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Abstract
Background and Aim: Salmonella spp. is frequently found in the digestive tract of birds and reptiles and transmitted to 
humans through food. Salmonellosis is a public health problem because of pathogenicity variability in strains for virulence 
factors. This study aimed to identify the virulence genes in Salmonella isolates from humans, crocodiles, broiler cloacas, 
and broiler carcasses from two departments of Colombia.

Materials and Methods: This study was conducted on 31 Salmonella enterica strains from humans with gastroenteritis 
(seven), crocodiles (seven), broiler cloacas (six), and broiler carcasses (12) from Tolima and Santander departments of 
Colombia, belonging to 21 serotypes. All samples were tested for Salmonella spp. using culture method on selective and 
non-selective mediums. Extraction of genomic DNA was performed from fresh colonies, DNA quality was verified by 
spectrophotometry and confirmed by amplification of InvA gene using conventional polymerase chain reaction (PCR). 
bapA, fimA, icmF, IroB, marT, mgtC, nlpI, oafA, pagN, siiD, spvC, spvR, spvB, Stn, and vexA genes were amplified by PCR.

Results: The most prevalent gene was bapA (100%), followed by marT (96.77%), mgtC (93.55%), and fimA (83.87%). 
Likewise, IroB (70.97%), Stn (67.74%), spvR (61.29%), pagN (54.84%), icmF (54.8%), and SiiD (45.16%) were positive 
for more than 50% of the strains. Furthermore, none of the isolates tested positive for the vexA gene. Salmonella isolates 
presented 26 virulence profiles.

Conclusion: This study reported 14 virulence genes in Salmonella spp. isolates from humans with gastroenteritis, crocodiles, 
and broiler cloacas and carcasses. The distribution of virulence genes differed among sources. This study could help in 
decision-making by health and sanitary authorities.

Keywords: broilers cloaca, carcasses, crocodiles, gastroenteritis human, polymerase chain reaction, virulence genes.

Introduction

Salmonella is a genus of Gram-negative bac-
teria from the Enterobacteriaceae family, classified 
into two species: Salmonella bongori and Salmonella 
enterica, commonly found in the digestive tract of 
mammals, birds, and reptiles. It represents a conta-
gion source for humans through the consumption of 
foods such as beef, chicken meat, eggs, fish, pork, 
and vegetables [1–4]. Salmonella enterica has 2700 
serotypes and subspecies that cause 99% of infec-
tions, of which 20 serotypes are zoonotic, including 
Salmonella Enteritidis, Salmonella Typhimurium, and 
Salmonella Heidelberg, the most relevant serotypes in 
public health [4–7].

Salmonella spp. are the etiological agents of 
several diseases, such as gastroenteritis, typhoid, 

paratyphoid, septicemia, and meningitis [2, 8, 9]. 
This zoonotic pathogen represents a public health 
problem leading per year to 93.8 million cases and 
155,000 deaths worldwide; 1.35 million infections, 
26,500 hospitalizations, and 420 deaths in the USA 
result in an estimated $400 million in direct medical 
costs, 70%–80% of food poisoning incidents in China, 
and every 690 out of 100,000 Europe inhabitants have 
non-typhoidal salmonellosis [2, 10, 11]. Moreover, a 
negative economic impact of $110 billion/per year has 
been estimated on the poultry industry [7, 12].

Serotype, inoculum amount, host immunologi-
cal status, and virulence factors that influence strain 
pathogenicity are the main problems associated with 
salmonellosis prevention [7]. Moreover, genes on 
chromosomes, Salmonella pathogenicity islands 
(SPIs), mobile genetic elements (i.e., transposons, 
plasmids, and bacteriophages), and pili [12]; that code 
for adaptation to the host cell, resistance to antimicro-
bials, and the ability to overcome host defense mech-
anisms encoded virulence factors [7, 12]. Preliminary 
studies have established the presence and resistance to 
antibiotics of different serotypes of S. enterica in the 
poultry industry in Tolima and Santander departments, 
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as well as in various isolates from humans and croc-
odiles (Caiman crocodilus) in the department of 
Tolima [9, 13–16]. To improve the understanding of 
the virulence profile and establish strategies that con-
tribute to the control and prevention of salmonello-
sis, this study aimed to identify virulence genes in S. 
enterica isolates from patients with gastroenteritis, 
chicken carcasses and cloacal swabs, and crocodiles 
from two regions in Colombia.
Materials and Methods
Ethical approval

Ethical approval was not required for this study. 
Salmonella spp. strains were obtained from the bacte-
rial strain collection of the Laboratory of Immunology 
and Molecular Biology (Universidad del Tolima).
Study period and location

Strains were collected and isolated from March 
2018 to November of 2022 in the Department of 
Tolima and Santander.
Bacterial strains

Thirty-one strains of S. enterica, previously 
serotyped with the Kaffmann-White scheme, 
belonging to the serotypes Salmonella Braenderup, 
Salmonella Bovismorbificans, Salmonella 
Budapest, S. Enteritidis, Salmonella Grupensis, S. 
Heidelberg, Salmonella Hvittingofoss, Salmonella 
Infantis, Salmonella Javiana, Salmonella Kalina, 
Salmonella Manhattan, Salmonella Newport, 
Salmonella Othmarschen, Salmonella Paratyphi B, 
Salmonella Powell, Salmonella Saintpaul, Salmonella 
Schwarzengrund, Salmonella Skansen, Salmonella 
Soerenga, S. Typhimurium, and Salmonella Uganda 
were used. These isolates were otbained from human 
patients with gastroenteritis (n = 6), Caiman croco-
dilus fuscus (n = 7), and chicken carcasses (n = 12) 
from the department of Tolima, as well as from broiler 
cloacas from two regions in Colombia (Tolima, n = 3; 
Santander, n = 3) stored in the strain collection of the 
Laboratory of Immunology and Molecular Biology in 
the University of Tolima [16–19].
Genomic DNA (gDNA) extraction

Frozen Salmonella colonies were thawed and 
seeded in Trypticase Soy Agar and Xylose Lysine 
Tergitol 4 medium (Oxoid, Germany). Genomic DNA 
was extracted from fresh colonies using the Wizard® 
gDNA Purification (Promega, USA) according to the 
manufacturer’s conditions.
Polymerase chain reaction (PCR)

Molecular confirmation of the S. enterica strains 
was realized through amplification of a 282 bp fragment 
of the InvA gene by PCR (Table-1) [16, 17, 19–21]. 
Sixteen virulence genes were assessed in 31 isolates 
of S. enterica by amplification of each gene using spe-
cific primers described in Table-2 [4, 12, 22, 23]. Each 
reaction with a final volume of 25 μL was made up 
of 15.875 μL deionized distilled water, 5 μL of Flexi 
Buffer 5× Colorless GoTaq®, 1 μL of dNTPs, 1 μL 

of each primer (10 pmol/μL), 0.125 μL of GoTaq® 
Flexi DNA Taq polymerase (Promega), and as tem-
plate 1 μL of gDNA. For all experiments, S. enterica 
ATCC 13076® strain was used as a reference strain 
and Escherichia coli strain as a negative control.

Polymerase chain reaction was performed in 
the ProFlex PCR System (Applied Biosystems, 
ThermoFisher, USA) following the parameters rec-
ommended by the manufacturer. The annealing tem-
perature and extension time were defined based on the 
primer melting temperatures and the expected ampl-
icon size. Products were detected by 2% agarose gel 
electrophoresis for 40 min at 100 V using PowerPac™ 
equipment (Bio-Rad, USA), HydraGreen™ as DNA 
dye (ACTGene, USA), and the ENDURO GDS gel 
documentation system (Labnet International, USA).
Results

All 31 S. enterica strains were tested by PCR for 
virulence genes presence. The amplification of gene 
operon invasion A (InvA) confirmed the presence of 
Salmonella in nearly all strains (96.77%), except for 
the Salmonella Kalina strain isolated from chicken 
carcasses as shown in Table-3.

In this study, 12 virulence genes present in eight 
SPIs, one gene on chromosomal, and three genes of 
plasmids were evaluated. Regarding virulence genes 
frequencies, among different serovars denoting variable 
rates, the most prevalent gene was biofilm-associated 

Table-1: Strains of Salmonella enterica.

Origin Serotype Code Reference

Crocodiles Saintpaul LIBM0055 [16]
Braenderup LIBM0060
Soerenga LIBM0061
Infantis LIBM0063
Javiana LIBM0066
Paratyphi B LIBM0067
Powell LIBM0068

Broiler cloacas Heidelberg LIBM0011 [17]
Heidelberg LIBM0013
Heidelberg LIBM0015
Paratyphi B LIBM0017 [19]
Paratyphi B LIBM0022
Paratyphi B LIBM0023

Gastroenteritis 
in humans

Newport LIBM0040 [20]
Enteritidis LIBM0041
Braenderup LIBM0044
Uganda LIBM0045
Typhimurium LIBM0047
Grupensis LIBM0048

Carcasses Newport UT-SN14001 [21]
Skansen UT-SN14002
Kalina UT-SN14003
Schwarzengrund UT-SN14004
Paratyphi B UT-SN14010
Manhattan UT-SN14012
Braenderup UT-SN14014
Bovismorbificans UT-SN14016
Typhimurium UT-SN14017
Othmarschen UT-SN14019
Hvittingfoss UT-SN14023
Budapest UT-SN14045
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Table-2: Primers sequences and features.

Gene Primer sequence %GC Tm (°C) Amplicon size (bp) Reference

bapA F: TAAGCGTCGGACTTGGAATG 50.0 58 543 [4]
R: CGTTCTTCAGCGTGTAGGTATAG 47.8 58.7

fimA F: CCTTTCTCCATCGTCCTGAA 50.0 56.9 85 [12]
R: TGGTGTTATCTGCCTGACCA 50.0 58.6

icmF F: GCGTAGTCCAGATGAGACATTAG 47.8 58.5 724 [4]
R: GCGGCCAGATAGACGATATTT 47.6 58

IroB F: TGCGTATTCTGTTTGTCGGTCC 61.1 50 606 [22]
R: TACGTTCCCACCATTCTTCCC 59.7 52.4

marT F: CGTCGTCTCACAACAAACATTC 45.5 58.5 556 [4]
R: CTGACAAATCAATGCCGTAACC 45.5 58.2

mgtC F: AAAGACAATGGCGTCAACGTATGG 45.8 62.2 500 [4]
R: TTCTTTATAGCCCTGTTCCTGAGC 45.8 60.4

nlpl F: AGTCTTGGTTTGAGGGCATTAG 45.5 58.3 333 [4]
R: TTCTTTCGCCTGCTTCTCATTA 40.9 58.1

oafA F: CGAGTGACTGGAACCAAAGA 50.0 57.5 510 [4]
R: CAAGCATAGAGCCAGAGTAGAG 50.0 57.8

pagN F: TTCCAGCTTCCAGTACGTTTAG 45.5 58.1 440 [4]
R: GCCTTTGTGTCTGCATCATAAG 45.5 57.9

siiD F: GTCAGGGCGTTATCACTACTAAA 43.5 58.0 826 [4]
R: TTCACATCGGCCAGCATAG 52.6 57.6

spvC F: ACTCCTTGCACAACCAAATGCGGA 50.0 65.6 572 [12]
R: TGTCTTCTGCATTTCGCCACCATCA 48.0 65.2

spvR F: CCGCTGAGCAGGGTTATTT 52.6 57.8 723 [4]
R: CTTGGTCGGGTAATACAAGGAG 50.0 58.2

spvB F: CTATCAGCCCCGCACGGAGAGCAGTTTTTA 53.3 69.8 717 [4]
R: GGAGGAGGCGGTGGCGGTGGCATCATA 66.7 73.5

Stn F: CTTTGGTCGTAAAATAAGGCG 44.4 52.4 260 [23]
R: TGCCCAAAGCAGAGAGATTC 50.0 57.9

vexA F: AAACTAAGCGCTCCCGATAC 50.0 57.8 504 [4]
R: CAGTCGCGCAGTGAAATAATG 47.6 58.3

protein A (bapA; 100%), followed by marT (96.77%), 
mgtC (93.55%), and Type IV fimbrial subunit (fimA; 
83.87%) (Figure-1 and Table-3). Likewise, IroB 
(70.97%), enterotoxin (Stn; 67.74%), Salmonella viru-
lence plasmid R (spvR; 61.29%), phoP-activated gene 
(pagN; 54.84%), intracellular multiplication protein F 
(icmF; 54.8%), and SiiD (45.16%) were positive for 
more than 50% of the strains (Figure-1 and Table-3). 
In addition, nlpI (38.71%), Salmonella virulence plas-
mid B (spvB; 35.48%), O-acetyltransferase (oafA; 
25.81%), and Salmonella virulence plasmid C (spvC; 
19.35%) genes were in a lower frequency (Figure-1, 
Table-3). Furthermore, none of the isolates tested pos-
itive for the vexA gene. Overall, 19 strains had more 
than nine virulence genes isolates from all gastro-
enteritis cases in humans, including Paratyphi B and 
Newport Salmonella strains (Table-3).

The distribution of genes according to strain ori-
gin showed that 100% of the crocodiles, gastroenteritis, 
and cloacas presented marT and mgtC genes (Table-3). 
Furthermore, 100% of gastroenteritis in humans and 
cloacas in broiler isolates carried fimA and iroB gene 
(Table-3). Moreover, icmF, siiD, and spvR were pres-
ent in 100% crocodile strains; and the nlpI gene present 
in 100% cloaca strains (Table-3). Neither crocodile nor 
cloaca chicken isolates had spvC (Table-3). In addition, 
no chicken cloaca strains presented icmF, spvB, and Stn 
genes, and oafA was not present in the crocodile strains 
(Table-3).

In addition, the virulence genes presence was 
classified into 26 profiles (P) (Table-3). Crocodile iso-
lates had four genetic profiles (PI–PIV), six patrons in 
cases of human gastroenteritis (PV–PX), four profiles 
(PXI–PXIV) from broiler cloacas, and 12 profiles in 
broiler carcasses (PXV–PXXVI) (Table-3). PVII and 
PXVII were the genetic profiles with more virulence 
genes present (13 genes), followed by PI, PII, and 
PXXI with 12 genes, and PXXII had 2 genes being the 
patron with less virulence genes (Table-3). Most of the 
profiles were found once, except for PI present in the 
isolates of S. Braenderup, S. Infantis, and S. Soerenga 
from crocodiles, the PII found in S. Javiana and S. 
Saintpaul from crocodiles, and the PXIV detected in 
the three strains of S. Paratyphi B from broiler cloacas 
(Table-3).
Discussion

Virulence genes of Salmonella isolates are 
in 23 SPI, chromosomal, and plasmids [24]. The 
data in this study showed that 14 virulence genes 
were detected, but their distribution differed among 
source and not among serotypes, as other studies 
reported [4, 19, 25]. Virulence genes of SPI-1 to 
SPI-5 are common in all Salmonella isolates [24]. 
Accordingly, fimA (SPI-1), iroB (SPI-1), marT (SPI-
3), mgtC (SPI-3), and siiD (SPI-4) genes were found 
in Salmonella strains frequently.

Salmonella pathogenicity islands-1 and SPI-2 
possess many virulence genes associated with 
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extracellular pathogenesis and co-encode Type III 
secretion system [24]. In this regard, the genes 
located in SPI-1 have been described and charac-
terized in S. Typhimurium strains [26]. However, 
S. Typhimurium isolates from broiler carcasses did 
not have fimA and iroB genes of SPI-1 (Table-3). 
Other strains did not present these genes, such as S. 
Powel, S. Othmarschen, S. Schwarzengrund, and S. 
Typhimurium (broilers carcasses) (Table-3). fimA 
gene is necessary for the aggregation of Type I fim-
briae; in turn, the symbioses are essential for the 
colonization and biofilm formation of Salmonella 
spp. [27, 28]. Furthermore, the iroB gene encodes 
the glycosyltransferase that glycosylates enterobac-
tin, preventing the host antimicrobial protein from 
sequestering the iroBCDEN siderophore [29–31].

Salmonella pathogenicity islands-2, SPI-3, and 
SPI-6-8 contain genes that allow Salmonella isolates 
to resist acidic environments, replicate intracellularly, 
and escape the host’s immune system [24]. According 
to the roles played by SPI-2 effector genes, the pres-
ence of oafA gene in humans with gastroenteritis 
and broiler cloacas could be due to the use of the 
acetylation reaction in cell infection, leading to the 
increased antimicrobial activity of macrophage and 
cell growth [4, 24, 32, 33].

Regarding SPI-3, marT and mgtC genes were 
present in most strains (Table-3), which agrees with 
previous reports by Yue et al. [4]. marT gene causes 
systemic infection because it plays a significant role 
in metabolism within the phagosome and may act as 
a general pathogenicity regulator by overexpression 
genes encoding main proteins in the fimbriae forma-
tion (e.g., fimA gene), biofilm regulators (e.g., nlpI 
gene), large surface proteins, antigenic surface pro-
teins, and flagellar operons [34, 35]. The marT gene 
absence coincided with the fimA and nlpI genes lack 
in S. Othmarschen strain (Table-3). Besides, the mgtC 
gene is linked with independent flagellar growth 
and motility at low concentrations of Mg+2 [36]. 
According to this, S. Othmarschen and S. Skansen 
of broiler carcasses were not lacked Mg+2 (Table-3). 
Moreover, the mgtC gene encodes the binding pro-
tein MgtC that plays a regulatory role in complex 

mgtCBR and mediates phosphate transport necessary 
for Salmonella spp. pathogenesis [37, 38].

siiD gene of SPI-4 was found in S. Paratyphi B 
isolates from crocodiles and broiler cloacas but was 
absent in the strain from broiler carcasses, as described 
by Yue et al. [4]. Likewise, it has a low occurrence in S. 
Enteritidis and S. Typhimurium strains [4], according 
to gene expression in one of the two S. Typhimurium 
strains and the absence in S. Enteritidis (Table-3). The 
fact that the strains have this gene denotes the union 
of the inner and outer membranes with the putative 
membrane fusion protein, a component of the Type I 
secretion system [39].

Salmonella pathogenicity islands-6 encodes the 
Type 6 secretion system that leads to survival within 
macrophages and successful establishment in the host 
intestine [40, 41]. pagN gene confers competitive 
advantages to the strains because it promotes hemag-
glutination, contributing to the adhesion of the patho-
gen to mammalian cells [42]. Furthermore, the pagN 
gene is related to acidified environments, low Mg+2 
concentrations, or the presence of antimicrobial pep-
tides [43]. In this way, it is possible to suggest that the 
S. Othmarschen and S. Skansen strains were in environ-
ments with a low concentration of Mg+2 because these 
isolates did not have the mgtC gene either (Table-3).

vexA gene is involved in the biosynthesis and 
export of capsule VI to the cell surface [44]. This 
gene was not found in the serotypes from crocodiles, 
human cases of gastroenteritis, and poultry farms 
(Table-3), and other studies reported its absence in S. 
Typhimurium and Salmonella Dublin [24, 45]. On the 
other hand, nlpI gene is linked to biofilm formation and 
acclimation of S. Typhimurium [46, 47], even though 
strain from human gastroenteritis lacked this gene.

bapA gene was present in all serotypes (Table-3), 
since codes for a large-secreted protein required for 
biofilm formation and host colonization [48]. In the 
case of the icmF gene, it encodes for an inner mem-
brane protein of Type 6 system secretion that contrib-
utes to the virulence of Salmonella spp. [24, 49].

On the other hand, the stn gene chromosomal 
operon induces a loss of intestinal fluids, causing 
diarrhea and leading to severe acute gastroenteritis 

Figure-1: Representative amplification of virulence genes from Salmonella enterica isolates. 1. InvA gene amplicon 
(284 bp); 2. bapA gene amplicon (543 bp); 3. fimA gene amplicon (85 bp); 4. icmF gene amplicon (724 bp); 5. IroB gene 
amplicon (606 bp); 6. marT gene amplicon (556 bp); 7. mgtC gene amplicon (500 bp); 8. nlpl gene amplicon (333 bp);  
9. oafA gene amplicon (510 bp); 10. pagN gene amplicon (440 bp); 11. siiD gene amplicon (826 bp); 12. spvC gene 
amplicon (572 bp); 13. spvR gene amplicon (723 bp); 14. ssvB gene amplicon (717 bp); 15. Stn gene amplicon (260 bp); 
16. vexA gene amplicon (504 bp). WM: Weight marker 100 bp (New England, Biolabs, USA). Agarose gel 2%.
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[50]. According to this, the stn gene was present 
in 4/6 serotypes from human gastroenteritis cases 
(Table-3). Furthermore, the Stn gene may affect mem-
brane integrity of Salmonella spp. through ompA 
localization regulation [51].

Salmonella virulence plasmid operon 
(spvRABCD) expression is induced by the host 
cells’ intracellular environment, and operon genes 
are involved in survival and intracellular growth, 
and macrophage killing [24, 52]. The isolates that 
presented three plasmid genes (spvR, spvB, and 
spvC) include S. Budapest S. Enteritidis, S. Newport 
(gastroenteritis in humans), and S. Uganda. spvR 
and spvBC genes are required for the virulence 
phenotype of the spv operon [52]. spvB gene was 
found in S. Braenderup, S. Enteritidis, S. Infantis, 
S. Javiana, S. Paratyphi B, S. Saintpaul, S. Soerenga, 
and S. Uganda, as well as in the S. Newport strains 
of cases of gastroenteritis and carcasses in broiler 
chickens. Nevertheless, Yue et al. [4] reported spvB 
gene in S. Typhimurium.

The presence of the spvC gene may be related to 
evading MAPK signaling, suppressing the inflamma-
tory response, and spreading the bacteria in the late 
stages in specific serotypes [24, 53, 54]. This agrees 
with its presence in two S. Typhimurium isolates from 
different sources (human gastroenteritis and broiler 
carcasses). Similarly, the prevalence of the spvC gene 
is higher in S. Typhimurium and S. Enteritidis [55], 
which is consistent with its finding in both serotypes.
Conclusion

This study reported 14 virulence genes in 
Salmonella spp. isolates from humans with gastro-
enteritis, crocodiles, and broiler cloacas, and broiler 
carcasses. The distribution of virulence genes differed 
among sources. Our results contribute to the character-
ization and monitoring of S. enterica isolates and their 
evolutionary process in the host from two departments 
of Colombia, and it could help in decision-making by 
health and sanitary authorities.
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