in samples from the Pacific Oceans (0.036 mg/kg) 
was almost two folds higher (p < 0.05) compared to 
those from Indian Ocean (0.020 mg/kg), as shown in 
Figure-2a. Furthermore, the Pb and Hg in yellowfin 

tuna samples from the Pacific Ocean were also higher 
compared to those from the Hindian Ocean, but they 
are not statistically significant (p > 0.05), as shown 
in Figures-2b and c. Based on the SNI regulation for 
2011 and 2015 and the CR No. 1881/2006 regarding 
setting maximum levels for certain contaminants in 
foodstuffs, the measured heavy metal contents in yel-
lowfin tuna in this study were still within the accept-
able ranges.

 Figure-3(a-c) shows the levels of Cd, Pb, and Hg 
in the swordfish (X. gladius) caught from the Indian 
and Pacific Oceans. The levels of these metals in sam-
ples caught from the Pacific Ocean (p < 0.05) were 
higher compared to those from the Indian Ocean. The 
swordfish (X. gladius) obtained from these areas of 
catchment contained approximately the same amount 
of Hg, but was not statistically significant (p > 0.05), as 
shown in Figure-3c. Furthermore, based on the quality 
standards specified by the SNI in 2011 and 2015, as 
well as the CR No. 1881/2006 regarding setting maxi-
mum levels for certain contaminants in foodstuffs, the 
levels of these three heavy metals in both yellowfin 
tuna and the swordfish were still within the acceptable 
levels.

The results provided an overview of the food 
safety monitoring of seafood products exported from 
Indonesia to other countries, particularly European 
countries. This study only measured the levels of 
heavy metals (Cd, Pb, and Hg) in two types of fish 
mostly caught from the Pacific and Indian Oceans 
without considering their size; hence, further studies 
are needed to examine the effect of fish sizes on the 
heavy metal contents. Stamatis et al. [41] reported that 
fishes with higher average size in terms of length and 
weight tended to contain higher heavy metals com-
pared to those with lower sizes. Furthermore, it has 
been reported in the past three decades that there was 

Figure-2: Average levels of (a) cadmium (Cd), (b) lead (Pb), and (c) mercury (Hg) of muscles of yellowfin tuna (Thunnus 
albacares), caught from Pacific and Hindian Oceans. The heavy metal concentrations of samples were compared with 
that specified in the national standard quality control of Indonesia (SNI) No. 2354.5 year 2011 (for Pb and Cd); SNI 
No. 2356.6 year 2015 for Hg; and the European Commission Regulation No. 1881/2006 regarding setting maximum levels 
for certain contaminants in foodstuffs.

cba
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a positive correlation between Hg content and the 
size of bluefin tuna (Thunnus thynnus) caught from 
the Mediterranean Ocean, as well as yellowfin tuna 
(T. albacares) and cakalang (Katsuwonus pelamis) 
from west Hindian Ocean [42, 43].

In this study, a higher level of Cd was obtained 
in yellowfin tuna and swordfish caught from the 
Pacific Oceans compared to those from the Hindian 
partly, due to different conditions of the geographic 
areas. Other factors, such as fish species, age of the 
fish, sex, as well as types of diets can contribute to 
the accumulation of the metal in tuna fish [44, 45]. 
Cadmium is a heavy metal with a relatively low dis-
tribution at sea level, because it was mostly absorbed 
by phytoplankton [46, 47]. Furthermore, its existence 
in nature was affected by human activities in various 
industrial sectors, such as the combustion of fossil 
fuels and non-ferrous metal extraction. The presence 
of several Cd pollution sources in marine environ-
ments can also be attributed to industrial applica-
tions, such as corrosive reagents, as well as their use 
as stabilizers in Polyvinyl chloride ( PVC) products, 
color pigments, and nickel-Cd batteries, which are 
currently being developed in large quantities for 
electrical-based vehicles [48]. The Cd level in yel-
lowfin tuna and swordfish in this study was generally 
lower compared to the threshold values specified by 
the SNI (0.10 mg/kg) and CR as 0.10 mg/kg and 
0.05 mg/kg, respectively. The results of this study 
are inconsistent with the previous studies where the 
levels of Cd in T. albacores and Coryphaena hippu-
rus caught from the Ecuadorian Ocean exceeded the 
threshold values specified by the above agencies, 
namely, 0.011–17 mg/kg and 0.011–11 mg/kg [49], 
respectively. Table-1 shows the comparison of Cd, 
Pb, and Hg levels in various seafood products caught 
from different regions of the catchment [26, 49–54].

The average Pb and Hg concentrations in this 
study were not significantly different in both fish 
species caught from the Pacific and Indian Oceans, 
as shown in Table-1. However, these values were 
still within the acceptable range specified by the 
SNI and CR. The results of this study are in line 
with that of Abolghait and Garbaj [55], where the 
levels of Hg, Cd, and Pb in canned tuna, marketed 
in Tripoli, were 0.163 mg/kg, 0.027 mg/kg, and 
0.075 mg/kg, respectively. They also reported the 
presence of a high Hg concentration of 1.185 mg/kg 
in products of fresh small tunny (Euthynnus allet-
teratus) captured from the Mediterranean Ocean, 
which exceeded the threshold value. Abolghait and 
Garbaj [55], revealed a significantly higher level 
of Hg in big-eye tuna compared to albacore tuna 
as reported by Houssard et al. [56]. The concen-
tration of Hg in Sardina pilchardus and X. gladius 
obtained from the Algerian coast was also reported 
by Genchi et al. [48] to be within the acceptable 
range. Meanwhile, the Pb concentration in these 
seafood products was reported to be higher than 
the standard, namely, 0.51–7.53 mg/kg and 0.02–
11.40 mg/kg for S. pilchardus and X. gladius, 
respectively. A recent study by Ruelas-Inzunza et 
al. [57] showed that Hg and arsenic (As) levels in 
skipjack tuna from the east Pacific were still within 
the standard levels, as specified by the CR.

Although the Cd, Pb, and Hg that accumulated 
in the muscles of yellowfin tuna and swordfish in this 
study were within the acceptable range for consump-
tion; further studies are still needed. This was because 
the concentrations of these heavy metals depended on 
various factors, including the process of ingestion/
assimilation, environmental conditions, fish size, fish 
species, and the accumulation capability of organs, 
such as the liver, gills, and muscle [58, 59]. The liver 

Figure-3: Average levels of (a) cadmium (Cd), (b) lead (Pb), and (c) mercury (Hg) of muscles of swordfish (Xiphias gladius), 
caught from Pacific and Hindian oceans. The heavy metal concentrations of samples were compared with that specified 
in the national standard quality control of Indonesia (SNI) No. 2354.5 year 2011 (for Pb and Cd); SNI No. 2356.6 year 
2015 for Hg; and the European Commission Regulation No. 1881/2006 regarding setting maximum levels for certain 
contaminants in foodstuffs.

b ca
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of fish with the capability to accumulate higher pol-
lutants, including heavy metals compared to other 
organs, such as gills and muscle, has been considered 
a bioindicator of pollution after a short period of expo-
sure [60, 61].
Toxicological repercussions
Estimated daily intake

The EDI value for each heavy metal 
(Cd, Pb, and Hg) in the different age groups was 
within the tolerable daily intake range, as shown in 
Tables-2 and 3 [26, 62]. Therefore, yellowfin tuna and 
swordfish caught from the Pacific and Indian Oceans 
were safe for consumption. This indicated that the 
long-term consumption of such products does not 
have a chronic effect if the levels of heavy metal con-
tamination remain stable over time.
Cadmium

In this study, no threat indication due to Cd con-
tamination of fish caught from the Pacific and Indian 
Oceans was observed. This was because the level of 
the metal was still lower than the acceptable range 
specified by Joint FAO/WHO Expert Committee on 
Food Additives (JECFA) [62]. Furthermore, the daily 
tolerable Cd intake per kg body weight, specified by 
this agent, was 0.83 g. This indicated that yellowfin 
tuna and swordfish caught from Pacific and Hindian 
Oceans were safe for consumption, as they con-
tained a low level of Cd. Ormaza-González et al. [63] 
reported that the highest accumulation of heavy met-
als, including Cd, occurred in the liver of tuna fish. 
However, this part was rarely consumed, indicating 
that its adverse effect was negligible.

Lead
The EDI value of the samples was lower than the 

range specified by JECFA [62], namely, <3.57 g/kg 
body weight/day, indicating that it was negligible. The 
existence of heavy metals in the environment was due 
to the disposal of wastes of battery and weapon manu-
facturers, as well as oil spills [64]. The analysis of Pb 
in fish samples caught from Indian and Pacific Oceans 
showed that the concentration of the heavy metal was 
significantly lower compared to the range specified 
by SNI and JECFA. Based on the value obtained, the 
fish products caught from these two oceans were still 
safe for consumption by people. However, several dis-
orders, such as anemia, malfunction of the brain and 
kidney, or death, can occur if the level increases over 
time with long-term exposure [65]. A previous study 
reported that Pb has the potential to cross the barrier 
of the placenta and cause damage or inhibit the devel-
opment of the embryo’s nervous system [66].

Mercury
Methylmercury (MeHg) is a toxic material with 

negative effects on human health. Mercury also has 
a toxic effect on the development of the human ner-
vous system, and it is similar to Pb. Furthermore, it 
commonly accumulates in the muscle of fish, and 
consumption of Hg-containing fish muscle can Pb 
to its bioaccumulation [67]. Tables-2 and 3 show the 
EDI values of yellowfin tuna and swordfish caught 
from the Pacific and Indian Oceans, which were still 
within the acceptable range specified by SNI and 
JECFA. According to the JECFA [62], the maximum 
Hg daily food exposure was 0.300 g/kg. Mercury can 

Table-1: Comparison of Cd, Pb, and Hg concentrations (mg/kg of wet weight) in fresh seafoods including tuna caught 
from various regions of catchment.

S. 
No.

Species Location Heavy metal levels  
(mg/kg of wet weight)

References

Cd Pb Hg

1. Thunnus albacares Ecuadorian coast 
(Eastern Pacific)

(<0.011–17) (<0.04–0.32) (<0.005–6.0) [49]

2. Coryphaena 
hippurus

Ecuadorian coast
(Eastern Pacific)

<0.011–11 <0.04–1.86 0.04–5.3 [49]

3. Thunnus alalunga Galicia Market, NW 
Spain

ND–0.036 ND–0.025 - [26]

4. Sardina pilchardus Algerian coast <0.01–2.11 0.51–7.53 0.15–0.89 [50]
5. Xiphias gladius Algerian coast 0.018–7.52 0.02–11.40 0.27–0.88 [50]
6. Thunnus obesus Atlantic

Indian Oceans
0.001–0.136
0.004–0.148

- - [51]

7. Thunnus alalunga Western and Central 
Pacific Ocean

- - 0.239–1.180 [52]

8. Thunnus obesus Western and Central 
Pacific Ocean

- - 0.158–3.324 [52]

9. Stolephorus indicus UAE, coast, Arabian Gulf 0.1–8.0 - 0.04–0.18 [53]
10. Seriola dumerili Mediterranean Sea 0.122 0.211 - [54]
11. Thunnus albacares Pacific Oceans

Hindian Oceans
0.006–0.387
0.000–0.074

0.024–0.189
0.000–0.159

0.100–0.352
0.005–0.235

This study

12. Xiphias gladius Pacific Oceans
Hindian Oceans

0.006–0.239
0.000–0.185

0.004–0.168
0.000–0.120

0.020–0.569
0.025–0.442

This study

Quality standards 0.10 0.20 1.0 SNI and CR
0.05 0.30 1.0

Cd=Cadmium, Pb=Lead, Hg=Mercury, SNI=Indonesian National Standard, CR=European Commission Regulation
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Ocean, namely, 0.000005 mg/kg (<0.007 mg/kg, PTWI 
for Cd). However, the average value for Pb metal found 
in yellowfin tuna from the site was higher (0.000040 mg/
kg) compared to swordfish (0.000028 mg/kg). The 
value obtained was also still safe when compared to the 
recommended PTWI for Pb, namely, <0.0025 mg/kg. 
The EWI for Hg metal in swordfish from the Pacific 
Ocean was higher (0.000108 mg/kg) compared to yel-
lowfin tuna (0.000066 mg/kg) and was still in a safe 
range based on PTWI, namely, <0.004 mg/kg, as shown 
in Table-4 [26].

The EWI value of Pb metal in yellowfin tuna from 
the Indian Ocean was 0.0038 mg/kg and this exceeded 
the PTWI recommendation of 0.0025 mg/kg, espe-
cially for the adult population, as shown in Table-5 [26]. 
Meanwhile, the value for other age groups was still 
within the safe range for consumption when compared 
to the PTWI value in this study. The EWI of swordfish 
caught from the Indian Ocean has a safe consumption 
value compared to the PTWI value in this study.

Similar studies showed that swordfish caught 
from the waters of FAO zone area 37, division 37.2.2 
collected at an Italian fish trading company had a high 
PTWI. High values for MeHg and Hg were obtained 
in samples measuring 138–233 cm and 167–233 cm, 
respectively [30]. The results revealed that fish size 
influenced the bioaccumulation capacities for heavy 
metals, and this had an impact on the PTWI value 
also referred to as the weekly consumption limit. 
The values obtained in this study were lower com-
pared to the previous studies, which were higher at 
0.47 mg/kg body weight/w for As, and 0.05 mg/kg 
body weight/w for Cd, Hg, and Pb [71]. It is import-
ant to note that the EWI of Pb metal found in this 
study, especially for adult populations of yellowfin 
tuna from the Indian Ocean, exceeded the PTWI’s 
recommendations. This indicated that comprehen-
sive monitoring efforts are still needed for this type 
of metal in other capture fisheries commodities.

naturally be obtained from a volcano eruption, where 
it precipitates on the seabed after the biogeochemical 
cycle. This hypothesis is in line with the finding of Hg 
content in tuna fish caught from the Azorean Ocean, 
which was hypothesized to be closely related to the 
volcanic region around this area [68]. Other anthro-
pogenic sources of Hg included coal used in electri-
cal power generation [69], mining activities [23], and 
combustion of fossil fuel [70].

Provisional tolerable weekly intake (PTWI)
The measurement results of the EWI values for 

yellowfin tuna and swordfish collected from the Pacific 
Ocean and Indian Ocean in this study were still below 
the minimum limit values for Pb, Cd, and Hg based on 
PTWI. On average, the EWI value for Cd did not differ 
between the two fish samples caught from the Pacific 

Table-4: Estimated dietary intake values of heavy metals 
(Pb, Cd, and Hg) in yellowfin tuna and swordfish caught 
from the Pacific Ocean.

Age Cd Pb Hg

Yellowfin Tuna
Age 1 0.000009 0.00007 0.000116
Age 3 0.000009 0.00007 0.000113
Age 6 0.000005 0.00004 0.000064
Age 12 0.000002 0.00002 0.000028
Adults 0.000001 0.00001 0.000010

Swordfish
Age 1 0.000008 0.000048 0.000207
Age 3 0.000008 0.000047 0.000152
Age 6 0.000005 0.000032 0.000114
Age 12 0.000002 0.000012 0.000050
Adults 0.000001 0.000004 0.000018

PTWI standard values for each metal, respectively, 
Cd=0.007 mg/kg; Pb=0.0025 mg/kg; and Cd=0.007. 
Standard values based on [26]. Cd=Cadmium, Pb=Lead, 
Hg=Mercury

Table-2: Estimated daily intakes of Cd, Pb, dan Hg  
(mg/kg of wet weight) by children and adulthood following 
consumption of yellowfin tuna and sword fish caught from 
Pacific oceans.

Age Fish ingestion 
rate (FIR) fresh 

(kg/person)1

Cd Pb Hg

Yellowfin Tuna
Age 1 0.681 0.002 0.007 0.009
Age 3 1.498 0.004 0.010 0.013
Age 6 1.498 0.003 0.008 0.010
Age 12 3.196 0.003 0.007 0.009
Adults 3.14 0.002 0.005 0.006

Swordfish
Age 1 0.681 0.002 0.006 0.012
Age 3 1.498 0.004 0.008 0.017
Age 6 1.498 0.003 0.006 0.013
Age 12 3.196 0.003 0.006 0.013
Adults 3.14 0.002 0.004 0.008

TI2 0.830 3.570 0.300
1Daily FIR (kg/person) based on [26]. 2Tolerable intake 
suggested by [62]. Cd=Cadmium, Pb=Lead, Hg=Mercury, 
FIR=Fish ingestion rate

Table-3: Estimated daily intakes of Cd, Pb, and Hg  
(mg/kg of wet weight) by children and adulthood following 
consumption of yellowfin tuna and sword fish caught from 
caught from Hindian ocean.

Age FIR fresh  
(kg/person)1

Cd Pb Hg

Yellowfin Tuna
Age 1 0.681 0.001 0.007 0.009
Age 3 1.498 0.002 0.010 0.013
Age 6 1.498 0.002 0.007 0.010
Age 12 3.196 0.002 0.007 0.010
Adults 3.14 0.001 0.004 0.006

Swordfish
Age 1 0.681 0.002 0.006 0.012
Age 3 1.498 0.003 0.009 0.017
Age 6 1.498 0.003 0.007 0.013
Age 12 3.196 0.002 0.006 0.012
Adults 3.14 0.002 0.004 0.008
TI2 0.830 3.570 0.300

1Daily FIR (kg/person) based on [26]. 2Tolerable intake 
suggested by [62]. Cd=Cadmium, Pb=Lead, Hg=Mercury, 
FIR=Fish ingestion rate
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Target hazard quotients
The THQ value for children and adults in this 

study was lower than 1, as shown in Table-6. Based 
on the results, none of the fish samples caught from 
Pacific and Hindian Oceans analyzed had THQ val-
ues for Hg, Pb, and Cd higher than 1, indicating that 
they were safe for consumption. Meanwhile, samples 
obtained from North Aegean Sampling Station Area 
(NASSA) and Southeastern Aegean Sampling Station 
Area (SASSA) have been reported to have THQ for 
Hg of >1 in albacore tuna (Thunnus alalunga), which 
were within the range of 1.338–5.040 and 0.758–
4.046, respectively [41]. A study by Han et al. [72] 
reported that the value obtained in seafood products 
caught in the Taiwan Ocean for Cd and Hg was lower 
than 1 (<1), but higher than 1 for inorganic As, Copper, 
and Zinc in adults. A recent study by Djedjibegovic 
et al. [73] showed that bluefin tuna and mackerel from 
Bosnian and Herzegovinian Oceans had THQ for Hg 
of close to 1. This became a great concern after the 

consumption of such products in moderate quantities 
particularly by adults and pregnant women. Although 
the THQ index analysis was not fully appropriate to 
provide harmful health impacts on consumers, this 
methodology was important to reveal initial infor-
mation on the potential risks that can occur after the 
consumption of heavy metal-contaminated seafood 
products [74, 75].

Total target hazard quotients
In this study, the value of TTHQs in the yellow-

fin tuna and swordfish samples was still within the 
acceptable range or lower than 1, as shown in Table-7. 
The TTHQs value covered the average of all heavy 
metals analyzed. Based on these results, fishes caught 
from Hindian and Pacific Oceans were safe for con-
sumption by all age groups. Furthermore, the values 
obtained in this study were lower than those reported 
by Stamatis et al. [41], who analyzed albacore tuna 
from NASSA and SASSA Aegea (Greek Oceans), 
namely, 1.353 and 5.21, respectively. This explains 
that consumers of such products have high health risks 
due to the consumption of these seafoods. Total target 
hazard quotients values of > 1 were also reported by 
Li et al. [76] after analyzing wild fishes caught from 
Liuzhou river, China, namely, 1.627 among children.
Conclusion

This study showed the average levels of three 
heavy metals, namely, Cd, Pb, and Hg in muscle samples 
of yellowfin tuna and swordfish caught from the Pacific 
and Indian Oceans. Furthermore, the values obtained 
were still in the range of acceptable levels as specified 
by SNI and CR No. 1881/2006. The EDI and THQs for 
the three metals indicated that fishes caught from the 
Pacific and Indian Oceans were safe for consumption 
purposes. This showed that seafood products harvested 
from these areas were safe for exporters and there was 
no health risk for consumers. These findings are consis-
tent with the TTHQs value obtained for the two regions. 

Table-5: Estimated dietary intake values of heavy metals 
(Pb, Cd, and Hg) in yellowfin tuna and swordfish caught 
from the Hindian Ocean.

Age Cd Pb Hg

Yellowfin Tuna
Age 1 0.000063 0.0000030 0.000120
Age 3 0.000062 0.0000030 0.000117
Age 6 0.000035 0.0000017 0.000066
Age 12 0.000015 0.0000007 0.000029
Adults 0.003882 0.0000003 0.000010

Swordfish
Age 1 0.000052 0.000008 0.000195
Age 3 0.000051 0.000008 0.000191
Age 6 0.000028 0.000004 0.000107
Age 12 0.000013 0.000002 0.000037
Adults 0.000004 0.000001 0.000016

PTWI standard values for each metal, respectively, 
Cd=0.007 mg/kg; Pb=0.0025 mg/kg; and Cd=0.007. 
Standard values based on the study by Núñez et al. [26]. 
Cd=Cadmium, Pb=Lead, Hg=Mercury

Table-6: Value of target hazard quotients on yellowfin tuna and swordfish caught from Pacific and Hindian oceansage of 
consumers.

Heavy metals Age Pacific Ocean Hindia Ocean

Yellowfin Tuna Swordfish Yellowfin Tuna Swordfish

Cd Age 1 6.4E + 03 6.42E + 03 3.74E + 03 6.04E + 03
Age 3 6.4E + 04 6.36E + 04 3.71E + 04 5.98E + 04
Age 6 1.7E + 05 1.70E + 05 9.88E + 04 1.59E + 05
Age 12 1.6E + 06 1.59E + 06 9.28E + 05 1.50E + 06
Adults 1.5E + 07 1.45E + 07 8.46E + 06 1.36E + 07

Pb Age 1 5.2E + 03 5.17E + 03 4.90E + 03 4.44E + 03
Age 3 5.1E + 04 5.12E + 04 4.85E + 04 4.39E + 04
Age 6 1.4E + 05 1.37E + 05 1.29E + 05 1.17E + 05
Age 12 1.3E + 06 1.28E + 06 1.21E + 06 1.10E + 06
Adults 2.0E + 06 1.17E + 07 1.11E + 07 1.00E + 07

Hg Age 1 2.3E + 05 2.32E + 05 2.36E + 05 3.01E + 05
Age 3 2.3E + 06 2.30E + 06 2.33E + 06 2.98E + 06
Age 6 6.1E + 06 6.12E + 06 6.22E + 06 7.94E + 06
Age 12 5.7E + 07 5.75E + 07 5.84E + 07 7.45E + 07
Adults 5.2E + 08 5.24E + 08 5.32E + 08 6.80E + 08

Cd=Cadmium, Pb=Lead, Hg=Mercury
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However, further risk assessment is required, particu-
larly on the seafood products consumed by children and 
pregnant women.
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