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Abstract
Background and Aim: Natural killer T (NKT) cells exhibit the traits of both T and NK cells. Although their roles have 
been well studied in humans and mice, limited knowledge is available regarding their roles in dogs and pigs, which serve 
as models for human immunology. Single-cell RNA sequencing (scRNA-Seq) can elucidate NKT cell functions. However, 
identifying cells in mixed populations, like peripheral blood mononuclear cells (PBMCs) is challenging using this technique. 
This study presented the application of one-dimensional convolutional neural network (1DCNN) for the identification of 
NKT cells within scRNA-seq data derived from PBMCs.

Materials and Methods: We used human scRNA-Seq data to train a 1DCNN model for cross-species identification of 
NKT cells in canine and porcine PBMC datasets. K-means clustering was used to isolate human NKT cells for training 
the 1DCNN model. The trained model predicted NKT cell subpopulations in PBMCs from all species. We performed 
Differential gene expression and Gene Ontology (GO) enrichment analyses to assess shared gene functions across species.

Results: We successfully trained the 1DCNN model on human scRNA-Seq data, achieving 99.3% accuracy, and successfully 
identified NKT cell candidates in human, canine, and porcine PBMC datasets using the model. Across species, these NKT 
cells shared 344 genes with significantly elevated expression (FDR ≤ 0.001). GO term enrichment analyses confirmed the 
association of these genes with the immunoactivity of NKT cells.

Conclusion: This study developed a 1DCNN model for cross-species NKT cell identification and identified conserved 
immune function genes. The approach has broad implications for identifying other cell types in comparative immunology, 
and future studies are needed to validate these findings.

Keywords: 1D convolutional neural network, K-means clustering, natural killer T cell, peripheral blood mononuclear cells, 
single-cell RNA sequencing.

Introduction

Natural killer T (NKT) cells are heterogeneous 
immune cells that have the features of both conven-
tional T and natural killer (NK) cells. NKT cells can 
fine-tune immune responses toward either inflamma-
tion or tolerance through the action of various cyto-
kines, resulting in their potential roles in anti-tumor 
activity, autoimmune disease regulation, and even 
infection [1, 2]. The development and function of 
NKT cells have been intensively studied in mice and 
humans [1]. However, accumulating knowledge from 
studies has shown the importance of NKT cells in sev-
eral mammalian species, including canine and porcine 

species, as well as well-recognized companion and 
livestock animal models for human medicine [3, 4]. 
Despite their well-established significance in human 
immunology, the nature of NKT cells in canine and 
porcine species remains largely enigmatic. Further 
exploration is essential for advancing our understand-
ing of animal immunology and improving veterinary 
medicine.

The identification of NKT cells typically relies 
on the detection of surface molecules such as CD3 
and Killer Cell Lectin-Like Receptor B1 (KLRB1) 
(CD161) via flow cytometry [1–4]. Although this 
method allows for the direct measurement of robust 
NKT cell phenotypes, it offers limited insight into the 
underlying changes in their gene expression. In con-
trast, single-cell RNA sequencing (scRNA-Seq) pro-
vides a comprehensive profile of all genes expressed 
in individual cells, including those encoding sur-
face markers and other functional molecules. This 
approach effectively captures cellular heterogeneity, 
facilitating the identification and study of different 
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NKT cell subpopulations [2, 5, 6]. However, gene 
expression does not consistently correlate with protein 
abundance [7], including that of surface marker genes, 
which necessitates NKT cell sorting prior to scRNA-
Seq analysis [2, 5, 6]. This prerequisite significantly 
restricts the study of NKT cells from mixed immune 
cell environments, such as peripheral blood mononu-
clear cells (PBMCs).

The discrepancy between gene expression and 
expressed protein levels, coupled with the inherently 
noisy and imperfect nature of scRNA-Seq data due 
to the low starting amount of mRNA copies per cell, 
presents significant challenges for cell identification 
in mixed cell population data [8, 9]. Shorter genes 
are more likely to be dropped out during the ampli-
fication step, introducing further bias and resulting 
in inconsistent gene expression patterns within the 
same cell population. This inconsistency complicates 
the identification of cells of interest. In this context, 
rapidly emerging animal research deep-learning mod-
els offer promising solutions [10–12]. Models such 
as 1-Dimensional Convolutional Neural Networks 
(1DCNN) excel at automatically learning relevant 
features directly from the data and identifying patterns 
within sequential data [13]. Consequently, 1DCNNs 
should provide a productive approach for identifying 
NKT cell populations across species by recognizing 
similar expression patterns of universal marker gene 
expressions. Since this model could identify candidate 
NKT cells based on marker gene expression patterns, 
it was possible to use the model for mixed cell popu-
lations like PBMCs.

This study pioneered the application of 
1DCNN modeling to cross-species NKT cell iden-
tification. Using the unique expression patterns of 
selected surface marker genes, we trained the model 
on human NKT cell datasets. The trained model 

was then successfully applied to the canine and por-
cine PBMC datasets, enabling the identification of 
potential peripheral NKT cells across these species. 
This novel approach not only introduced an alter-
native method for identifying canine and porcine 
NKT cell populations but also demonstrated the 
broader applications of deep learning in compara-
tive immunology.
Materials and Methods
Ethical approval

The current study used publicly available sec-
ondary data from the NCBI SRA website (https://
www.ncbi.nlm.nih.gov/sra). This research did not 
involve the use of animals or humans, and no animals 
or individuals were identifiable in this publication.
Study period and location

The study was conducted from December 2023 
to October 2024 at the Department of Veterinary 
Science, Faculty of Veterinary Medicine, Rajamangala 
University of Technology Tawan-OK, Chonburi, 
Thailand.
Sample datasets

This study used scRNA-Seq datasets of unstim-
ulated NKT cells [2] derived from a healthy human 
donor as references for semi-supervised clustering of 
human PBMC datasets [14]. Additionally, we used 
datasets from canine PBMCs of healthy dogs [15] and 
porcine PBMCs [16] to identify potential cross-species 
NKT cell candidates (Table-1). The references for 
each species showed specific protocol variations 
during data preparation.
Experimental design

The experiment comprised four parts: (1) Data 
Preparation, (2) K-means semi-supervised cluster-
ing, (3) 1DCNN modeling, and (4) Cross-Species 

Table-1: Single‑cell RNA‑sequencing datasets.

Cell type Species Dataset Description

NKT cells Human SRR8724694 NKT cells isolated from unstimulated PBMCs
Human SRR8724695 NKT cells isolated from unstimulated PBMCs
Human SRR8724696 NKT cells isolated from unstimulated PBMCs

PBMCs Human SRR24688956 PBMCs isolated from a healthy human
Human SRR24688957 PBMCs isolated from a healthy human
Human SRR24688958 PBMCs isolated from a healthy human
Human SRR24688959 PBMCs isolated from a healthy human
Human SRR24688960 PBMCs isolated from a healthy human
Human SRR24688961 PBMCs isolated from a healthy human
Dog SRR23525329 PBMCs isolated from a healthy dog
Dog SRR23525330 PBMCs isolated from a healthy dog
Dog SRR23525331 PBMCs isolated from a healthy dog
Dog SRR23525333 PBMCs isolated from a healthy dog
Pig ERR5523708 PBMCs isolated from a healthy pig
Pig ERR5523709 PBMCs isolated from a healthy pig
Pig ERR5523711 PBMCs isolated from a healthy pig
Pig ERR5523710 PBMCs isolated from a healthy pig
Pig ERR5523712 PBMCs isolated from a healthy pig
Pig ERR5523713 PBMCs isolated from a healthy pig
Pig ERR5523714 PBMCs isolated from a healthy pig

NKT=Natural killer T, PBMC=Peripheral blood mononuclear cell
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Figure-1: The workflow comprised four parts: (1) Data preparation, (2) K-means semi-supervised clustering, (3) 1DCNN 
modeling, and (4) Cross-species identification of NKT candidates. Each part involved specific analytical processes using 
different data types as in-puts and outputs. The white rectangles indicate the data types used as inputs or acquired as 
outputs of each process. In contrast, gray rectangles represent each analytical process along with the names of the used 
Python/R packages. The Materials and Methods section compre-hensively covers all analytical procedures. 1DCNN=1D 
Convolutional Neural Network, NKT=Natural killer T.

Identification of NKT Candidates (Figure-1). In the 
“Data Preparation” section, we pre-processed all 
scRNA-Seq datasets and transformed them into gene 
expression profiles of each cell type. The “K-means 
Semi-Supervised Clustering” section utilized the 
prepared gene expression profiles of isolated human 
NKT cells to identify candidate human NKT cell 
populations in PBMCs and subsequently used all 
expression profiles to train the 1DCNN model in the 
“1DCNN Modeling” section. The trained model was 

subsequently applied to human, canine, and porcine 
PBMC datasets in the “Cross-Species Identification of 
NKT Candidates” section to identify NKT cell can-
didates across species. These candidates were then 
characterized based on their elevated expression of 
orthologous genes.

Part 1: Data preparation
The preprocessing of raw scRNA-Seq data-

sets followed previously described procedures by 
Sananmuang et al. [17] and Zhou et al. [18]. We used 
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the“Flexbar” program  [19] to remove contaminated 
adapter sequences and discard sequences with a mean 
Phred score below 30. Next, we employed STARsolo 
software  [20] to align the filtered sequences to 
the respective genome sequences for each spe-
cies: GRCh38 for humans, CanFam3.1 for dogs, 
and Sscrofa11. for pigs (http://www.ensembl.org). 
We excluded low-quality cells with a total count of 
≤10,000 and detection of ≤300 genes per cell while 
retaining only those with a mitochondrial read frac-
tion below 25%. Additionally, the included cells were 
required to have at least five counts for at least one 
surface marker gene (Table-2). We used the“scanpy” 
toolkit in Python [21] for these filtering procedures, 
resulting in high-quality pre-processed cell data for 
further analysis.

Part 2: K-means semi-supervised clustering
This section describes the methodology used to 

identify clusters of human NKT cells in PBMCs by 
applying K-means clustering as a semi-supervised 
method in Python, utilizing the “scikit-learn” and 
“yellowbrick” libraries [22]. To address overfitting 
in the subsequently trained model, we included only 
nine surface marker genes (Table-2) in this cluster-
ing process. To compare relative expression levels, 
we performed counts per million normalization and 
Z-score normalization within a sample of surface 
marker genes. With the known NKT cells, the con-
catenated expression data of human NKT cells and 
PBMCs were analyzed by K-means clustering. With 
optimal cluster numbers determined by the Elbow plot 
of the distortion scores, the cell cluster with the largest 
number of NKT cells would be a candidate NKT cell 
dataset for further 1DCNN model training. The other 
cell clusters are the non-NKT cell datasets for train-
ing. We used  “seaborn” library for plotting heatmaps 
of all cell clusters.

Part 3: 1DCNN modeling
A 1DCNN analyzes sequential data. The model 

scans the data to identify patterns or relationships 
between features in the sequence [23]. In the pres-
ent study, the features were the normalized expres-
sion values of target surface marker genes (Table-2). 
A  1DCNN comprises four major components, each 
containing different structural layers [13]:

Convolutional component
This component takes the sequential expression 

values of target surface marker genes as input. The 
proposed method used multiple filters that slid along 
the data to identify specific patterns or motifs. Each 
filter had a certain width (kernel size) to define the 
number of data points it considered at a time. Each 
filter also learned a set of weights and biases to 
emphasize crucial features and downplay irrelevant 
information. Summing the results of these processes, 
the network generates a feature map that captures the 
presence and strength of the features detected by each 
filter in different parts of the data. The proposed com-
ponent uses Conv1D layers with filters and kernels to 
extract features from segments of the sequence data 
by identifying recurring patterns.

Normalization component
This component included BatchNormalization 

layers, which played a crucial role by standardiz-
ing the data across training data batches, leading to 
smoother and more efficient training.

Pooling component
The pooling component reduced the data and 

focused on the most crucial features. The proposed 
method used MaxPooling1D layers to reduce the 
dimensionality of the data by selecting the most sig-
nificant features within a defined window size (pool 
size). This layer acted like a downsampling tool, keep-
ing the maximum value within each window of data 
points, diminishing the data’s dimensionality while 
summarizing the key points.

Fully connected component
Finally, the fully connected layers integrated 

information from all segments to make a final deci-
sion. After flattening the data into a one-dimensional 
vector by the flattening layers, the dense layers inte-
grated the information extracted from all segments 
by the convolutional component and performed the 
classification to determine whether the input cell was 
an NKT cell. The layers used specific activation func-
tions to decide whether a neuron should be activated.

We designed 1DCNN models to classify NKT 
cells from non-NKT cell populations based on surface 
gene marker expression using the TensorFlow, Keras, 
and KerasTuner libraries [24] in Python. Leveraging 
human NK cell and non-NK cell datasets previously 
prepared by the K-means clustering step, we split the 

Table-2: Surface marker genes.

Gene 
name 

Encoded protein Expressed 
cells

CD3D CD3 Delta Subunit of 
the T‑Cell Receptor 
Complex

NK, NKT, and 
T cells

CD3G CD3 Gamma Subunit 
of the T‑Cell Receptor 
Complex

NK, NKT, and 
T cells

CD3E CD3 Epsilon Subunit 
of the T‑Cell Receptor 
Complex

NK, NKT, and 
T cells

KLRB1 Killer Cell Lectin‑Like 
Receptor B1

NK and NKT 
cells

FCGR3A Fc Gamma Receptor IIIa NK and NKT 
cells

NCAM1 Neural Cell Adhesion 
Molecule 1

NK and NKT 
cells

CD19 CD19 Molecule B cells
SDC1 Syndecan 1 Plasma cells
CD14 CD14 Molecule Monocytes

NK=Natural killer, NKT=Natural killer T
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data into training and testing datasets with a 20% test 
size using the train_test_split function of the scikit-
learn library. The hyperparameters of the 1DCNN 
model were tuned using the KerasTuner library. The 
designed models were trained on the prepared train-
ing datasets with a validation split of 30% to monitor 
their performance during training. The trained models 
incorporated the early stopping regularization and the 
categorical cross-entropy loss function during model 
compilation with the Adam optimizer as an algorithm 
for parameter adjustment (Learning rate = 0.001). 
With the test datasets, the model performances were 
evaluated and compared using accuracy, precision, 
recall, and F1 scores. The predicted probability values 
for the NKT and all non-NKT cell classes provided 
the final predictions for each cell in the test datasets. 
We selected the best-performing model for cross-spe-
cies NKT cell identification. We calculated accuracy, 
precision, recall, and F1 scores using equations 1, 2, 
and 3, respectively.

	

TP + TNAccuracy =
Total samples � (1)

	

TPPrecision =
TP + FP � (2)

	

TPRecall = 
TP + FN � (3)

	

2 × Precision × RecallF1 Score =
Precision + Recall

� (4)

Where,
TP (True positive): Represented the number of 

cells correctly classified in the classes.
TN (True negative): Represented the number of 

cells correctly not classified in other classes.
FP (False positive): Represented the number of 

cells incorrectly classified in other classes.
FN (False negative): Represented the number of 

cells incorrectly not classified in their classes.

Part 4: Cross-species identification of NKT 
candidates

The optimal 1DCNN model was used to predict 
class probabilities for each cell sample in the canine, 
human, and porcine PBMC data (threshold = 0.95). 
We designated each cell sample to the class with 
the highest predicted probability (NKT cell class or 
other non-NKT cell classes). We created heatmaps 
using the seaborne library to visualize the expression 
patterns of cell marker genes across different cell 
clusters. For the concatenated PBMC data, we con-
ducted differential gene expression analysis between 
NKT and non-NKT cells across all species using the 

modified t-test method of the scanpy toolkit in Python 
(false discovery rate - ≤ 0.001 and Log2Fold-change 
≥2). After identifying genes with above-average 
expression in candidate NKT cells, we employed the 
Matplotlib_venn library in Python to generate a Venn 
diagram, allowing us to visualize the overlap of these 
genes among the species. The genes shared by all 
three species were then subjected to Gene Ontology 
(GO) enrichment analysis using the GSEApy library 
in Python to identify significantly overrepresented 
biological processes, molecular functions, or cellular 
components within this gene set.
Results
Surface marker gene expression patterns in human 
NKT cells

We successfully prepared scRNA-seq data for 
subsequent analyses. However, excluding cells with 
insufficient surface marker gene expression led to 
the removal of a significant number of cells from the 
PBMC datasets. After data preparation, the total num-
ber of cells obtained from humans, canine, and por-
cine PBMCs was 4147, 2230, and 1583, respectively. 
The total number of human NKT cells was 5120 
after preparation. Examination of the isolated human 
NKT cell data revealed a unique surface marker gene 
expression pattern characterized by rather consistent 
KLRB1 expression across the cells despite the vary-
ing expression levels of CD3D, CD3E, and CD3G 
(Figure-2).
Human NKT cell cluster identified via K-means 
clustering

Using the concatenated expression data of human 
NKT cells and PBMCs, the Elbow plot identified 4 
clusters (k = 4) as the optimal number for K-means 
clustering (Figure-3). The first cell cluster containing 
the highest number of known NKT cells (5074 cells) 
was indicated as the candidate NKT cell data for fur-
ther 1DCNN model training. The other cell clusters 
were classified as non-NKT cell datasets (Figure-4).
Optimization of the 1DCNN architecture and 
parameters

Using the expression values of surface marker 
genes of human NKT and non-NKT cell clusters as 

Figure-2: Surface marker gene expression patterns of 
isolated human NKT cells. The heatmap shows the scaled 
expression levels of surface marker genes in the isolated 
human NKT cells. NKT=Natural killer T.
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Figure-3: Elbow plot. The X and Y axes of the plot 
represent the number of clusters (k) and the score metric 
(the distortion score), respectively. As the number of 
clusters increased, the score decreased until k = 5, beyond 
which the reduction in score became insignificant (the 
el-bow point). Since adding more clusters beyond this 
point did not significantly improve the explanation of the 
data’s variance, the optimal number of clusters would be 
the value just be-fore the elbow point, which was k=4 in 
this plot.

input features, we constructed various 1DCNN archi-
tectures using KerasTuner. We explored various model 
architectures and ultimately selected the optimized 
architecture because it consistently outperformed the 
other models in terms of performance metric scores. 
The best-performing model, trained on the dataset, 
achieved an accuracy of 99.3%, with precision, recall, 
and F1 scores of 91.5%, 99.9%, and 95.5%, respec-
tively (Table-3). We illustrate the finalized model 

Table-3: Performance metrics of the optimized 1DCNN 
model.

Metrics Values

Accuracy 0.993
Precision 0.915
Recall 0.999
F1‑score 0.955

1DCNN=1D Convolutional Neural Network

Table-4: Summary of the 1DCNN model architecture.

Model type 1DCNN
Architecture Layer 1 ‑ �Conv1D (32 filters, kernel size 

2): Features are extracted from 
the input data using 32 filters 
of size 2 with the rectified linear 
unit activation function.

Layer 2 ‑ �BatchNormalization: This 
layer is normalized to improve 
training stability.

Layer 3 ‑ �MaxPooling1D (pool size 2): 
The dimensionality of the 
data is reduced by taking the 
maximum value from every 
window of size 2

Layer 4 ‑ �Dropout (0.2): Randomly drop 
20% of the activations during 
training to prevent overfitting.

Layer 5 ‑ �Conv1D (64 filters, kernel 
size 2): This layer extracted 
higher‑level features with 
64 filters similar to the first 
Conv1D layer.

Layer 6: BatchNormalization
Layer 7 ‑ �MaxPooling1D (pool size 

2): Similar to the first 
MaxPooling1D layer.

Layer 8 ‑ �Dropout (0.2): Similar to the 
first Dropout layer.

Layer 9 ‑ �Flatten: Reshapes the data to a 
one‑dimensional vector.

Layer 10 ‑ �Dense (128 units, Rectified 
Linear Unit—ReLU activation): 
The first fully‑connected layer 
with 128 neurons and ReLU 
activation.

Layer 11 ‑ �Dense (4 units, sigmoid 
activation): Output layer with 
4 units and sigmoid activation 
for predicting probabilities 
of belonging to 4 different 
classes (1 NKT cell class and 3 
non‑NKT cell classes)

Model 
compilation

Loss: Categorical cross‑entropy
Optimizer: Adam optimizer with a 
learning rate of 0.001
Metrics (to monitor classification 
performance): Accuracy, Precision, Recall, 
and F1 score

1DCNN=1D Convolutional Neural Network, NKT=Natural 
killer T

structure (Figure-5) and summarize its details in 
Table-4.
NKT cell candidates identified using the 1DCNN 
model across species

Using the best-performing 1DCNN model, we 
predicted the class probabilities of cells in the PBMC 
datasets for all species. By threshold = 0.95, the 

Figure-4: K-means clustering results visualized using 
t-distributed stochastic neighbor em-bedding (t-SNE). The 
figure displays the results of K-means clustering of human 
cells with four clusters (K = 4), which were visualized using 
t-SNE dimensionality reduction. Each point represents a 
cell point colored according to its assigned cluster. 
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Figure-5: Architecture of best performing 1DCNN model. The figure illustrates a 1DCNN architecture based on marker 
gene expression profiles. The input to the network is a matrix of gene expression values for each cell cluster. The CNN 
architecture comprised multiple convo-lutional layers, batch normalization layers, max pooling layers, dropout layers, 
and fully con-nected layers. The output layer predicted the class of each cell, with four possible classes: Class 1 NKT 
cell candidate, Class 2 Non-NKT cell, Class 3 Non-NKT cell, and Class 4 Non-NKT cell. 1DCNN=1D Convolutional Neural 
Network, NKT=Natural killer T.

model identified 360, 160, and 60 NKT cell candi-
dates in humans, canine, and porcine PBMCs. These 
percentages accounted for 8.76%, 10.17%, and 2.77% 
of the cells in the PBMCs, respectively. Notably, we 
observed similar expression patterns of cell marker 
genes among the NKT cell candidates across the three 
species (Class  1 in Figures-6a–c). Differential gene 
expression analysis showed variation in the number 
of genes with high expression (p ≤ 0.001, Log2 fold-
change ≥2) among NKT cell candidates from different 
species. Human and canine NKT cells shared 1237 
genes, whereas human and porcine NKT cells shared 
707 genes. Only 344 genes were common across all 
three species (Figure-7). GO term enrichment analysis 
further indicated that many of these shared genes were 
associated with immune signaling, immune activity, 
and cellular components, such as the cell membrane 
and transport vesicles (Figure-8).
Discussion

In the scRNA-Seq analysis of PBMCs, the 
inherent variability in gene expression patterns within 
the same cell population presents a significant chal-
lenge for identifying minor cell populations, such as 
NKT cells. This challenge is even more complex in 
cross-species studies, where cell populations of the 
same type may exhibit distinct characteristics across 
species, leading to different cell subpopulations across 
mammalian species [2–4]. For the first time, this study 
introduced a novel method for cross-species NKT cell 
identification in PBMCs using a 1DCNN model on 
their scRNA-Seq expression data. Using the expres-
sion patterns of selected surface marker genes as fea-
tures, we successfully trained the 1DCNN model using 
isolated human NKT cell and PBMC data, achieving 
high accuracy. When applied to canine and porcine 
PBMC data, the model accurately predicted NKT cell 
subpopulations with similar marker gene expression 
patterns. These subpopulations also shared significant 
expression of specific immune function-related genes 
among human, canine, and porcine species.

This study included expression data from iso-
lated human NKT cells and NKT cells within human 
PBMCs obtained via semi-supervised K-means clus-
tering (Figure-4) to train the 1DCNN model. The 
expression patterns of cell marker genes in human 
NKT cells aligned well with previously reported 
surface protein expression in peripheral NKT cells 
by Liu et al. [25]. These characteristics included 
notably high expression levels of KLRB1 and CD3-
associated genes, specifically CD3D, CD3E, and 
CD3G (Figure-2). Despite the prominence of these 
expression levels, their considerable variability was 
noticeable among human NKT cells (Figure-2). 
This variability underscored the value of training the 
1DCNN to capture such distinctive patterns because 
the model could effectively identify local patterns and 
their dependencies [13, 23]. Our K-means clustering 
analysis revealed four distinct cell clusters within 
human PBMCs, suggesting four biologically relevant 
cell subgroups with unique characteristics (Figure-4). 
These differences suggest that a single category of 
non-NKT cells might not adequately capture the com-
plexity of PBMCs. Instead, a 4-class model would 
likely offer a more nuanced understanding of the 
cellular landscape, leading to more precise biological 
interpretations, especially for subsequent differential 
gene expression analyses. For the subsequent 1DCNN 
training, we utilized the expression data of all four cell 
clusters.

Using the optimized model (Figure-5), we pre-
dicted the class probabilities of each cell sample 
across all species. To ensure reliable identification 
of NKT cell candidates, we applied strict criteria, 
including adequate expression of surface marker 
genes in PBMCs and setting a high prediction thresh-
old of 0.95 for the 1DCNN model. This stringent 
approach likely contributed to the reduced number 
of pre-processed cells and consequently the limited 
number of identified NKT cells across all species. All 
cells classified as Class 1 NKT cell candidates across 
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Figure-6: Visualization of 1DCNN predictions across species. The heatmap depicts the expression of surface marker genes 
in (a) human and (b) canine.

a

b



Veterinary World, EISSN: 2231-0916� 2854

Available at www.veterinaryworld.org/Vol.17/December-2024/14.pdf

the three species exhibited strong similarities in the 
expression of KLRB1 and CD3-associated genes. In 
contrast, cells in Classes 2 and 3 consistently exhib-
ited high expression of CD3-associated genes and 

CD14, indicating T cell and monocyte characteristics. 
Notably, porcine Class 3 samples also exhibited sig-
nificant SDC1 expression, suggesting the contribution 
of plasma cells. Meanwhile, Class 4 cells represented 
a mixed population of B cells and NK cells, charac-
terized by prominent CD19 and FCGR3A expressions 
(Figure-6).

Although direct comparative studies are lacking, 
earlier attempts to characterize human, canine, and 
porcine NKT cells have suggested significant varia-
tions in cell characteristics and subpopulations among 
these species [3, 4, 15, 25]. These variations suggested 
species-specific differences in gene expression, 
although some conserved features still reflect core 
NKT cell characteristics. The differing numbers of 
NKT cell candidates identified by 1DCNN across spe-
cies and the limited overlap in differentially expressed 
genes illustrated in this study further supported these 
notifications (Figure-7). Another contributing factor 
to this outcome was the diversity of cell populations 
within the PBMCs of each species, which could affect 
the mean expression levels of genes. Because this 
study identified NKT cell feature genes based on their 
higher expression relative to mean levels, such varia-
tion could also influence the test’s sensitivity. Future 
scRNA-Seq studies of isolated NKT cells across all 
species are needed to confirm these outcomes.

Figure-7: Venn diagram illustrating the overlap of genes 
expressed above average in humans, dog, and pig NKT 
cells. The genes uniquely expressed in humans, canine, and 
porcine NKT cells were 539, 532, and 534, respectively. The 
genes expressed in both human and canine NKT cells were 
1237. The genes expressed in both human and porcine 
NKT cells were 707. The genes expressed in dog and pig 
NKT cells were 643, and those expressed in all three spe-
cies were 344. NKT=Natural killer T.

Figure-6: (c) porcine PBMCs, as classified by the cross-species 1DCNN model. The NKT cell candidates were consistently 
classified as Class 1 in all species. 1DCNN= 1D Convolutional Neural Network, NKT=Natural killer T, PBMC=Peripheral blood 
mononuclear cell.

c
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Despite the previously described limitations, our 
analysis revealed a striking pattern of gene expres-
sion similarity between human and dog NKT cells 
throughout the large number of shared orthologous 
genes expressed above the mean values (1237 genes 
in Figure-7). This suggested a close evolutionary rela-
tionship or shared functional requirements between 
the two species. While pigs also shared a common 
ancestor with humans, the lesser degree of overlapped 
genes observed (707 genes in Figure-7) in our study 
may indicate distinct evolutionary trajectories or spe-
cialized adaptations in their NKT cell biology. These 
results underscore the importance of comparative 
genomics for understanding the functional conser-
vation and divergence of immune cell subsets across 
species.

The GO term enrichment analysis revealed 
several conserved genes with elevated expression in 
NKT cell functions across the three species. Many 

significant GO terms were directly related to immune 
activity through transmembrane signaling and antigen 
recognition by NKT cells (Figure-8). These mech-
anisms are essential for NKT cells, enabling their 
interaction with their environment and allowing them 
to play pivotal roles in innate and adaptive immu-
nity [1, 26]. Other significant GO terms supported 
these crucial functions, such as antigen recognition, 
inflammation, and cytokine responses (Figure-8). 
Notably, the identification of highly expressed, con-
served genes among NKT cells across species indi-
cated that these genes likely played fundamental roles 
in NKT cell biology and function and were conserved 
throughout evolution.
Conclusion

This study successfully introduced a novel 
approach in veterinary research by applying a 1DCNN 
model to identify cross-species NKT cells in PBMCs 

Figure-8: GO enrichment analysis of genes with above-average expression in humans, canine, and porcine NKT cells. We 
present the top 10 significant terms according to their categories: Biological Processes, Molecular Functions, and Cellular 
Components. GO=Gene ontology, NKT=Natural killer T.
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using scRNA-Seq expression data. By leveraging the 
expression patterns of selected surface marker genes, 
the model achieved high accuracy in identifying NKT 
cell subpopulations in humans, canine, and porcine 
PBMCs. The results suggest that certain NKT cell 
function-related genes are conserved across species, 
highlighting their fundamental roles in NKT cell biol-
ogy and function. This innovative application of deep 
learning to cross-species analysis advanced our under-
standing of NKT cells and provided new avenues for 
future veterinary research. Further studies should 
focus on direct scRNA-Seq comparative analyses of 
isolated NKT cells in humans, canines, and porcines 
to confirm and refine these findings.
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