

RESEARCH ARTICLE

Comprehensive identification of contagious, environmental, and emerging microorganisms associated with bovine mastitis in Northern Minas Gerais, Brazil, using MALDI-TOF mass spectrometry

Eliane Macedo Sobrinho Santos¹ , Cintya Neves de Souza² , Hércules Otacílio Santos¹ , Livia Mara Vitorino da Silva² , Geziella Aurea Aparecida Damasceno Souza² , Leonardo Ferreira Oliveira² , Maria Júlia Ribeiro Magalhães² , Wagner Silva dos Santos³ , Agueda Maria de França Tavares² , Renata Gabriela Chaves Ferreira² , and Anna Christina de Almeida²

1. Campus Araçuaí, Federal Institute of Northern Minas Gerais, Araçuaí, Minas Gerais, Brazil.

2. Institute of Agricultural Sciences, Federal University of Minas Gerais, Montes Claros, Minas Gerais, Brazil.

3. Department of Agricultural and Environmental Engineering, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.

ABSTRACT

Background and Aim: Bovine mastitis remains one of the most economically significant diseases in dairy herds, driven by diverse etiological agents that vary in prevalence across regions and production systems. Rapid and reliable identification of mastitis-causing microorganisms is essential for targeted treatment, improved herd management, and enhanced biosecurity. This study aimed to identify and characterize the microorganisms associated with clinical and subclinical mastitis in dairy cows from northern Minas Gerais (Brazil) using Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), with special emphasis on uncommon and emerging bacterial species of potential public health concern.

Materials and Methods: Milk samples ($n = 321$ isolates) were collected from cows diagnosed with clinical or subclinical mastitis between 2022 and 2024 across 15 farms. Bacteria were cultured on 5% sheep blood agar and identified by MALDI-TOF MS according to Bruker scoring criteria. Gram classification and contagious versus environmental categorization were performed. Descriptive statistics, chi-square analysis ($p < 0.05$), and Bray–Curtis similarity with Unweighted Pair Group Mathematical Average clustering were applied to determine distribution patterns and microbial diversity.

Results: MALDI-TOF MS achieved an identification rate of 88%, predominantly at the species-level (99.38%). Gram-positive bacteria were significantly more frequent than Gram-negative bacteria (78%; $\chi^2 = 168.52$; $p < 0.000001$). Most pathogens were classified as contagious (65%), followed by environmental agents (23%) ($\chi^2 = 64.40$; $p < 0.000001$). The most prevalent organisms were *Staphylococcus aureus* (30.2%), *Staphylococcus chromogenes* (22.1%), and *Sphingomonas epidermidis* (4.9%). A combined frequency of 7.48% represented uncommon microorganisms, including *Burkholderia cepacia*, *Arthrobacter koreensis*, *Ralstonia pickettii*, *Kosakonia radicincitans*, *Rothia terrae*, and *Paenibacillus azoreducens*, some of which may pose emerging risks to bovine health and public health. Cluster analysis revealed two major microbial groups with distinct ecological and pathogenic profiles, highlighting the complexity of mastitis epidemiology in the region.

Conclusion: This study provides an updated and region-specific overview of the mastitis microbiome in northern Minas Gerais, demonstrating the predominance of *S. aureus* and non-*aureus* staphylococci, alongside diverse environmental and rare pathogens. MALDI-TOF MS proved to be a powerful diagnostic tool for rapid species-level identification, supporting more precise mastitis control strategies. The detection of emerging or uncommon microorganisms underscores the need for sustained surveillance, improved biosecurity, and further research, including genomic characterization and antimicrobial resistance monitoring. These findings contribute to advancing dairy herd health, guiding targeted interventions, and informing One Health perspectives.

Keywords: MALDI-TOF MS, bovine mastitis, contagious pathogens, environmental pathogens, emerging microorganisms, microbial etiology; public health.

Corresponding Author: Anna Christina de Almeida

E-mail: aca2006@ica.ufmg.br

Received: 02-06-2025, **Accepted:** 20-11-2025, **Published online:** 31-12-2025

Co-authors: EMSS: eliane.santos@ifnmg.edu.br, CNDS: cintyasouza@ufmg.br, HOS: hercules.santos@ifnmg.edu.br, LMVS: lviavitorino@yahoo.com.br, GAADS: geziella@yahoo.com.br, LFO: leolfo@gmail.com, MIRM: mariajulia25032000@gmail.com, WSS: wagner.s.santos@ufv.br, AMFT: aguedafr2@gmail.com, RGCF: renatagabriela1366@gmail.com

How to cite: Santos S. E. M., de Souza, C. N., Santos, H. O., da Silva, L. M. V., Souza, G. A. A. D., Oliveira, L. F., Magalhães, M. J. R., dos Santos, W. S., Tavares, A. M. de F., Ferreira, R. G. C., and de Almeida, A. C. (2025) Comprehensive identification of contagious, environmental, and emerging microorganisms associated with bovine mastitis in Northern Minas Gerais, Brazil, using MALDI-TOF mass spectrometry, *Veterinary World*, 18(12): 4196–4211.

Copyright: Santos, *et al.* This article is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (<https://creativecommons.org/licenses/by/4.0/>)

INTRODUCTION

Bovine mastitis is one of the most prevalent diseases affecting dairy herds and continues to impose substantial economic losses on Brazilian dairy farming [1]. In Minas Gerais, the leading milk-producing state, the disease receives particular attention due to its recurrent impact on herd productivity and milk quality [2]. Studies conducted across different regions of Brazil report wide variability in subclinical mastitis prevalence, ranging from 16.1% to 81.9%, influenced by local environmental conditions, management practices, and milking hygiene [3–6]. Contagious pathogens such as *Staphylococcus aureus* and *Streptococcus agalactiae* remain among the most frequently detected agents in Minas Gerais, reflecting persistent challenges in milking routines and biosecurity practices [7, 8]. Economically, mastitis contributes to reduced milk yield and quality, increased culling and replacement of cows, and elevated expenditures on treatment and veterinary services [9]. While contagious mastitis involves direct cow-to-cow transmission, environmental mastitis arises when pathogens from bedding, soil, water, mud, or fecal contamination penetrate the mammary gland and induce inflammation [10].

A wide diversity of microorganisms, including bacteria, viruses, and fungi, has been associated with bovine mastitis worldwide [11–13]. Some uncommon microorganisms have also been reported; although rare, they may harbor virulence factors and antimicrobial resistance mechanisms that complicate clinical management [14]. Regardless of the type or frequency of pathogens involved, accurate identification remains essential to guide control strategies and improve treatment outcomes [15]. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an efficient diagnostic tool for rapidly identifying a broad range of microorganisms with high accuracy. International studies demonstrate its effectiveness in detecting mastitis pathogens [16–18]. However, MALDI-TOF MS applications in Brazil remain limited, and the detection of uncommon mastitis-associated organisms requires broader, more systematic investigation.

Despite the recognized importance of bovine mastitis in Brazil and the extensive documentation of classical pathogens such as *Staphylococcus aureus* and *Streptococcus agalactiae* in Minas Gerais [7, 8], there remains a substantial gap in region-specific epidemiological information derived from advanced diagnostic technologies. Most studies rely on conventional microbiological or biochemical methods, which may fail to detect slow-growing, atypical, or emerging microorganisms capable of harboring virulence factors and antimicrobial resistance traits [11–13, 15]. Furthermore, the northern region of Minas Gerais, characterized by semi-arid conditions, distinct management systems, and environmental vulnerabilities, has been poorly represented in previous mastitis surveys, limiting the understanding of its unique microbial ecology. In addition, the presence and frequency of rare, opportunistic, or environmental pathogens remain largely undocumented due to the limited use of tools capable of species-level resolution, such as MALDI-TOF MS. This diagnostic gap restricts accurate assessment of microbial diversity, impedes early recognition of emerging threats, and undermines targeted mastitis control measures. Therefore, a comprehensive and updated characterization of contagious, environmental, and uncommon microorganisms using high-resolution analytical methods is urgently needed for this region.

To address these gaps, this study aimed to identify, classify, and characterize the microorganisms associated with clinical and subclinical bovine mastitis in dairy herds from northern Minas Gerais (Brazil) using MALDI-TOF mass spectrometry. Specifically, the study sought to (i) determine the relative frequency of Gram-positive, Gram-negative, contagious, and environmental pathogens circulating in the region; (ii) detect and document uncommon, opportunistic, and emerging microbial species relevant to bovine health and potential public health risks; and (iii) evaluate microbial diversity patterns using multivariate statistical approaches. By integrating advanced proteomic identification with epidemiological analysis, the study provides a region-specific diagnostic framework that supports more precise mastitis control strategies, enhances biosecurity, and contributes to broader One Health surveillance efforts.

MATERIALS AND METHODS

Ethical approval

All procedures involving animals in this study were performed in strict accordance with national and institutional guidelines for the ethical use of animals in research. Milk samples were collected exclusively from dairy cows on farms in northern Minas Gerais, Brazil, to determine the microbial etiology of clinical and subclinical mastitis. The study protocol, including sampling procedures, clinical examinations, and animal handling, was reviewed and approved by the Ethics Committee on Animal Use of the Federal University of Minas Gerais under protocol No. 90/2018.

Animal handling complied with the Brazilian National Council for the Control of Animal Experimentation regulations and adhered to guidelines established by the Brazilian College of Animal Experimentation. All clinical examinations were performed by trained professionals, minimizing distress and avoiding invasive procedures beyond routine diagnostic evaluations. Milk collection was conducted aseptically and without causing pain or harm to the animals. No animals were subjected to experimental induction of disease, and only naturally occurring cases of mastitis were included.

The study did not involve euthanasia, invasive sampling, or procedures that could compromise animal welfare. Farm owners provided informed consent prior to participation, and data confidentiality was maintained throughout the study. All efforts were made to safeguard animal health and well-being, ensuring full compliance with ethical, biosafety, and animal care standards.

Study period and location

The study was conducted from January 2022 to December 2024 in the northern region of Minas Gerais, a semi-arid zone characterized by recurrent water scarcity due to irregular rainfall patterns [19]. Fifteen dairy farms were visited monthly during the study period as part of a longitudinal surveillance program. Sampling followed a self-generated nonprobabilistic approach aligned with the operational needs of partner farms. Cows were managed under extensive production systems with native pasture, grain silage, and commercial concentrate. Milking routines followed recommended hygienic practices, including pre-dipping and post-dipping procedures.

Animal selection criteria

Animals were included in the study if they exhibited clinical signs of mastitis, such as udder swelling, redness, or clots in milk, or tested positive for subclinical mastitis using the California Mastitis Test (CMT ≥ 2). Cows that were undergoing antibiotic treatment or had recently completed treatment were excluded from sampling.

Clinical evaluation and sample collection

Clinical mastitis was diagnosed using the cup test, whereas subclinical cases were identified through the CMT. A full clinical assessment was conducted, incorporating anamnesis, measurement of vital parameters (temperature, pulse, respiration), udder inspection and palpation, experimental milking, and organoleptic evaluation of milk to confirm mastitis. Aseptic techniques were used to collect milk samples from clinically and subclinically affected quarters. Samples were refrigerated immediately after collection and transported to the laboratory for analysis.

Isolation and phenotypic characterization of bacteria

Milk samples were cultured on 5% (v/v) sheep blood agar using the depletion technique at the Animal Health Laboratory of the Federal University of Minas Gerais. Isolated colonies were examined for morphological characteristics, including pigment, colony size, and hemolysis patterns, and subsequently subjected to Gram staining for preliminary classification.

Proteomic identification using MALDI-TOF mass spectrometry

A total of 321 bacterial isolates were identified at the AQUACEN/REN QUA Laboratory (Veterinary School, UFMG) using MALDI-TOF MS (Bruker Daltonics Microflex™, Germany). Isolates were plated on plate counting agar using the depletion technique and incubated aerobically at 37°C (± 2) for 24–48 h. Following established protocols [20], colonies were transferred to a stainless-steel target plate, overlaid with 1 μ L of 70% formic acid and 1 μ L of α -cyano-4-hydroxycinnamic acid matrix. Instrument calibration was performed using a bacterial test standard (*Escherichia coli* DH5 α , Bruker Daltonics).

Identification scores were interpreted according to the manufacturer's criteria (Table 1). Each isolate was analyzed in duplicate, and identification was confirmed only when replicate scores were consistent. *E. coli* DH5 α served as a positive control, while uninoculated medium was used as a negative control to ensure sterility and validate instrument performance.

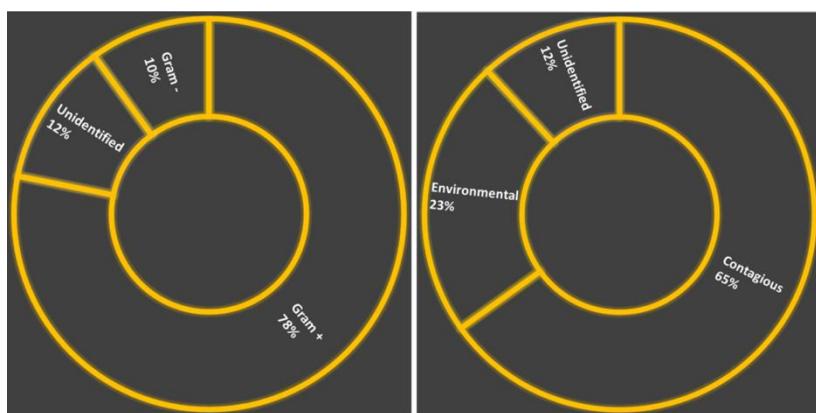
Table 1: Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry real-time identification scoring criteria.

Score	Definition
2.30 a 3.00	highly probable identification of species
2.00 a 2.29	reliable identification of the genus and probable identification of the species
1.70 a 1.99	probable genus identification
0.00 a 1.69	unreliable identification

Statistical analysis

Descriptive and inferential statistics were applied to the microbiological data to determine frequency distributions and identification profiles. Graphs illustrating the occurrence of each microorganism detected by MALDI-TOF MS were generated using Microsoft Excel 2016 (Microsoft Corp., Washington, USA).

The distribution of Gram-positive versus Gram-negative organisms and the proportion of contagious versus environmental agents were evaluated using the chi-square test of adherence [21], with $p < 0.05$ considered statistically significant.


To examine species diversity, Bray–Curtis similarity coefficients were calculated [22], which are robust to compositional ecological data. Dendrogram reliability was assessed using Unweighted Pair Group Mathematical Average clustering with 1,000 bootstrap replicates, performed in Paleontological Statistics software (v2.17c). Descriptive statistics were completed in Microsoft Excel 2016, and multivariate analyses were conducted using PAST v2.17c [23].

RESULTS AND DISCUSSION

Identification performance of MALDI-TOF MS

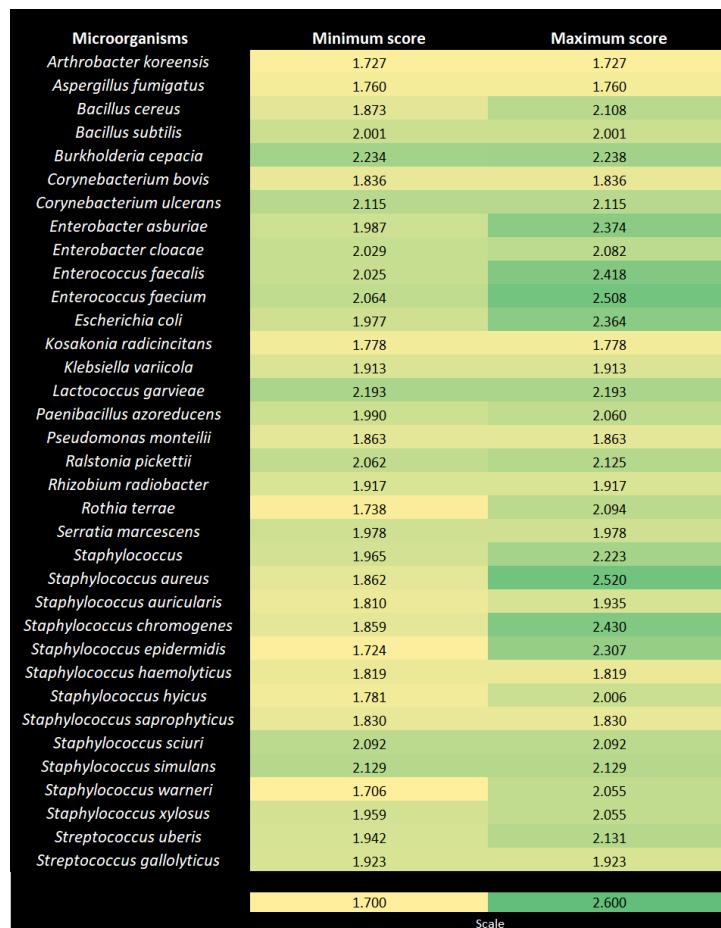
This study presents important data on the etiological frequency of infectious bovine mastitis in northern Minas Gerais. Thirty-eight (11.84%) of the 321 samples analyzed by MALDI-TOF MS were not identified. The MALDI-TOF MS identification rate was 88%, 99.38% at the species-level and 0.62% at the genus level. Nonnemann *et al.* [24] obtained 93.5% and 6.5% identification at the species and genus levels, respectively, using the same technique.

Figure 1 shows that Gram-positive bacteria (78%) predominate in cases of mastitis, with Gram-negative bacteria accounting for 10%. Gram-positive bacteria were significantly more common ($\chi^2 = 168.52$; $p < 0.000001$). The origin of the pathogen also varied, with 65% of isolates classified as contagious and 23% as environmental, as determined by MALDI-TOF MS ($\chi^2 = 64.40$; $p < 0.000001$).

Figure 1: Distribution of Gram-positive and Gram-negative bacteria, as well as contagious and environmental microorganisms, in cases of bovine mastitis on dairy farms in northern Minas Gerais, identified by Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (n = 321).

Epidemiological classification of mastitis pathogens

Characterization of mastitis pathogens is essential for optimizing control and treatment strategies. Although some microorganisms have contagious and environmental characteristics [25, 26], contagious pathogens usually cause subclinical mastitis and spread in the mammary gland among cows. Environmental pathogens cause clinical mastitis by infecting the udder through exposure to feces, mud, soil, and bedding [27].


Although some microorganisms have mixed characteristics, they are classified as either environmental or contagious. However, the habitat and transmission of certain agents remain a topic of debate in the literature. For example, *Klebsiella* and *Streptococcus uberis* are generally environmental, but persistent infections can act as contagious agents [28, 29].

The classification of *Staphylococcus non-aureus* (formerly known as coagulase-negative *Staphylococcus*) is particularly debated [30–32]. Many of these pathogens act as opportunistic and secondary pathogens that colonize the skin and root canal [10]. Species such as *Staphylococcus saprophyticus*, *Staphylococcus sciuri* (now *Mammaliicoccus sciuri*), and *Staphylococcus simulans* are found in the environment. In addition to causing outbreaks, they can spread antibiotic resistance and act as cross-infections between humans and animals, raising

public health concerns [32–34]. The epidemiology of non-aureus *Staphylococcus* in clinical and subclinical mastitis remains poorly understood. Therefore, this study grouped them with *S. aureus*.

MALDI-TOF MS score interpretation and diagnostic reliability

The environmental and contagious microorganisms identified by MALDI-TOF MS are shown in Figure 2. The assigned scores reflect the level of confidence in species and genus identification. All isolates were reliably identified at least at the genus level. Most specimens showed high-confidence identification at the species-level.

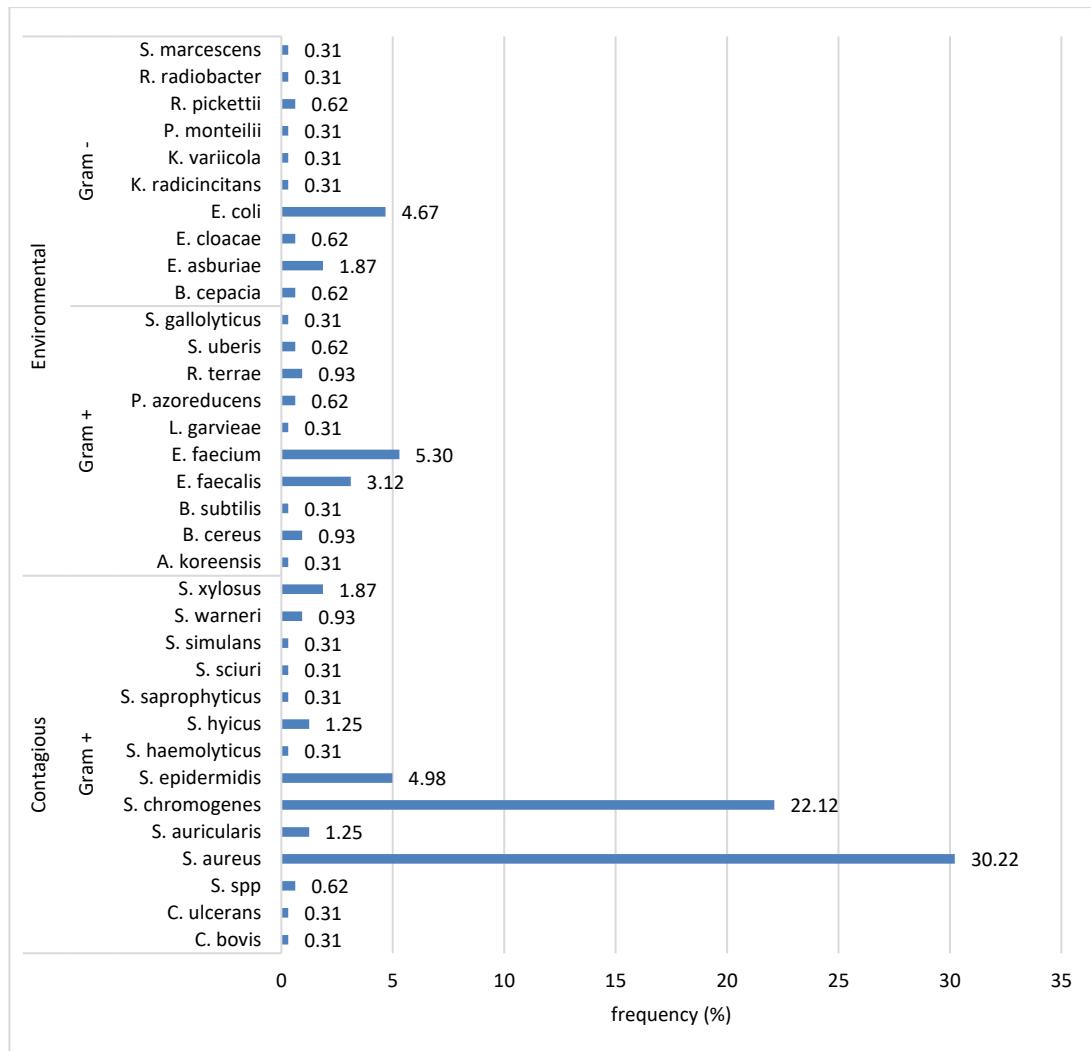


Figure 2: Heat map showing identification scores for environmental and contagious microorganisms identified by Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

Frequency distribution of identified microorganisms

Figure 3 shows the frequency of the microorganisms. According to the literature, contagious pathogens were predominant, associated with agents such as *Streptococcus agalactiae*, *Staphylococcus* spp., *Corynebacterium* spp., and *Mycoplasma* spp., which cause subclinical and persistent infections [35]. In this study, the most common contagious strains were *S. aureus* (30.2%), *Staphylococcus chromogenes* (22.1%), and *Staphylococcus epidermidis* (4.9%). Other *Staphylococcus* species, such as *Staphylococcus haemolyticus*, *Staphylococcus hyicus*, *S. saprophyticus*, *S. sciuri*, *S. simulans*, *Staphylococcus warneri*, *Staphylococcus xylosus*, and *Staphylococcus auricularis*, accounted for 7.1% of the total. The frequency of non-aureus *Staphylococcus* varies across the studies [30, 32, 36–38]. *Corynebacterium* represented 0.62% of the isolated strains. *Enterococcus* spp. (8.4%), *E. coli* (4.7%), and *Enterobacter* spp. (2.5%) were also identified. Other microorganisms, including *Klebsiella variicola*, *Lactococcus garvieae*, *Pseudomonas monteili*, *Rhizobium radiobacter*, *Aspergillus fumigatus*, *Bacillus cereus*, *Bacillus subtilis*, *Streptococcus uberis*, *Streptococcus gallolyticus*, and *Serratia marcescens*, had a combined frequency of 4.09%. Nonneman et al. [24] identified 24 genera and 61 species, including *Staphylococcus*, *Streptococcus*, enterobacteria, and coryneform bacteria.

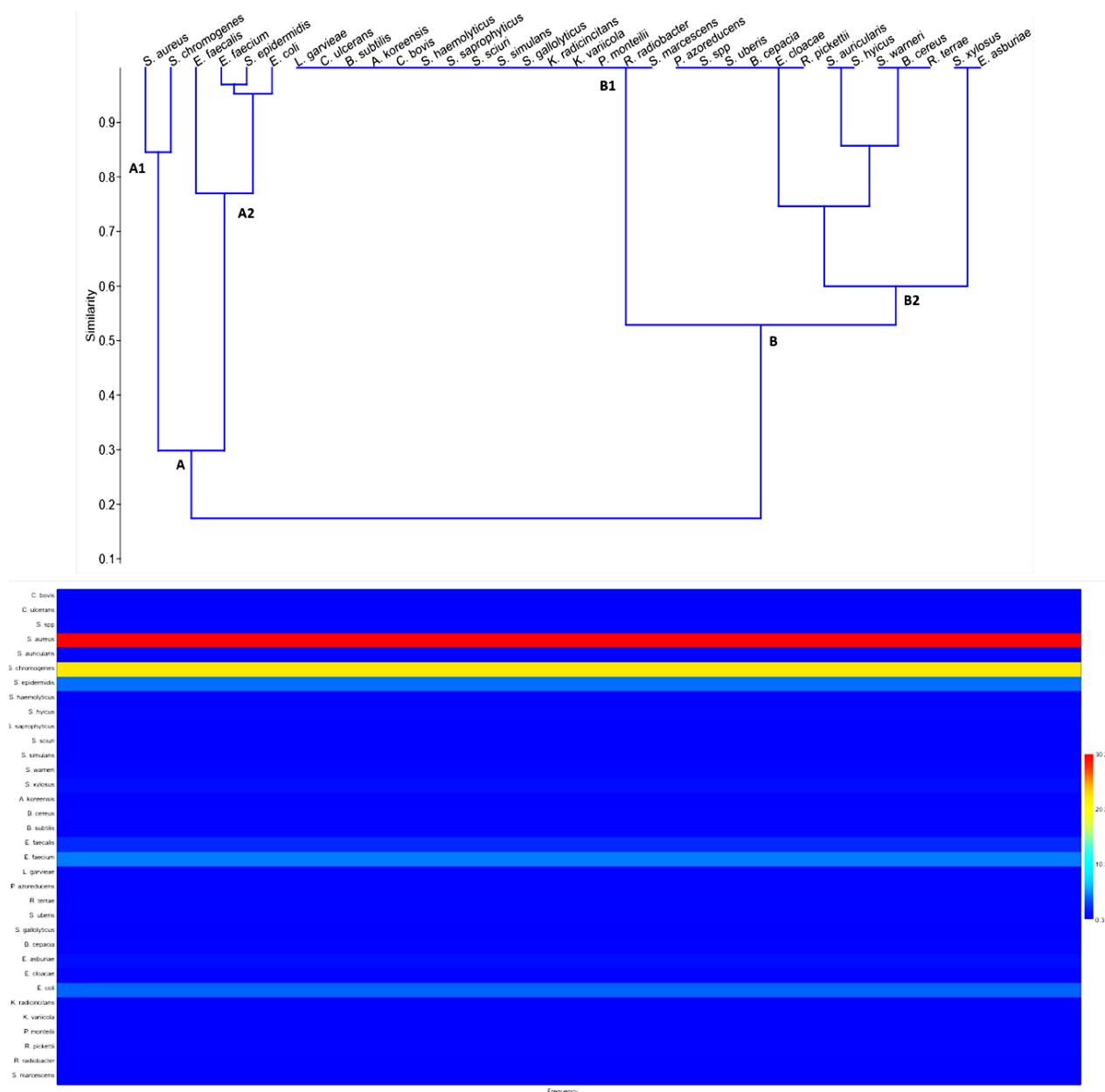
Environmental pathogens such as *E. coli*, *Klebsiella pneumoniae*, *Enterobacter* spp., *Proteus* spp., *Serratia* spp., *Pseudomonas aeruginosa*, *Streptococcus*, fungi, and algae are opportunistic [35, 39]. They cause transient clinical mastitis, which is often associated with severe cases [15, 17, 35].

Figure 3: Distribution of environmental and contagious microorganisms in cases of bovine mastitis on dairy farms in northern Minas Gerais, classified as Gram-positive or Gram-negative and identified by Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (n = 321).

Detection of uncommon and low-frequency pathogens

Uncommon bacteria, including *Arthrobacter koreensis*, *Burkholderia cepacia*, *Kosakonia radicincitans*, *Paenibacillus azoreducens*, *Ralstonia pickettii*, and *Rothia terrae*, were recorded with a frequency of 3.39% (Figure 3). The occurrence of these bacteria warrants discussion, as they contribute to mastitis and may pose a risk to public health. The low-frequency (below 1%) of certain microorganisms in known habitats, such as soil or water, may indicate contamination during sample collection or processing. Such agents can be seen as indicators of hygiene failures, reinforcing the need for training and better protocols, especially during milking.

Microbial grouping based on Bray–Curtis similarity


The dendrogram (Figure 4) revealed two microbial groups (A and B) with frequency levels below 20%. Group A, more closely linked to mastitis, included *S. aureus*, *S. chromogenes*, *Enterococcus faecalis*, *Enterococcus faecium*, *S. epidermidis*, and *E. coli*. This group was divided into two subgroups (A1 and A2), with 30% similarity between them. Microorganisms within each subgroup had more than 75% similarity in frequency.

Group A: Major mastitis-associated cluster

Subgroup A1: Dominant contagious agents

A1 consists of *S. aureus* and *S. chromogenes*, both of which are contagious. Most *S. aureus* strains were identified by MALDI-TOF MS with a score of >2.0 (Figure 2), indicating probable species identification. *S. aureus* is one of the main agents of contagious mastitis and a risk to consumers, as it can produce thermostable enterotoxins that resist milk processing [40]. MALDI-TOF is a reliable tool for identifying subclinical mastitis at the species-level in cows [41–43]. *Staphylococcus chromogenes* has the highest incidence of bovine mastitis in dairy

herds. It is associated with persistent infections, high somatic cell count, biofilm production, and plasma coagulation in some isolates [44].

Figure 4: Bray–Curtis similarity dendrogram prepared using the Unweighted Pair Group Mathematical Average for the frequencies of microorganisms in cases of bovine mastitis on a dairy farm in northern Minas Gerais.

Subgroup A2: Mixed environmental–contagious profile

A2 includes *S. epidermidis* (classified as contagious) along with environmental bacteria, such as *E. faecalis*, *E. faecium*, and *E. coli*. *S. epidermidis* is often detected in milk and negatively impacts the quality and quantity of the product. Its presence in clinical and subclinical mastitis is associated with poor hygiene or hand contamination [45]. It was the third-most-isolated microorganism in this study. Previous research indicates it is the most prevalent non-aureus Staphylococcus and is more commonly associated with subclinical mastitis than with clinical mastitis.

E. coli, *Enterobacter*, and *Enterococcus* bacteria are linked to environmental mastitis etiology. The identification scores for *E. coli* and *Enterococcus* by MALDI-TOF MS were consistently above 2 (Figure 2), confirming the identification accuracy. The scores for *Enterobacter* and *Enterococcus* ranged from 1.987 to 2.374. *E. coli* mastitis can be acute or hyperacute, occurring during lactation and drying off, and can lead to animal death despite control measures [49]. Like *E. coli*, *Enterococcus* and *Enterobacter* are inhabitants of the gastrointestinal tract of warm-blooded animals and are present in soil and water [50]. Other studies have confirmed the efficiency of MALDI-TOF in identifying *E. coli* [24], *Enterococcus* [51], and *Enterobacter* [52, 53].

Group B: Less frequent and highly diverse microorganisms

Group B includes the remaining microorganisms, which are divided into subgroups B1 and B2 (Figure 4). Both contain contagious and environmental species, with identification scores shown in Figure 2. Subgroup B1 (100% similarity) contains the least frequent microorganisms, including contagious species (*Corynebacterium bovis*, *Corynebacterium ulcerans*, *S. haemolyticus*, *S. saprophyticus*, *S. sciuri*, *S. simulans*, and *S. gallolyticus*) and environmental species (*A. koreensis*, *B. subtilis*, *K. radicincitans*, *K. variicola*, *L. garvieae*, *P. monteilii*, *R. radiobacter*, and *S. marcescens*). Many of these species have already been reported as mastitis agents [32–34, 36, 37, 47]. *Corynebacterium bovis* is associated with subclinical mastitis due to intramammary infection [54]. Some non-aureus *Staphylococcus* species (*S. chromogenes*, *S. epidermidis*, *S. saprophyticus*, *S. sciuri*, *S. simulans*, *S. warneri*, and *S. xylosus*) are relevant because they can produce bacteriocins and inhibit *S. aureus* growth [55, 56]. Although some non-aureus *Staphylococcus* species are rare on dairy farms in northern Minas Gerais, the literature highlights their relevance [32–34, 37, 47, 57–76].

Table 2: Key characteristics of non-aureus *Staphylococcus*

Non-aureus <i>Staphylococcus</i>	Literature reports
<i>Staphylococcus haemolyticus</i>	It is considered an opportunistic environmental pathogen [32, 57]. However, it can colonize the skin and the apex of the teat, causing intramammary infection [37]. Freu <i>et al.</i> [32] and Jenkins <i>et al.</i> [58] reported that it was the second most frequently isolated non-aureus <i>Staphylococcus</i> species from mastitis cases.
<i>Staphylococcus hyicus</i>	This microorganism can be associated with different diseases, such as bovine mastitis and human sepsis, which makes it a threat to public health [59].
<i>Staphylococcus saprophyticus</i>	It is an important cause of urinary tract infections in humans and bovine mastitis [33].
<i>Mammaliicoccus sciuri</i>	It is environmental in nature [60]. Therefore, management practices can be a determining factor in infections caused by this bacterium. It is also a microorganism that carries a wide repertoire of antimicrobial resistance genes [34]. Studies have reported an increase in the frequency of this pathogen in bovine mastitis cases [32].
<i>Staphylococcus simulans</i>	It has been frequently observed in bovine mastitis cases [32, 37, 47]. The high frequency of this pathogen in previous studies can be attributed to its specificity for the udder, causing persistent intramammary infection [37, 47, 60–62].
<i>Staphylococcus warneri</i>	It is an opportunistic mastitis pathogen [63, 64] associated with the emergence of multidrug resistance characteristics among coagulase-negative <i>Staphylococcus</i> species, making it a public health concern [65]. The occurrence of this pathogen in cases of mastitis remains controversial [66–68].
<i>Staphylococcus xylosus</i>	It is a food-borne bacterium that is predominant among coagulase-negative <i>staphylococci</i> in cows affected by mastitis in various regions [69, 70]. Their ability to form biofilms can be a complicating factor for treating bovine mastitis in clinical practice [71, 72].
<i>Staphylococcus auricularis</i>	Other authors have also identified <i>S. auricularis</i> using MALDI-TOF analysis [73–76]. Gram-positive, aerobic, and non-sporulated cocci that can be part of the flora of the skin, ear, and mucous membranes.

Detailed notes on rare and emerging pathogens

No reports associated *A. koreensis* with cases of clinical or subclinical mastitis. This bacterium was detected by MALDI-TOF MS in isolates from northern Minas Gerais with a frequency of 0.31% (Figure 3). *A. koreensis* is tolerant to desiccation and is isolated from the rhizosphere of *Nerium oleander*. It promotes plant growth [77]. Its occurrence may be linked to the use of bioinputs. Further studies are required to investigate this fact.

Kosakonia radicincitans (formerly *Enterobacter*) has been isolated from plants, with some strains considered facultative human pathogens [78]. No evidence of mastitis has been found. Reports in the literature are scarce, perhaps because it lacks superior pathogenic or resistance properties compared to *Enterobacter* [79]. Although *K. radicincitans* is known to improve plant performance [80, 81], there are rare reports of human infections. Therefore, it should not be ignored in the context of One Health. Although caution is required in interpreting its occurrence in 0.31% (Figure 3), it may be a potentially significant agent with a MALDI-TOF MS score of 1.778. Further studies on cases of mastitis are needed.

Klebsiella variicola is associated with severe mastitis, which can lead to death or reduced milk production [28]. There are few studies on *L. garvieae* in bovine mastitis. However, it is an emerging zoonotic pathogen with the potential to cause disease [82]. *Bacillus subtilis* has potential as a probiotic and may help prevent mastitis in dairy cows [83].

The occurrence of *S. marcescens* was 0.31% (Figure 3) on farms in northern Minas Gerais. This finding is important because it identifies an emerging bacterium resistant to multiple antimicrobials [84, 85]. Studies in China in 2016 and 2023 showed this pathogen in 1.1% and 1.5% of mastitis samples, respectively [85, 86]. Higher

rates were found in Korea (4.5%) and Finland (35%–39%) [87].

Subgroup B2 comprises 13 microorganisms, including the fungus *A. fumigatus*, which can cause serious infectious diseases in animals, including mastitis, and can penetrate and contaminate the mammary gland [88].

Uncommon microorganisms should not be overlooked. They can carry virulence genes, develop antibiotic resistance, and pose public health risks. *B. cepacia* (formerly *Pseudomonas cepacia*) had a frequency of 0.62%, with a MALDI-TOF MS detection score of >2.2 (Figure 2). This bacterium is found in river sediments and in plant rhizosphere soils [89, 90]. It is considered an adaptable and opportunistic pathogen that poses a life-threatening risk to humans and animals [89, 91]. This bacterium has been detected in cases of ovine mastitis [92] and in cows with severe mastitis (grade 3) kept in a compost barn system [8]. These findings require further investigation of the mechanism of action of *B. cepacia* in bovine mastitis. In any case, the authors recommend caution in the use of bacterial biopesticides and bioremediations based on the *B. cepacia* complex.

The *P. azoreducens* species was detected by MALDI-TOF MS with a frequency of 0.62% and a score of 2 (Figure 2). This pathogen can be isolated from different environments, such as animal waste, plant parts, and milk [93–95] and produces antimicrobial compounds that are of interest to researchers in health and agricultural sciences [96, 97]. Due to its antimicrobial potential, this species has become a target for the food and pharmaceutical industries [96, 98]. These characteristics indicate that it may be an important bacterium in cases of persistent bovine mastitis. Therefore, further studies are needed to elucidate its role in the pathogenesis of infectious bovine mastitis.

Ralstonia pickettii was detected at a frequency of 0.62% in the evaluated mastitis cases. The confidence index in MALDI-TOF MS ranged from 2.06 to 2.12 (Figure 2). Evidence of an association between this bacterium and cases of mastitis is rare. A study that evaluated the differences between the microbiomes of healthy mice and those induced with clinical mastitis found the presence of *R. pickettii* among the differential microorganisms [99].

Among the microorganisms uncommon in bovine mastitis, *R. terrae* (ter'rae. L. gen. n. *terrae*, from the earth, referring to the organism isolated from the soil) [100] was the most frequent bacterium on dairy farms in northern Minas Gerais, with a rate of 0.93% and a MALDI-TOF MS detection confidence score ranging from 1.74 to 2.09 (Figure 2). Although rare, this bacterium has been reported in the scientific literature to be involved in bovine mastitis [101, 102], highlighting its importance from a public health perspective.

Mastitis caused by *B. cereus* often results in severe tissue damage and can lead to the production of abnormal mammary secretions [103]. *Streptococcus uberis* is an environmental pathogen that can cause chronic infection of the mammary gland, leading to both clinical and subclinical mastitis [104].

Studies showing the occurrence of other microorganisms, such as *R. radiobacter*, *P. monteili*, *C. ulcerans*, and *S. gallolyticus*, also detected at the same frequency (0.31%) in cases of bovine mastitis in northern Minas Gerais, are scarce (Figure 3).

Implications for mastitis control and diagnostic advances

The presence of various environmental and contagious microorganisms on farms in northern Minas Gerais highlights the need for effective mastitis management practices. To ensure effective prevention and treatment, control strategies must be specific to the nature of mastitis (contagious or environmental) [25, 40, 44]. Control is more complex for microorganisms with mixed characteristics or uncertain epidemiology.

The identification of microorganisms by MALDI-TOF MS is fundamental to the advancement of health practices in infectious mastitis. The Spectra Veterinary Database is constantly being updated. This may lead to the emergence of new species or to the expansion of the Spectra library. With routine MALDI-TOF MS diagnosis in several countries, knowledge of infections caused by *Staphylococcus* non-aureus and other uncommon microorganisms in bovine mastitis is expected to increase.

CONCLUSION

This study provides a comprehensive characterization of the etiological agents associated with clinical and subclinical bovine mastitis in northern Minas Gerais, revealing important epidemiological insights for the region. Using MALDI-TOF MS, 88% of the 321 isolates were successfully identified, with 99.38% classified at the species-level. The predominance of Gram-positive organisms (78%) and the high occurrence of contagious pathogens, particularly *S. aureus* (30.2%) and *S. chromogenes* (22.1%), underscore the critical role of cow-to-cow transmission in mastitis dynamics. Environmental pathogens such as *E. coli*, *Enterococcus* spp., and *Enterobacter* spp. were also detected, further complicating mastitis etiology. The study further documents a diverse range of uncommon microorganisms, including *A. koreensis*, *B. cepacia*, *K. radicincitans*, *P. azoreducens*, *R. pickettii*, and *R. terrae*,

highlighting both emerging pathogens and potential indicators of hygiene lapses. Bray–Curtis clustering revealed two distinct microbial groups, with *S. aureus*, *S. chromogenes*, and *S. epidermidis* demonstrating strong associations with mastitis cases.

Practical implications of these findings are significant for dairy herd management. The coexistence of contagious, environmental, opportunistic, and emerging pathogens reinforces the need for integrated mastitis control programs that combine rigorous milking hygiene, targeted treatment protocols, environmental sanitation, and routine microbiological monitoring. The identification of rare microorganisms further underscores the importance of improved sampling practices, aseptic milking techniques, and training farm personnel to reduce contamination risks. Additionally, the confirmed reliability of MALDI-TOF MS supports its use as a rapid, cost-effective diagnostic tool for herd-level surveillance and pathogen-specific interventions.

Among the strengths of this study are the longitudinal sampling across multiple farms, the use of a high-resolution proteomic identification method (MALDI-TOF MS), and the detailed ecological analysis of pathogen diversity using Bray–Curtis similarity. The detection of uncommon microorganisms adds novel contributions to the epidemiological understanding of mastitis in semi-arid Brazilian dairy systems.

However, limitations should be acknowledged. Some isolates (12%) could not be identified, likely due to gaps in the MALDI-TOF reference database or sample quality. The presence of low-frequency microorganisms may reflect environmental contamination or incidental occurrence, requiring cautious interpretation. Additionally, the study did not include antimicrobial susceptibility testing, which is essential for guiding therapeutic decisions.

The future scope of research should focus on expanding MALDI-TOF MS spectral libraries for veterinary pathogens, integrating genomic and antimicrobial resistance profiling, and conducting risk-factor analyses to correlate pathogen occurrence with farm management, climate, and hygiene conditions. Studies examining the pathogenicity of rare organisms such as *A. koreensis*, *K. radicincitans*, and *R. terrae* are also needed, given their potential One Health relevance.

In conclusion, the study emphasizes the multifactorial nature of bovine mastitis in northern Minas Gerais and demonstrates the value of MALDI-TOF MS in enhancing diagnostic precision, identifying emerging pathogens, and informing evidence-based control strategies. Strengthening mastitis monitoring programs, improving farm hygiene practices, and investing in advanced diagnostic tools will be essential for reducing disease burden, improving milk quality, and safeguarding animal and public health.

DATA AVAILABILITY

All the generated data are included in the manuscript.

AUTHORS' CONTRIBUTIONS

ACDA, EMSS, and CNDS: Study design and conception. EMSS, CNDS, and HOS: Data analysis and drafted the manuscript. LFO, MJRM, and WSS: Statistical analysis, results interpretation, and literature review and drafted and revised the manuscript. AMFT, RGCF, LMVS, and GAADS: Sample collection and data collection and analysis. All authors have read and approved the final version of the manuscript.

ACKNOWLEDGMENTS

The authors wish to acknowledge the support of the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Funding Code 001, Minas Gerais State Research Foundation (FAPEMIG) - Process APQ-01118-18, Federal Institute of Northern Minas Gerais (IFNMG) - Process SEI 23391.001447/2024-21, National Council for Scientific and Technological Development (CNPq) – Process 102187/2024-0, Dean of Research/UFMG.

COMPETING INTERESTS

The authors declare that they have no competing interests.

COMPETING INTERESTS

The authors declare that they have no competing interests.

PUBLISHER'S NOTE

Veterinary World remains neutral with regard to jurisdictional claims in the published institutional affiliations.

REFERENCES

1. Gonçalves, J.L., Freu, G., Garcia, B.L.N., Barcelos, M.M., Alves, B.G., Freitas Leite, R. and Santos, M.V. (2023) Effect of bovine subclinical mastitis on milk production and economic performance of Brazilian dairy farms. *Braz. J. Vet. Res. Anim. Sci.*, 60: e208514.
2. Gonçalves, M.S., Dorneles, E.M.S., Heinemann, M.B., Brito, M.A.V.P.E. and Guimarães, A.D.S. (2022) Genetic diversity and antimicrobial susceptibility of *Staphylococcus aureus* isolated from bovine mastitis in Minas Gerais, Brazil. *Cienc. Rural*, 53(3): e20210643.
3. Oliveira, S.S., Almeida Brainer, M.M., Machado, A.S., Neto, R.F. and Paiva, S.C. (2024) Ocorrência de mastite clínica e subclínica no rebanho leiteiro do Instituto Federal Goiano Campus Ceres. *Cienc. Anim.*, 34(4): 39–49.
4. Gentil, A., Mesquita, A., Martins, F., Tomba, G., Nascimento, T. and Guedes, E. (2025) Estudo epidemiológico da mastite subclínica em uma propriedade rural. *Rev. Agroveter. Sul Minas*, 7(1): 187–203.
5. Mello, P.L., Agostinis, R.O., Barzon, E.M., Colombo, R.B., Silva, A.V. and Almeida Martins, L. (2012) Prevalência da mastite subclínica e associação dos agentes etiológicos com a contagem de células somáticas de vacas leiteiras da região sudoeste do Paraná. *Vet. Zootec.*, 19(4): 513–521.
6. Martins, R.P., Silva, J.A.G., Nakazato, L., Dutra, V. and Almeida Filho, E.S. (2010) Prevalência e etiologia infecciosa da mastite bovina na microrregião de Cuiabá-MT. *Cienc. Anim. Bras.*, 11(1): 181–187.
7. Mesquita, A.A., Rocha, C.M., Bruhn, F.R., Custódio, D.A., Braz, M.S., Pinto, S.M. and Costa, G.M. (2019) *Staphylococcus aureus* and *Streptococcus agalactiae*: prevalence, resistance to antimicrobials, and their relationship with the milk quality of dairy cattle herds in Minas Gerais state, Brazil. *Pesq. Vet. Bras.*, 39: 308–316.
8. Cardoso, B.N., Santos, E.M.S., Santos, F.G., Souza, C.N., Neto, O.D.S.P., Colen, F. and Almeida, A.C. (2025) Investigation of factors associated with bovine mastitis in a compost barn system and identification of microorganisms involved using MALDI-TOF mass spectrometry. *Rev. Gest. Soc. Ambient.*, 19(1): 1–25.
9. Gonçalves, J.L., Kamphuis, C., Martins, C.M.M.R., Barreiro, J.R., Tomazi, T., Gameiro, A.H., Hogeveen, H. and Santos, M.V. (2018). Bovine subclinical mastitis reduces milk yield and economic return. *Livest Sci.*, 210: 25–32.
10. Santos, M.V. and Fonseca, L.F.L. (2019). Controle de mastite e qualidade do leite: Desafios e soluções. Pirassununga/SP: Edição dos autores.
11. Siddiqui, M.F.M.F., Sakhare, M.P. and Shaikh, S.R. (2025) Advancements in diagnostic and therapeutic strategies for management of bovine mastitis. *Res. Perspect. Biol. Sci.*, 2: 75–91.
12. Rudenko, P., Sachivkina, N., Vatnikov, Y., Shabunin, S., Engashev, S., Kontsevaya, S., Karamyan, A., Bokov, D., Kuznetsova, O. and Vasilieva, E. (2021). Role of microorganisms isolated from cows with mastitis in Moscow region in biofilm formation. *Vet. World*, 14(1): 40–48.
13. Zigo, F., Vasil', M., Ondrašovičová, S., Výrostková, J., Bujok, J. and Pecka-Kielb, E. (2021). Maintaining optimal mammary gland health and prevention of mastitis. *Front. Vet. Sci.*, 8: 1–17.
14. Vissio, C., Mella A, Amestica, L. and Pol, M. (2020). Noninferiority study evaluating the efficacy of a teat disinfectant containing copper and zinc for prevention of naturally occurring intramammary infections in an automatic milking system. *J. Dairy Sci.*, 103(2): 1776–1784.
15. de Jong, E., McCubbin, K.D., Speksnijder, D., Dufour, S., Middleton, J.R., Ruegg, P.L., Lam, T.J.G.M., Kelton, D.F., McDougall, S., Godden, S.M., Iago, A., Rajala-Schultz, P.J., Orsel, K., Vliegher, S., KrömDairy Bus. Holst. World.ker, V., Nobrega, D.B., Kastelic, J.P. and Barkema, H.W. (2023) Invited review: Selective treatment of clinical mastitis in dairy cattle. *J. Dairy Sci.*, 106(6): 3761–3778.
16. Cameron, M., Saab, M., Heider, L., McClure, J.T., Rodriguez-Lecompte, J.C. and Sanchez, J. (2016). Antimicrobial Susceptibility Patterns of Environmental Streptococci Recovered from Bovine Milk Samples in the Maritime Provinces of Canada. *Front. Vet. Sci.*, 3(79): 1–14.
17. Smith, J.S., Moroni, P. and Nydam, D. (2016). Lactococcus: an emerging mastitis pathogen. *Dairy Bus. Holst. World*, 36–38.
18. Ke, D., Picard, F.J., Martineau, F., Menard, C., Roy, P.H., Ouellette, M. and Bergeron, M.G. (1999). Development of a PCR Assay for Rapid Detection of Enterococci. *J. Clin. Microbiol.*, 37(11): 3497–3503.

19. Neres, D.R., Santos, J.P.P., Vicente, M.R., Santos, R.M. and Oliveira, P. (2025) Efeitos das mudanças climáticas na região norte de Minas Gerais. *Rev. Min. Recurs. Hídricos*, 6: e025001.
20. Souza, G.Á.A.D., Almeida, A.C., Xavier, M.A.S., Silva, L.M.V., Sousa, C.N., Sanglard, D.A. and Xavier, A.R.E.O. (2019) Characterization and molecular epidemiology of *Staphylococcus aureus* strains resistant to beta-lactams isolated from the milk of cows diagnosed with subclinical mastitis. *Vet. World*, 12(12): 1931–1939.
21. Arango, H.G. (2005) Bioestatística: Teórica e Computacional. 2^a ed. Rio de Janeiro: Guanabara Koogan, 423 p.
22. Gotelli, N.J. and Chao, A. (2013) Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. *Encycl. Biodivers.*, 5: 195–211.
23. Hammer, Ø., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Paleontological statistic software package for education and data analysis. *Palaeontol. Electron.*, 4(1): 1–9.
24. Nonnemann, B., Lyhs, U., Svennesen, L., Kristensen, K.A., Klaas, I.C. and Pedersen, K. (2019) Bovine mastitis bacteria resolved by MALDI-TOF mass spectrometry. *J. Dairy Sci.*, 102(3): 2515–2524.
25. Meçaj, R., Muça, G., Koleci, X., Sulçe, M., Turmalaj, L., Zalla, P., Anita, K. and Tafaj, M. (2023) Bovine environmental mastitis and their control: an overview. *Int. J. Agric. Biosci.*, 12(4): 216–221.
26. Kabelitz, T., Aubry, E., van Vorst, K., Amon, T. and Fulde, M. (2021) O papel de *Streptococcus* spp. na mastite bovina. *Microorganisms*, 9(7): 1497.
27. Yohannes, G. and Kindahafti, G. (2024) A study on milk quality improvement. *Quantum J. Med. Health Sci.*, 3(2): 15–22.
28. Zadoks, R.N., Griffiths, H.M., Munoz, M.A., Ahlstrom, C., Bennett, G.J., Thomas, E. and Schukken, Y.H. (2011). Sources of *Klebsiella* and *Raoultella* species on dairy farms: be careful where you walk. *J. Dairy Sci.*, 94(2): 1045–1051.
29. Shoaib, M., Aqib, A.I., Naseer, M.A., Bhutta, Z.A., Pu, W., Tanveer, Q., Muzammil, I., Kulyar, M.F.A., Younas, M.S. and Hammad, M. (2021) Etiology of bovine mastitis. IntechOpen.
30. De Buck, J., Ha, V., Naushad, S., Nobrega, D.B., Luby, C., Middleton, J.R. and Barkema, H.W. (2021) Non-*aureus Staphylococci* and bovine udder health: current understanding and knowledge gaps. *Front. Vet. Sci.*, 8: 1–15.
31. Williamson, J., Callaway, T., Rollin, E. and Ryman, V. (2022) Association of milk somatic cell count with bacteriological cure of intramammary infection—a review. *Agriculture*, 12(9): 1437.
32. Freu, G., Gioia, G., Gross, B., Biscarini, F., Virkler, P., Watters, R., Addis, M.F., Franklin-Guild, R.J., Runyan, J., Masroure, A.J., Bronzo, V., Dos Santos, M.V. and Moroni, P. (2024). Frequency of non-*aureus Staphylococci* and *Mammaliicocci* species isolated from quarter clinical mastitis: A 6-year retrospective study. *J. Dairy Sci.*, 107(6): 3813–3823.
33. Youngblom, M.A., Imhoff, M.R., Smyth, L.M., Mohamed, M.A. and Pepperell, C.S. (2023). Portrait of a generalist bacterium: pathoadaptation, metabolic specialization and extreme environments shape diversity of *Staphylococcus saprophyticus*. *bioRxiv: the preprint server for biology*.
34. De Moura, G.S., de Carvalho, E., Sanchez, E.M.R., Sellera, F.P., Marques, M.F., Heinemann, M.B., Vliegher, S., Souza, F.N. and Mota, R.A. (2023). Emergence of livestock-associated *Mammaliicoccus sciuri* ST71 co-harboring *mecA* and *mecC* genes in Brazil. *Vet. Microbiol.* 283(109792): 1–6.
35. Ruegg, P. (2017) Review: Mastitis detection, management, and prevention. *J. Dairy Sci.*, 100: 10381–10397.
36. Ruiz-Romero, R.A. and Vargas-Bello-Pérez, E. (2023) Non-*aureus staphylococci* and mammals as a cause of mastitis in domestic ruminants: current knowledge, advances, biomedical applications, and future perspectives – a systematic review. *Vet. Res. Commun.*, 47(3): 1067–1084.
37. Taponen, S., Myllys, V. and Pyörälä, S. (2022). Somatic cell count in bovine quarter milk samples culture positive for various *Staphylococcus* species. *Acta Vet. Scand.*, 64(32): 1–7.
38. Addis, M.F., Locatelli C, Penati, M., Poli S.F., Monistero V, Zingale, L., Rota, N., Gusmara, C., Piccinini, R., Moroni, P. and Bronzo, V. (2023). Non-*aureus staphylococci* and *mammaliicocci* isolated from bovine milk in Italian dairy farms: A retrospective investigation. *Vet. Res. Commun.*, 48: 547–554.
39. Schukken, Y., Chuff, M., Moroni, P., Gurjar, A., Santisteban, C., Belomestnykh, N. and Zadoks, R.N. (2011) Randomized clinical trial to evaluate the efficacy of 5-day ceftiofur hydrochloride intramammary treatment on nonsevere gram-negative clinical mastitis. *J. Dairy Sci.*, 94: 6203–6215.

40. Nero, L.A. and Moreira, M.A.S. (2015). Mastitis. In: Beloti V (Org.) Leite: Obtenção, Inspeção e Qualidade. Londrina: Editora Planta, chap. 7. 283–306.
41. Lopes, T., Fidelis, C.E., Silva, A.T., Mota, R.A., Rall, V.L., Dos Santos, M.V. and Gonçalves, J.L. (2023). MALDI-TOF bacterial subtyping for rapid detection of biomarkers in *Staphylococcus aureus* from subclinical bovine mastitis. *J. Appl. Microbiol.*, 134(11): 1–8.
42. Braga, P.A., Gonçalves, J.L., Barreiro, J.R., Ferreira, C.R., Tomazi, T., Eberlin, M.N. and Santos, M.V. (2018). Rapid identification of bovine mastitis pathogens by MALDI-TOF Mass Spectrometry. *Pesqui. Veterinária Bras.*, 38(4): 586–594.
43. Khasapane, N.G., Koos, M., Nkhebenyane, S.J., Khumalo, Z.T., Ramatla, T. and Thekisoe, O. (2024). Detection of *Staphylococcus* isolates and their antimicrobial resistance profiles and virulence genes from subclinical mastitis cattle milk using MALDI-TOF MS, PCR and sequencing in Free State Province, South Africa. *Animals*, 14(1): 154–169.
44. Israel, L.F.S., Rabello, R.F., Domingos, S.C.B. and Medeiros, L.S. (2018). Biofilm production by *Staphylococcus chromogenes* isolated from milk samples from bovine herds with mastitis. *Arq. Bras. Med. Vet. Zootec.*, 70(6): 1943–1949.
45. Chagas, L.G.S., Melo, P.C., Barbosa, N.G., Guimarães, E.C. and Brito, D.V.D. (2012). Occurrence of bovine mastitis caused by *Staphylococcus* sp., *Streptococcus* sp. and *Candida* sp. in a rural property in the municipality of Indianópolis - Minas Gerais, Brazil. *Biosci J.*, 28(6): 1007–1014.
46. Fergestad, M.E., Touzain, F., De Vliegher, S., De Visscher, A., Thiry, D., Ngassam Tchamba, C., Mainil, J.G., L'Abee-Lund, T., Blanchard, Y. and Wasteson, Y. (2021) Whole genome sequencing of staphylococci isolated from bovine milk samples. *Front. Microbiol.*, 12: 715–851.
47. Nyman, A. K., Fasth, C. and Waller, K. P. (2018). Intramammary infections with different non-aureus staphylococci in dairy cows. *J. Dairy Sci.*, 101(2): 1403–1418.
48. Waller, K.P., Aspán, A., Nyman, A., Persson, Y. and Andersson, U.G. (2011). CNS species and antimicrobial resistance in clinical and subclinical bovine mastitis. *Vet. Microbiol.*, 152(1-2): 112–116.
49. De Sá, J.P.N., Figueiredo, C.H.A., Neto, O.L.S., Roberto, S.B.A., Gadelha, H.S. and Alencar, M.C.B. (2018). Os principais microorganismos causadores da mastite bovina e suas consequências na cadeia produtiva de leite. *R. Bras. Gest. Ambient.*, 12(1): 8–20.
50. Ribeiro, M.G., Costa, E.O., Leite, D.S., Langoni, H., Júnior, F.G., Vitória, C. and Listoni, F.J.P. (2006). Virulence factors in *Escherichia coli* strains isolated from bovine mastitis. *Arq. Bras. Med. Vet. Zootec.*, 58(5): 724–731.
51. Kim, S.H., Chon, J.W., Jeong, H.W., Song, K.Y., Kim, D.H., Bae, D., Kim, H. and Seo, K.H. (2023). Identification and phylogenetic analysis of *Enterococcus* isolates using MALDI-TOF MS and VITEK 2. *AMB Express*. 13(21): 1–6.
52. Rodrigues, N.M.B., Bronzato, G.F., Santiago, G.S., Botelho, L.A.B., Moreira, B.M., Coelho, I.D.S., Souza, M.M.S. and Coelho, S.M.O. (2017). The Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) identification versus biochemical tests: a study with enterobacteria from a dairy cattle environment. *Braz. J. Microbiol.*, 48(1): 132–138.
53. Jahan, N.A., Godden, S.M., Royster, E., Schoenfuss, T.C., Gebhart, C., Timmerman, J. and Fink, R.C. (2021). Evaluation of the matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) system in the detection of mastitis pathogens from bovine milk samples. *J. Microbiol. Methods*, 182(106168): 1–8.
54. Gonçalves, J.L., Tomazi, T., Barreiro, J.R., de Campos Braga, P.A.C., Ferreira, C.R., Junior, J.P.A., Eberlin, M.N. and dos Santos, M.V. (2014). Identification of *Corynebacterium* spp. isolated from bovine intramammary infections by matrix-assisted laser desorption ionization-time of flight mass spectrometry. *Vet. Microbiol.*, 173(1-2): 147–151.
55. Carson, D.A., Barkema, H.W., Naushad, S. and De Buck, J. (2017). Bacteriocins of non-aureus staphylococci isolated from bovine milk. *Appl. Environ. Microbiol.*, 83(17): 1–21.
56. Chin, D., Goncheva, M.I., Flanagan, R.S., Decker, S.R., Guariglia-Oropeza, V., Ensminger, A.W. and Heinrichs, D.E. (2021). Coagulase-negative staphylococci release a purine analog that inhibits *Staphylococcus aureus* virulence. *Nat Commun.*, 12(1887): 1–12.

57. Hamel, J., Zhang, Y., Wente, N., & Krömker, V. (2020). Non-*S. aureus* staphylococci (NAS) in milk samples: Infection or contamination? *Veterinary microbiology*, 242(108594):1–7.

58. Jenkins SN, Okello E, Rossitto PV, Lehenbauer TW, Champagne J, Penedo MCT, Arruda AG, Godden S, Rapnicki P, Gorden PJ, Timms LL, Aly SS (2019). Molecular epidemiology of coagulase-negative *Staphylococcus* species isolated at different lactation stages from dairy cattle in the United States. *PeerJ*. 7:1–25.

59. Ma, X., Yang, N., Mao, R., Hao, Y., Yan, X., Teng, D. and Wang, J. (2021). The pharmacodynamics study of insect defensin DLP4 against toxigenic *Staphylococcus hyicus* ACCC 61734 *in vitro* and *in vivo*. *Front. Cell. Infect. Microbiol.* 11(638598): 1–12.

60. De Visscher, A., Piepers, S., Haesebrouck, F. and De Vliegher, S. (2016). Intramammary infection with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on udder health. *J. Dairy Sci.*, 99(8): 6457–6469.

61. Piessens, V., Coillie, E.V., Verbist, B., Supré, K., Braem, G., Nuffel, A.V., De Vuyst, L., Heyndrickx, M. and De Vliegher, S. (2011). Distribution of coagulase-negative *Staphylococcus* species from milk and environment of dairy cows differs between herds. *J. Dairy Sci.*, 94(6): 2933–2944.

62. Zeleke, M.M., Kenyon, P.R., Flay, K.J., Aberdein, D., Pain, S.J., Velathanthiri, N. and Ridler, A.L. (2024) Isolation of aerobic bacterial species associated with palpable udder defects in non-dairy ewes. *Animals*, 14(16): 2317.

63. Hosseinzadeh S, Saei HD. (2014) *Staphylococcal* species associated with bovine mastitis in the north west of Iran: emerging of coagulase-negative staphylococci. *Int. J. Vet. Sci. Med.*, 2(1):27–34.

64. Ravaioli, S., De Donno, A., Bottau, G., Campoccia, D., Maso, A., Dolzani, P., Balaji, P., Pegreffi, F., Daglia, M. and Arciola, C.R. (2024) The opportunistic pathogen *Staphylococcus warneri*: virulence and antibiotic resistance, clinical features, association with orthopedic implants and other medical devices, and a glance at industrial applications. *Antibiotics*, 13(10): 972.

65. Hoque. M.N., Moyna. Z., Faisal. G.M. and Das, Z.C. (2023). Whole-Genome Sequence of the Multidrug-Resistant *Staphylococcus warneri* Strain G1M1F, Isolated from Mice with Mastitis. *Microbiol. Resour Announc.*, 12(5): 1–2.

66. Deinhofer, M. and Pernthaner, A. (1995). *Staphylococcus* spp. as mastitis-related pathogens in goat milk. *Vet. Microbiol.*, 43(2-3): 161–166.

67. Koop, G., De Vliegher, S. De Visscher, A., Supré. K., Haesebrouck, F., Nielen, M. and Wervwn, T.V. (2012). Differences between coagulase-negative *Staphylococcus* species in persistence and in effect on somatic cell count and milk yield in dairy goats. *J. Dairy Sci.* 95(9): 5075–5084.

68. Smistad, M., Sølverød, L., Inglingstad, R.A. and Østerås, O. (2021). Distribution of somatic cell count and udder pathogens in Norwegian dairy goats. *J. Dairy Sci.*, 104(11): 11878–11888.

69. Ma, Y., Gao, Y., Xu, Y., Zhou, H., Zhou, K., Li, C. and Xu, B. (2023). Microbiota dynamics and volatile metabolite generation during sausage fermentation. *Food Chem.*, 423(136297): 1–11.

70. Xu, J., Tan, X., Zhang, X., Xia, X. and Sun, H. (2015). The diversities of staphylococcal species, virulence and antibiotic resistance genes in the subclinical mastitis milk from a single Chinese cow herd. *Microb. Pathog.*, 88: 29–38.

71. Bohl, L.P., Isaac, P., Breser, M.L., Orellano., M.S., Correa, S.G., Talamoni, N.G.T. and Porporatto, C. (2021). Interaction between bovine mammary epithelial cells and planktonic or biofilm *Staphylococcus aureus*: the bacterial lifestyle determines its internalization ability and the pathogen recognition. *Microb Pathog.*, 152: 1–8.

72. Li, Y., Chen, W., Ma, J., Huang, G., Li, G., He, Q., Kong, X., Tang, L., Chen, J., Ding, W., Zhang, Z. and Ding, W. (2024) Rhein against *Staphylococcus xylosus* by interfering with respiratory metabolism and inducing oxidative stress. *Curr. Res. Food Sci.*, 8: 100718.

73. Tonamo, A., Komlósi, I., Varga, L., Kačániová, M. and Peles, F. (2021) Identification of ovine-associated *Staphylococci* by MALDI-TOF mass spectrometry. *Acta Aliment.*, 50(2): 210–218.

74. Dourakas, M., Wurm, A., Hess, C., Urbantke, V., Wittek, T. and Baumgartner, M. (2021) Studies on species distribution, pathogenicity and resistance profile of staphylococci from aseptically collected sheep and goat milk samples. *Wien. Tierärztl. Monatsschr.*, 108: 214–225.

75. Wattenburger K, Schmidt R, Placheta L, Middleton JR, Adkins PRF (2020). Evaluation of 4 different teat disinfection methods prior to collection of milk samples for bacterial culture in dairy cattle. *J. Dairy Sci.*, 103(5): 4579–4587.

76. Hariharan, H., Matthew, V., Fountain, J., Snell, A., Doherty, D., King, B., Shemer, E., Oliveira, S. and Sharma, R.N. (2011) Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates. *Comp. Immunol. Microbiol. Infect. Dis.*, 34(2): 129–134.

77. Manzanera, M., Narváez-Reinaldo, J.J., García-Fontana, C., Vílchez, J.I. and González-López, J. (2015). Genome Sequence of *Arthrobacter koreensis* 5J12A, a Plant Growth-Promoting and Desiccation-Tolerant Strain. *Genome Announc.*, 3(3): 1–2.

78. Petrzik, K., Brázdová, S. and Krawczyk, K. (2021) Novel viruses that lyse plant and human strains of *Kosakonia cowanii*. *Viruses*, 13(8): 1418.

79. Bhatti, M.D., Kalia, A., Sahasrabhojane, P., Kim, J., Greenberg, D.E. and Shelburne, S.A. (2017). Identification and whole genome sequencing of the first case of *Kosakonia radicincitans* causing a human bloodstream infection. *Front. Microbiol.*, 8(62): 1–5.

80. Al Methyeb, M., Ruppel, S., Eichler-Löbermann, B. and Vassilev, N. (2023) The combined applications of microbial inoculants and organic fertilizer improve plant growth under unfavorable soil conditions. *Microorganisms*, 11(7): 1721.

81. Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Cornejo, P., Sipahutar, M.K. and Pugazhendhi, A. (2022) Amelioration of aluminum phytotoxicity in *Solanum lycopersicum* by co-inoculation of plant growth promoting *Kosakonia radicincitans* strain CABV2 and *Streptomyces corchorusii* strain CASL5. *Sci. Total Environ.*, 832: 154935.

82. Lin, Y., Han, J., Barkema, H.W., Wang, Y., Gao, J., Kastelic, J.P., Han, B., Qin, S. and Deng, Z. (2023). Comparative genomic analyses of *Lactococcus garvieae* isolated from bovine mastitis in China. *Microbiol Spectr.*, 11(3): 1–17.

83. Urakawa, M., Zhuang, T., Sato, H., Takanashi, S., Yoshimura, K., Endo, Y., Katsura, T., Umino, T., Tanaka, K., Watanabe, H., Kobayashi, H., Takada, N., Kozutsumi, T., Kumagai, H., Asano, T., Sazawa, K., Ashida, N., Zhao, G., Rose, M.T., Kitazawa, H., Shirakawa, H., Watanabe, K., Nuchi, T., Nakamura, T. and Aso, H. (2022). Prevention of mastitis in multiparous dairy cows with a previous history of mastitis by oral feeding with probiotic *Bacillus subtilis*. *Anim. Sci. J.*, 93(1): 1–13.

84. Shirshikova, T.V., Sierra-Bakhshi, C.G., Kamaletdinova, L.K., Matrosova, L.E., Khabipova, N.N., Evtugyn, V.G., Khilyas, I.V., Danilova, I.V., Mardanova, A.M., Sharipova, M.R. and Bogomolnaya, L.M. (2021). The ABC-type efflux pump MacAB is involved in protection of *Serratia marcescens* against aminoglycoside antibiotics, polymyxins, and oxidative stress. *MspHERE*, 6(2): 1–16.

85. Liang, Z., Shen, J., Liu, J., Sun, X., Yang, Y., Lv, Y., Zheng, J., Mou, X., Li, H., Ding, X. and Yang, F. (2023). Prevalence and Characterization of *Serratia marcescens* Isolated from Clinical Bovine Mastitis Cases in Ningxia Hui Autonomous Region of China. *Infect. Drug Resist.*, 16: 2727–2735.

86. Bi, Y., Wang, Y.J., Qin, Y., Guix Vallverdú, R., Maldonado García, J., Sun, W., Li, S. and Cao, Z. (2016). Prevalence of bovine mastitis pathogens in bulk tank milk in China. *PLoS One*, 11(5): 1–13.

87. Friman, M.J., Eklund, M.H., Pitkälä, A.H., Rajala-Schultz, P.J. and Rantala, M.H.J. (2019). Description of two *Serratia marcescens* associated mastitis outbreaks in Finnish dairy farms and a review of literature. *Acta Vet. Scand.*, 61(54): 1–11.

88. Paramasivam, R., Gopal, D.R., Dhandapani, R., Subbarayalu, R., Elangovan, M.P., Prabhu, B., Veerappan, V., Nandheeswaran, A., Paramasivam, S. and Muthupandian, S. (2023) Is AMR in dairy products a threat to human health? An updated review on the origin, prevention, treatment, and economic impacts of subclinical mastitis. *Infect. Drug Resist.*, 16: 155–178.

89. Govan, J.R.W., Hughes, J.E. and Vandamme, P. (1996). *Burkholderia cepacia*: medical, taxonomical and ecological issues. *J. Med. Microbiol.*, 45(6): 395–407.

90. Hrenovic, J., Seruga Music, M., Drmic, M., Pesorda, L. and Bedenic, B. (2022) Characterization of *Burkholderia cepacia* complex from environment influenced by human waste. *Int. J. Environ. Health Res.*, 32(9): 2112–2122.

91. Lauman, P. and Dennis, J.J. (2021) Advances in phage therapy: targeting the *Burkholderia cepacia* complex. *Viruses*, 13(7): 1331.
92. Tubalinal, G.A.S.P., Gregorio, D.C., Undan, J.R. and Mingala, C.N. (2021) Microbiological and molecular detection of *Burkholderia vietnamensis* from nasal swabs of small ruminants and soil in Nueva Ecija, Philippines. *Adv. Anim. Vet. Sci.*, 9(5): 766–772.
93. Velazquez, E., De Miguel, T., Poza, M., Rivas, R., Rosselló-Mora, R. and Villa, T.G. (2004). *Paenibacillus favisporus* sp. nov., a xylanolytic bacterium isolated from cow faeces. *Int. J. Syst. Evol. Microbiol.*, 54(1): 59–64.
94. Berge, O., Guinebretière, M.H., Achouak, W., Normand, P. and Heulin, T. (2002). *Paenibacillus graminis* sp. nov. and *Paenibacillus odorifer* sp. nov., isolated from plant roots, soil and food. *Int. J. System. Evol. Microbiol.*, 52(2): 607–616.
95. Scheldeman, P., Goossens, K., Rodriguez-Diaz, M., Pil, A., Goris, J., Herman, L., de Vos, N.A., Logan N.A. and Heyndrickx, M. (2004). *Paenibacillus lactis* sp. nov., isolated from raw and heat-treated milk. *Int. J. Syst. Evol. Microbiol.*, 54(3): 885–891.
96. Grady, E.N., MacDonald, J., Liu, L., Richman, A. and Yuan, Z.C. (2016). Current knowledge and perspectives of *Paenibacillus*: a review. *Microb. Cell Factories*, 15(203): 1–18.
97. Da Costa, R.A., Andrade, I.E.P., Pinto, O.H.B., de Souza, B.B.P., Fulgêncio, D.L.A., Mendonça, M.L., Kurokawa, A.S., Ortega, D.B., Carvalho, L.S., Kruger, R.H., Ramada, M.H.S. and Barreto, C.C. (2022). A novel family of non-secreted tridecapatin lipopeptide produced by *Paenibacillus elgii*. *Amino Acids*, 54(11): 1477–1489.
98. Li, P., Lin, W., Liu, X., Li, S., Luo, L. and Lin, W.T. (2016). *Paenibacillus aceti* sp. nov., isolated from the traditional solid-state acetic acid fermentation culture of Chinese cereal vinegar. *Int. J. Syst. Evol. Microbiol.*, 66(9): 3426–3431.
99. Hoque, M.N., Rahman, M.S., Islam, T., Sultana, M., Crandall, K.A. and Hossain, M.A. (2022). Induction of mastitis by cow-to-mouse fecal and milk microbiota transplantation causes microbiome dysbiosis and genomic functional perturbation in mice. *Anim microbiome*, 4(43): 1–23.
100. Chou, Y.J., Chou, J.H., Lin, K.Y., Lin, M.C., Wei, Y.H., Arun, A.B., Young, C.C. and Chen, W.M. (2008). *Rothia terrae* sp. nov. isolated from soil in Taiwan. *Int. J. Syst. Evol. Microbiol.*, 58(1): 84–88.
101. Barasuol, B.M., Cargnelutti, J.F., Sangioni, L.A., Pereira, D.I.B., Varela, A.P.M., Mayer, F.Q., Pottker, E.S., Gonçalves, G.F., Cibulski, S. and Botton, S.A. (2022). Characterization of novel temperate phages of *Staphylococcus aureus* isolated from bovine milk. *Arch. Microbiol.*, 204(680): 1–11.
102. Collins, M.D., Hutson, R.A., Baverud, V. and Falsen, E. (2000). Characterization of a *Rothia*-like organism from a mouse: description of *Rothia nasimurium* sp. nov. and reclassification of *Stomatococcus mucilaginosus* as *Rothia mucilaginosa* comb. nov. *Int. J. Syst. Evol. Microbiol.*, 50(3): 1247–1251.
103. Ghazali, M.F., Sukiman, M.Z., Chai, M.H., Mohamad, N.M. and Ariffin, S.Z. (2022). Molecular detection and antibiogram of *Bacillus cereus* isolated from dairy goat with mastitis in Malaysia. *Int. J. Infect. Dis.*, 116: S63–S64.
104. Fessia, A.S. and Odierno, L.M. (2021). Potential factors involved in the early pathogenesis of *Streptococcus uberis* mastitis: a review. *Folia Microbiol.*, 66(4): 509–523.
