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Abstract
Background and Aim: Heat shock proteins are highly conserved proteins that work as molecular chaperones expressed in 
response to thermal stress. This study aimed to determine the expression profile of genes related to the heat stress response 
in whole blood obtained from the Romosinuano creole breed.

Materials and Methods: Real-time polymerase chain reaction was performed to analyze the transcript of hsp90, hsp70, 
hsp60, and hsf1 in the whole blood of Romosinuano under different temperature-humidity indices (THIs).

Results: The expression levels of the hsp70 and hsf1 genes at the high-THI level were higher (p = 0.0011 and p = 0.0003, 
respectively) than those at the low-THI level. In addition, no differences in the expression levels of the hsp60 and hsP90 
genes were detected between the two THIs.

Conclusion: The overexpression of hsf1 and hsp70 genes play an important role in protecting cells from damage induced 
by heat stress.
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Introduction

Climate change affects food production in trop-
ical and subtropical regions, especially dairy and 
meat production [1, 2]. Adverse weather conditions 
limit agricultural and livestock production devel-
opment and heat stress is one of the main problems 
in animals raised outdoors and indoors [3–7]. Heat 
stress in livestock is caused when environmental 
conditions challenge the animal’s thermoregulatory 
mechanisms. It is defined as the increment in body 
temperature that leads to a physiological response 
to compensate for the heat gain, avoiding a state of 
hyperthermia [6, 8, 9]. Heat stress has been associated 
with decreased milk and meat production in cattle. It 
has deleterious effects on reproduction and immunity 
due to changes in animal metabolism and physiology 

and is responsible for the lower quality of derived dairy 
and meat products [1, 8, 10, 11]. In animal husbandry, 
the temperature-humidity index (THI) is a parameter 
that considers the environmental conditions that cause 
heat stress, including relative humidity and environ-
mental temperature [12]. THI allows animal classifi-
cation into mild heat stress, moderate heat stress, and 
severe heat stress, used in performing retrospective 
studies, heat stress economic studies, and farm heat 
stress abatement strategies [8, 12].

The use of novel omics technologies is becoming 
increasingly common in animal production. Omics 
technologies are related to studying the collection of 
molecules, biological processes, or physiologic func-
tions and structures as systems [13]. Transcriptomics 
and proteomics allow the study of animal responses 
at the molecular level when subjected to certain fac-
tors, including environmental conditions and diet 
[14]. Heat stress in cattle can be determined by iden-
tifying proteins and genes that increase their expres-
sion under heat stress, such as heat shock proteins 
(HSP) [5, 15, 16]. Body temperature above the thresh-
old induces gene expression in the biosynthesis of HSP 
and their expression is different in each cattle breed 
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depending on external factors [17–20]. In general, the 
overexpression of HSP protects against hyperthermia, 
circulatory shock, and cerebral ischemia during heat 
shock, which plays a significant role in cell protection 
[21]. HSP has chaperone activity that ensures the fold-
ing, unfolding, and refolding of proteins denatured by 
stress [22].

The survivability of cattle in the tropical environ-
ment depends on the adaptations developed through-
out successive exposition to the continuous stressor, 
in our case, cattle raising in grazing in the tropical 
and subtropical regions [23]. The Romosinuano cre-
ole breed from Colombia is a breed that stands out 
for tolerating heat and different humidity conditions 
and exhibits remarkable characteristics of adapta-
tion, such as high fertility, weight gain, and longev-
ity, which give it an advantage over other breeds 
in tropical conditions [24, 25]. It has been reported 
that Romosinuano bovine embryos showed a better 
response to heat stress than other breeds, constitut-
ing an advantage for embryo development in adverse 
weather conditions [26]. At present, studies of gene 
expression profiles of genes related to heat stress in 
Colombian Creole cattle under tropical environmen-
tal conditions are limited. Thus, it is important to 
establish the gene transcripts of heat shock proteins 
such as hsp60, hsp70, hsp90, and hsf1 in whole blood, 
as an additional tool for selecting better-adapted indi-
viduals in tropical conditions.

This study aimed to determine the expression 
profile of genes related to the heat stress response in 
whole blood obtained from the Romosinuano creole 
breed.
Materials and Methods
Ethical approval

All procedures involving animals were approved 
by the Ethics committee of the University of Tolima 
(Approval no. 001-2021), based on Law 84/1989 
and Resolution 8430/1993 and complied with the 
guidelines for animal care and use in research and 
teaching [27].
Study period and location

The study was conducted from July to August 
2020. Fifteen healthy cows (n = 15) of Romosinuano 
breed (age: 48 ± 96 months) and weight (400 ± 39 kg 
body weight) were selected by phenotypic charac-
teristics and productive and reproductive behavior 
of the parents, and located on a farm near Monteria 
city - Cordoba district in northern region of Colombia, 
(Latitude 8◦45′36′N and Longitude 75◦53′08′′W), with 
an average temperature of 29°C and relative humid-
ity between 70% and 85%, in the wet season. Cows 
were kept under the same sanitary and nutritional 
management in a grazing system using Megathyrsus 
maximus, cv. Tanzania and Dichantium aristatum, and 
supplemented with corn silage, mineralized salt, and 
water ad libitum.

Sample collection
Sixty blood samples (4 mL) were collected 

twice in the wet season, sampling daily between 
7:00 and 9:00 h and then from 15:00 until 17:00 h. 
Blood samples were obtained by venipuncture of 
the Caudalis medium vein (tail vein) using ethylene-
diaminetetraacetic acid tubes (Becton Dickinson 
Vacutainer Systems, Franklin Lakes, NJ, USA); 
blood samples were divided into aliquots of 2 mL in 
vial tubes and frozen in liquid nitrogen, and stored 
at −20°C until experimental analysis.
Weather data

Air temperature and relative humidity data were 
obtained from the experimental cattle yard using 
PCE-FWS20N weather station equipment (PCE 
Instruments™, Meschede, Germany). Temperature 
monitoring was carried out 15 days before taking the 
blood samples to determine the coolest and hottest 
hours of the day in the wet season. The THI was cal-
culated using the formula [28] as follows:

THI = (1.8Tdv + 32) – 0.55 – 0.00551.8Tdb – 26 1.
THI data were used to identify categories of live-

stock weather safety index [29]. 
RNA extraction and cDNA synthesis

Total RNA was extracted from whole blood 
samples using the RNA-solv® reagent kit (OMEGA, 
Norcross, GA, USA) according to the manufacturer’s 
protocol with certain modifications [28]. Before reverse 
transcription, all RNA samples were diluted to 200 ng/
μL, and cDNA was synthesized using the GoScriptTM 
Reverse Transcription System kit (Promega, Madison, 
WI, USA) following the manufacturer’s instructions. 
End-point polymerase chain reaction (PCR) and aga-
rose gel electrophoresis were performed to determine 
the cDNA quality and the amplicon size.
Real-time PCR analysis

The relative expression of hsp60, hsp70, hsp90, 
and hsf1 genes was measured by quantitative real-
time PCR (qPCR) in a QuantStudio 3 Real-Time PCR 
System (Thermo Fisher Scientific, Waltham, MA, 
USA) by fast ramp program, using GoTaq® qPCR 
Master Mix (Promega). All reactions were performed 
in duplicate. The relative gene expression was nor-
malized using actb as a reference gene [30]. Primer 
sequences for hsp60, hsp70, hsp90, and hsf1 amplifica-
tion by qPCR assay are presented in Table-1 [30, 31]. 
Thermal cycling conditions were initial denaturation 
for 2 min at 95°C, then 40 cycles of denaturation for 3 s 
at 95°C, and annealing for 30 s at 60°C. Subsequently, 
a melting step was performed at 95°C for 1 s, 60°C for 
20 s, and a continuous rise in temperature to 95°C at 
a rate of 0.15°C per second. The data obtained were 
analyzed using the 2−ΔΔCT method.
Statistical analysis

Statistical analysis was performed using cycle 
threshold data from cow blood samples obtained in the 
morning and afternoon. The differences in the relative 



Veterinary World, EISSN: 2231-0916 603

Available at www.veterinaryworld.org/Vol.16/March-2023/22.pdf

gene expression between the two groups were ana-
lyzed by Mann–Whitney test using GraphPad Prism 
software v 8.0 (La Jolla, CA, USA). Differences were 
considered statistically significant if p < 0.05.
Results
Temperature-humidity index

The coolest hours and lowest humidity percent-
ages were between 5:00 and 7:00, with a calculated 
THI: 76, and the hottest and high humidity hours were 
between 13:00 and 14:00, showing THI: 83. Thus, 
blood samples were collected approximately 1 h after 
the lowest and highest THI, between 7:00 to 9:00 
(THI: 78) and 15:00 to 17:00 (THI: 81).
Gene expression profile of hsp60, hsp70, hsp90, and 
hsf1

The difference between the increase in THI at the 
sampling times evidenced a differential expression in 
the hsp70 gene (AM vs. PM p = 0.0011) and the hsf1 
gene (AM vs. PM p = 0.0003) (Figure-1). In contrast, 
the expression of hsp60 and hsp90 did not show a sta-
tistical difference between the two sampling times (p 
= 0.12 and p = 0.73, respectively).
Discussion

Livestock productions are under different stress-
ors that generate significant economic losses [32]. 
Heat stress is one of the most critical stressors that 
affect livestock production, with an estimated annual 
economic loss of 1.69–2.36 billion US dollars [33, 34]. 
Heat stress negatively affects livestock parameters, 
including feed intake, growth, fertility, and concep-
tion rates [35]. However, livestock can respond to heat 
stress through evolutionarily conserved processes 
that regulate differential gene expression and related 
pathways [36]. For example, under heat stress condi-
tions, HSP synthesis protects cells from heat stress by 
repairing protein damage [37].

This study was conducted to evaluate changes in 
the expression of HSP genes (hsp60, hsp70, hsp90, and 
hsf1) in whole blood obtained from Romosinuano creole 
breed in two different environmental conditions during 
the day in the wet season, using THI according to the 
Livestock Weather Safety Index to categorize the heat 
stress associated with hot-weather conditions for live-
stock exposed to extreme conditions [38]. One category 

corresponds to the THI obtained at morning sampling, 
calculated THI 78 (alert), and THI obtained at after-
noon sampling 83 (danger). Our results indicated that 
compared to the samples taken during the heat stress 
of the Alert category, the mRNA expression of the hsf1 
and hsp70 genes was significantly higher than in the 
samples taken during the danger category (Figure-1). 
This way, the overexpression of hsf1 in samples taken 
during the danger category can be explained because 
this gene is the main modulator of heat shock response 
[39]. hsf1 plays an essential role in cells subjected to 
heat shock or other proteotoxic conditions by protecting 
against stressors by positively regulating HSP mRNA 
levels [40–42]. For example, HSF1 interaction between 
HSP70 and its companion HSP40 has been correlated 
with increased hsp70 gene expression [43, 44].

Table-1: Primer sequences for hsp60, hsp70, hsp90, and hsf1 amplification by qPCR assay.

Gene Primer sequence (5´-3´) Primer length (NT) TM (°C) GC% Amplicon size (bp) Reference

hsp60 F GGAAAAGGTGACAAGGCTCA 20 58.02 50 214 This study
R CAGCTCGTGTGGCATTAAGA 20 58.27 50

hsp70 F AGGACTTCGACAACAGGCTG 22 56.53 39.14 141 This study
R TGCTGGACGACAAGGTTCTC 20 60 55

hsp90 F GGAGGATCACTTGGCTGTCA 20 59.38 55 177 [31]
R GATTAGCTCCTCGCAGTT 20 59.53 55

hsf1 F CCCCGACCACCCTTATTG 18 57.02 61.11 139 This study
R GCGACGCTGAGGCACTT 17 60.42 64.71

actb F GGGATGAGGCTCAGAGCAAGAGA 23 63.65 56.52 118 [30]
R AGCTCGTTGTAGAAGGTGTGGTGCC 25 66.91 56.00

qPCR=Quantitative real-time polymerase chain reaction, NT=Nucleotides, TM=Temperature, GC=Guanine-cytosine

Figure-1: mRNA expression of hsp60, hsp70, hsp90, and 
hsf1 in Romosinuano breed at two different hours a day. 
Data are presented as the means ± standard errors. Means 
with different superscripts differ significantly (**p < 0.01 
and ***p < 0.001).
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Furthermore, the level of hsp70 mRNA in sam-
ples taken during the category of danger can also be 
attributed to the conserved role that this gene plays 
in cellular thermotolerance between prokaryotic and 
eukaryotic organisms [45]. In the present study, the 
mRNA expression profile of hsp70 in blood samples 
agrees with the previous studies, where the increment 
of expression of hsp70 mRNA was reported after 
heat exposure at higher temperatures [46]. Further, 
an increase in hsp60 expression without a significant 
difference was observed in the samples taken during 
the danger category. The induction of hsp60 has been 
reported to help prevent apoptotic cell death by rapidly 
activating pro-caspase-3 during apoptosis [47–49]. 
The previous studies also reported that hsp70 and 
hsp60 are upregulated in cattle during heat stress [50].

On the other hand, the decrease in hsp90 mRNA 
expression without a significant difference can be 
attributed to the rapid induction of translation of the 
HSP90 protein to protect cells from heat stress [51]. 
Finally, it is important to mention that this is the first 
research on HSP gene expression in the Romosinuano 
cattle breed. Romosinuano cattle is an adapted Bos 
taurus breed that has a thermoregulatory capacity 
explained through physiological processes such as the 
reduction of heat production and the ability to increase 
heat loss to the environment [52–54].
Conclusion

Our data suggest that the THI threshold influ-
ences changes in the gene expression of some genes 
related to heat stress in the Romosinuano cattle in the 
dry tropical forest, especially in the danger THI cat-
egory (afternoon) under conditions in our study and 
induced the expression of hsf1 and hsp70 genes in 
whole blood samples compared to the THI range in the 
alert category (morning), due to these proteins being 
in charge of cell protection during heat stress, provid-
ing information about the possible cellular adaptation 
in this creole cattle.
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