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Abstract
Background and Aim: The production of lignocellulosic biomass waste in the agricultural sector of Indonesia is quite high 
annually. Utilization of lignocellulosic biomass waste through fermentation technology can be used as feed and biofuel. 
Fermentation technology requires the involvement of micro-organisms such as bacteria (lactic acid bacteria or LAB). LABs 
can be isolated from various sources, such as duck excreta. However, there have not been many reports of LAB from duck 
excreta. The present study aimed to characterize LAB enzymes isolated from duck excreta and obtain LAB enzymes with 
superior fermentation properties.

Materials and Methods: A total of 11 LAB cultures obtained from duck excreta in Yogyakarta, Indonesia, were tested. 
Enzyme characterization of each LAB was performed using the API ZYM kit (BioMérieux, Marcy-I’Etoile, France). The 
bacterial cell suspension was dropped onto the API ZYMTM cupule using a pipette and incubated for 4 h at 37°C. After 
incubation, ZYM A and ZYM B were dripped onto the API ZYM cupule, and color changes were observed for approximately 
10 s under a strong light source.

Results: Esterase activity was moderate for all LABs. The activity of α-chymotrypsin, β-glucuronidase, α-fucosidase, 
and α-mannosidase was not observed in a total of 10 LAB. The phosphohydrolase and amino peptidase enzyme activity 
of seven LABs was strong. Only six LAB samples showed protease activity. The glycosyl hydrolase (GH) activity was 
observed in a total of 8 LAB, while the activity of 2 LAB was strong (Lactococcus lactis subsp. lactis K5 and Lactobacillus 
brevis M4A).

Conclusion: A total of 2 LABs have superior properties. L. lactis subsp. lactis K5 and L. brevis M4A have a high potential 
to be used in fermentation. They have the potential for further research, such as their effectiveness in fermentation, 
lignocellulose hydrolysis, feed additives, molecular characterization to detect specific enzymes, and their specific activities.
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Introduction

The annual production of lignocellulosic bio-
mass waste in Indonesia’s agricultural sector is 
quite high, but its utilization is not optimal. Only 
10%–20% of lignocellulosic biomass waste is burned 
or dumped [1, 2]. Processing lignocellulosic biomass 
waste into several value-added products is a good solu-
tion for agriculture, livestock, industry, and the envi-
ronment. Lignocellulosic biomass waste can be used as 
feed, fertilizer, and biofuel by fermentation technology. 
Fermentation technology requires micro-organisms, 
such as lactic acid bacteria (LAB), yeast, or fungi, to 
degrade complex compounds (polysaccharides) into 
simple compounds (monosaccharides) [3]. LAB is 
a heterogeneous group of bacteria with significant 

fermentation capacities [4] and is generally recog-
nized as safe to use [5]. Gram-positive, microaero-
philic, non-spore-forming, cocci or rod-shaped LABs 
are the characteristics. LABs consist of homofermen-
tative LAB (homo-LAB) and heterofermentative LAB 
(hetero-LAB) [6]. Homo-LAB produces lactic acid 
as the main metabolic product, whereas hetero-LAB 
produces lactic acid and carbon dioxide (CO2), as 
well as acetic acid and ethanol [7]. Homo-LABs are 
widely used in industry due to their high lactic acid 
production. Hetero-LABs are used for biofuel pro-
duction because they produce acetic acid and butanol/
ethanol. LABs are a potential sweetener, producing 
ethanol, synthesis of biodegradable plastic polymers, 
and exopolysaccharides [8]. LAB can be used as a 
bio-preservative, enzyme, medicine, bio-additive [9], 
and green biorefineries [10] and have many beneficial 
properties.

LAB can be found and isolated from 
feces [11–13] and excreta [14–16] from various 
sources [17], and different environments [18]. Micro-
organisms present in the feces reflect groups of 
micro-organisms present in the gastrointestinal tract 
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(GIT) [19]. The previous studies have reported that 
LAB can be obtained from the GIT of duck. LABs 
were isolated from the small intestine [20, 21], cecum, 
and colon of Muscovy ducks [22] or from the crop 
until the cecum of Aceh ducks [23]. Ducks can survive 
in various agroclimatic conditions [24]. Therefore, 
ducks have the ability to digest fiber, and the caecum 
of ducks can absorb 20% of fiber [25]. Fiber increases 
the weight and length of the GIT [26] and modulates 
the gut microbiome [27]. The cecum of ducks is highly 
developed and plays a significant role in microbial 
digestion. Cecum micro-organisms play an important 
role in the physiological processes of growth, metab-
olism [28], and host health maintenance [29]. Micro-
organisms of the caecum have superior properties in 
fiber degradation, and the isolation of bacteria from 
duck excreta is expected to produce bacteria with 
superior properties similar to those found in the cae-
cum. It can be used in lignocellulosic biomass biopro-
cessing technology (particularly fermentation).

Isolation and characterization of LAB from duck 
excreta have not been widely reported, and the nov-
elty of this study was to characterize LAB from duck 
excreta based on enzyme profiles. Many previous 
studies have reported on the isolation and character-
ization of LAB from human feces [30, 31], animal 
feces [32–34], and chicken excreta using general pro-
biotic criteria. Ludfiani et al. [35] tested LAB isolated 
from chicken and duck excreta for sensitivity to anti-
biotics. In this study, enzyme characterization of LAB 
was performed to obtain LAB with superior hydrolase 
activity that can be used in lignocellulosic biomass 
fermentation applications. Enzyme characterization 
was previously carried out on fecal samples from dogs 
suffering from acute non-hemorrhagic diarrhea treated 
with Enterococcus faecium DSM 32820 to determine 
the effectiveness of the treatment and changes in the 
microbial community [36]. We screened LAB from raw 
milk and dairy products to obtain LAB with high α-ga-
lactosidases production [37]. LAB obtained from artis-
anal cheese from Caucasus has the potential to produce 
bioamines (tyramine and putrescine) [38]. LAB from 
various dairy sources was screened for β-galactosidase 
activity for whey acid valorization [39]. According to 
Vieco-Saiz et al. [40], LAB exhibits specific enzy-
matic properties. Hydrolytic enzymes (hydrolases) 
are enzymes that catalyze the cleavage of substrates, 
consisting of glycoside hydrolases (glycosidases), 
esterases, lipases, nucleotidases, peptidases, and phos-
phatases. The potential hydrolase activity of LAB iso-
lated from duck excreta has not been reported. Bacteria 
and actinomycetes isolated from the stump and soil 
of wilted banana plants can produce hydrolases [41]. 
Extremophile bacteria isolated from a hot spring in 
South Sulawesi demonstrated hydrolase activity [42]. 
Yeast isolated from the GIT of Gymnopleurus sturmi 
and ruminant feces showed cellulase production [43].

This study aimed to characterize LAB enzymes 
isolated from duck excreta and obtain LAB with 

superior fermentation properties. Bacteria with supe-
rior properties are expected to optimize the process-
ing of lignocellulose biomass waste as feed, food, and 
biofuel (bioethanol) through fermentation technology.
Materials and Methods
Ethical approval

This study was approved by Research Ethics 
Committee, Faculty of Veterinary Medicine, 
Universitas Gadjah Mada, Indonesia (Ethical clear-
ance number: 0028/EC-FKH/Int./2020).
Study period and location

This study was conducted in the Microbiology 
Laboratory of the Center for Food and Nutrition 
Studies, Universitas Gadjah Mada, Indonesia. LAB 
cultures were obtained from duck excreta at duck 
farms in Bantul, Yogyakarta.
Bacteria

LAB cultures were obtained from Dini Dwi 
Ludfiani and Widya Asmara, the bacteria isolated from 
duck excreta in Yogyakarta, Indonesia. A total of 11 
LABs were tested, of which nine have been identified 
biochemically and molecularly (Lactobacillus brevis 
M4A, Lactococcus raffinolactis H12, Lactobacillus 
brevis H23, Lactobacillus brevis H54, Lactobacillus 
pentosus 3B, Lactococcus lactis subsp. lactis K5, 
Lactobacillus plantarum BJ3, Lactococcus lactis BJ11, 
and Lactobacillus plantarum K3.0).
Enzymatic profile characterization

Enzyme characterization of each LAB was per-
formed using the API ZYM kit according to the man-
ufacturer’s protocol (BioMérieux, Marcy-I’Etoile, 
France). Bacterial cell suspension from culture media 
on deMan, Rogosa, Sharpe (MRS) agar (Merck, 
Darmstadt, Germany) overnight (turbidity McFarland 
tube No. 5) was dropped onto the API ZYM cupule 
using a pipette (65 µL), then the plastic lid was placed 
on the tray and incubated for 4 h at 37°C. The tray 
was not illuminated in bright light. ZYM A (tension 
active agent) and ZYM B (diazonium salt) were then 
dripped onto the API ZYM cupule, and the tray was 
placed under a strong source of light for about 10 s. 
Color changes were observed and compared with the 
API ZYM color scale reference from 0 (no activity) to 
5 (maximum activity) [44]. The enzyme profiles are 
shown in Table-1. All LAB enzyme profile descrip-
tions were based on the color change in the cupule.
Results

The enzyme activity of LAB varied (Table-2). 
The esterase activity of all LAB was moderate. 
All LAB samples did not show α-chymotrypsin, 
β-glucuronidase, α-fucosidase, and α-mannosidase 
activity (except LAB BJ7.0). The phosphatase activity 
(Naphthol-AS-BI-phosphohydrolase) and amino pep-
tidase activity (leucine arylamidase and valine arylami-
dase) of LAB were strong, except that of L. plantarum 
K3.0, L. raffinolactis H12, LAB BJ1, and LAB BJ7 
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showed moderate phosphohydrolase activity and low 
amino peptidase activity. Only six LAB showed pro-
tease activity, but they had low activity. The glycosyl 
hydrolase activity of LAB varied. Glycosyl hydrolase 
activity of L. lactis subsp. lactis K5 and L. brevis M4A 
was strong, whereas that of L. plantarum BJ3, L. lactis 
BJ11, and LAB BJ1 was moderate.
Discussion

Hydrolytic enzyme plays a central role in bio-
chemistry (catalysis) [45]. Bacteria produce a number 
of enzymes that play specific roles. The use of the 

API ZYM in this study helps to quickly characterize 
bacterial strains with beneficial potential. According 
to Muñoz-Quezada et al. [46], the API ZYM sys-
tem enables strains to be characterized according to 
their enzymatic type and level of activity. API ZYM 
is a semi-quantitative micromethod used in system-
atic and rapid studies to evaluate enzyme profile 
[47]. API ZYM is a class of hydrolases consisting of 
phosphatases, esterases, amino peptidases, proteases, 
and glycosyl hydrolases. Hydrolases play a role in 
the cleavage of molecular bonds, such as ester, gly-
cosidic, ether, peptide, and phosphatase bonds [48]. 

Table-1: Enzyme profile of API ZYM kit.

S. No. Enzyme assayed for pH Substrates

1. Control
2. Alkaline phosphatase 8.5 2-naphthyl phosphate
3. Esterase (C4) 6.5 2-naphthyl butyrate
4. Esterase lipase (C8) 7.5 2-naphthyl caprylate
5. Lipase (C14) 7.5 2-naphthyl myristate
6. Leucine arylamidase 7.5 L-leucyl-2-naphthylamide
7. Valine arylamidase 7.5 L-valyl-2-naphthylamide
8. Cystine arylamidase 7.5 L-cystyl-2-naphthylamide
9. Trypsin 8.5 N-benzoyl-DL-arginine-2-naphthylamide
10. α-chymotrypsin 7.5 N-glutaryl-phenylalanine-2-naphthylamide
11. Acid phosphatase 5.4 2-naphthyl phosphate
12. Naphthol-AS-BI-phosphohydrolase 5.4 Naphthol-AS-BI-phosphate
13. α-galactosidase 5.4 6-Br-2-naphthyl-αD-galactopyranoside
14. β-galactosidase 5.4 2-naphthyl-βD- galactopyranoside
15. β-glucuronidase 5.4 Naphthol-AS-BI-βD-glucuronide
16. α-glucosidase 5.4 2-naphthyl-αD-glucopyranoside
17. β-glucosidase 5.4 6-Br-2-naphthyl-βD-glucopyranoside
18. N-acetyl-β-glucosaminidase 5.4 1-naphthyl-N-acetyl-βD-glucosaminide
19. α-mannosidase 5.4 6-Br-2-naphthyl-αD-mannopyranoside
20. α-fucosidase 5.4 2-naphthyl-αL-fucopyranoside

Source: BioMérieux, Marcy-I’Etoile, France

Table-2: Enzyme profile of LAB.

Enzyme profile M4A H23 H54 3B BJ3 K3.0 H12 K5 BJ11 BJ1.0 BJ7.0

Phosphatase
Alkaline phosphatase − − + + + + + + + + +
Acid phosphatase + + + + + + + + + + +
Naphtol-AS-BI-phosphohydrolase + + + + + + + + + + +

Esterase
Esterase (C4) − − + + + + + + + + +
Esterase lipase (C8) + + + + + + + + + + +
Lipase (C14) + + + + + − + + + + +

Amino peptidase
Leucine arylamidase + + + + + + + + + + +
Valine arylamidase + + + + + − + + + + +
Cystine arylamidase + + + + + − − + + + +

Protease
Trypsin + + + + + − − + − − −
α-chymotrypsin − − − − − − − − − − −

Glycosyl hydrolase
α-galactosidase + − − − − − − − − − −
β-galactosidase − + + + + − − + + + −
β-glucuronidase − − − − − − − − − − −
α-glucosidase − + − − + − − + + + −
β-glucosidase + + + + + − − + + + −
N-acetyl-β-glucosaminidase + − − − + − − + + + −
α-mannosidase − − − − − − − − − − +
α-fucosidase − − − − − − − − − − −

LAB=Lactic acid bacteria
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Enzymatic hydrolysis is required in the degrada-
tion of complex compounds such as lignocellulose. 
Hydrolytic enzymes are used for food, feed, biofuel, 
paper, and pulp in up to 75% of all industries [49].

In this study, the seven LABs showed strong cat-
abolic activities (production of amino peptidases and 
phosphohydrolases) and low esterase lipase activity. 
Similar to Rondón et al. [50], the activity of amino 
peptidase, phosphatase, and phosphohydrolase from 
Lactobacillus salivarius is strong. All Lactobacillus 
spp. strains studied by Pisano et al. [51] showed high 
amino peptidase activity (leucine and valine aryl-
amidase). LABs with high peptidase and low ester-
ase/lipase activity may be useful in fermented dairy 
milk (cheese production) for improving the texture 
and reducing bitterness [52]. Amino peptidases are 
exopeptidases that cleave amino acid residues from 
the N-terminus [53]. This enzyme is widely used in 
the food industry for the hydrolysis of organophos-
phate compounds and biopeptide and amino acid 
synthesis [54].

Proteolytic activity plays an important role in 
fermentation through secondary catabolic reactions, 
especially for organoleptic properties, flavor develop-
ment and texture improvement [55, 56]. Proteolytic 
activities of microbes produce different hydroly-
sis products, and lipases produce esters, aldehydes, 
ketones, lactones, and alcohols. These factors con-
tribute to different sensory characteristics [57]. The 
proteolytic system of LAB consists of cell envelope 
proteinase, short peptide and amino acid transport sys-
tems, and a multitude of intracellular peptidases [58].

LAB can efficiently degrade polysaccha-
rides using carbohydrate active enzyme (CAZyme). 
CAZyme acts synergistically to breakdown cell 
wall components (such as cellulose and hemicellu-
lose) [59]. CAZyme plays a role in the biosynthesis, 
modification, binding, and catabolism of carbohy-
drates, which are divided on the basis of their catalytic 
activities [60]. CAZyme plays an important role in the 
synthesis and degradation of polysaccharides and their 
derivatives [61]. Based on the CAZymes database 
(http://www.cazy.org), CAZymes are divided into five 
categories: (1) glycoside hydrolases (GH), (2) glyco-
syl transferases (GT), (3) polysaccharide lyases (PL), 
(4) carbohydrate esterases (CE), and (5) auxiliary 
activities (AA). GH plays a role in the hydrolysis 
and/or rearrangement of glycosidic bonds, GT plays 
a role in the formation of glycosidic bonds, PL plays a 
role in breaking non-hydrolytic glycosidic bonds, CE 
plays a role in the hydrolysis of carbohydrate esters, 
and AA is a redox enzyme that works together with 
CAZymes. According to Madhavan et al. [62], car-
bohydrase enzymes have a fairly high potential for 
development because they are widely used in the 
food, feed, and pharmaceutical industries and are pre-
dicted to continue to increase their use in the industry. 
CAZyme in ruminants degrades lignocellulosic into 
short-chain fatty acids (acetic acid, propionic acid, 

and butyric acid) through different metabolic path-
ways. Acetic acid, butyric acid, and propionic acid 
are produced through the wood–Ljungdahl pathway, 
the acetate CoA-transferase pathway, the butyrate 
kinase pathway, the acrylate pathway, the succinate 
pathway, and the propanediol pathway [63].

Enzymes that play a role in the degradation of 
lignocellulosic are lignases or ligninolytic enzymes 
(such as laccase, manganese peroxidase, lignin perox-
idase, and versatile peroxidase), cellulases or cellulo-
lytic enzymes (such as β-glucosidase, endoglucanase, 
and exoglucanase), and hemicellulases or hemicel-
lulolytic enzymes (such as xylanase, β-glucosidase, 
acetyl esterase, α-galactosidase, endoglucanase, and 
mannanase) [64]. Based on the enzyme information in 
Braunschweig enzyme database, strain Lactobacillus 
spp. and Lactococcus spp. produce lignases, cellulases, 
and hemicellulases (such as lignin peroxidase, cellulase, 
α-glucosidase, β-glucosidase, β-galactosidase on 
L. brevis; cellulase, β-glucosidase, β-galactosidase on 
L. pentosus; laccase, cellulase, α-glucosidase, β-glu-
cosidase, α-galactosidase, β-galactosidase, α-man-
nosidase, and N-acetyl-β-glucosaminidase on L. 
plantarum).

Some LAB in this study showed activity of 
β-galactosidase, α-glucosidase, β-glucosidase, and 
N-acetyl-β-glucosaminidase, and only L. brevis M4A 
showed α-galactosidase activity. The activity of α-ga-
lactosidase, β-galactosidase, α-glucosidase, β-gluco-
sidase, and N-acetyl-β-glucosaminidase was similar 
to that of LAB isolated from silage, milk, and rumen 
in the study by Colombo et al. [52]. Rada [65] reported 
that some of the LABs were both α-galactosidase and 
α-glucosidase positive. Some of Lactobacillus spp. in 
study Pisano et al. [51] showed activity of α-galacto-
sidase, β-galactosidase, α-glucosidase, β-glucosidase, 
and N-acetyl-β-glucosaminidase. L. plantarum, which 
was found in fermented food, also showed the highest 
hydrolase activity, such as β-glucosidase, and it has 
potency as a biotransformation agent for cellulosic 
biomass [66].

α-galactosidase plays an important role in the 
hydrolysis of glycolipids and glycoproteins [67]. 
Moreover, Lactobacillus strains have α-galactosidase 
that hydrolyzes non-digestible carbohydrates into 
digestible carbohydrates during fermentation [68]. 
The β-galactosidase enzyme is generally extracted 
from Lactobacillus [69] and Pediococcus probiotic 
strains and is commonly used in food technology for 
the hydrolysis of lactose [70]. The β-galactosidase or 
lactase plays an important role in the hydrolysis of 
the β-1,4 glycosidic bond between galactose and glu-
cose [71]. β-galactosidase is one of the characteristics 
of probiotics for increasing lactose tolerance [72]. 
β-glucosidase acts to cleave cellobiose into glucose, 
and β-glucosidase belongs to cellulose, which is used 
for the hydrolysis of biomass [73]. β-glucosidase 
releases glucose from cellobiose glycosidic bonds in 
the final step of cellulolysis or during the hydrolysis of 
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lignocellulosic biomass [74–76]. α-glucosidase hydro-
lyzes the terminal non-reducing end of the α-1,4 link-
ages of starch and maltose with glucose release [77].

Four LAB in this study were homo-LAB (L. bre-
vis H23, L. brevis H54, L. lactis BJ11, and LAB BJ7.0) 
and seven LAB were hetero-LAB (L. brevis M4A, L. 
raffinolactis H12, L. pentosus 3B, L. lactis subsp. lac-
tis K5, L. plantarum BJ3, L. plantarum K3.0, and LAB 
BJ1.0). Homo-LAB produces lactate acid through the 
Embden–Meyerhof–Parnas and pentose phosphate/
glycolic pathways, whereas hetero-LAB produces 
lactate acid, CO2, acetic acid, and ethanol through the 
phosphoketolase pathway [78].
Conclusion

A total of 2 LABs had superior properties. L. lac-
tis subsp. lactis K5 and L. brevis M4A have a high 
potential to be used in fermentation. They have the 
potential for further research, such as their effective-
ness in fermentation, lignocellulose hydrolysis, feed 
additives, molecular characterization to detect spe-
cific enzymes, and their specific activities.
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