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A B S T R A C T

Background and Aim: Antibiotic resistance has spurred interest in alternative feed additives for poultry. Wood vinegar (WV), 
a by-product of plant pyrolysis, contains bioactive compounds with antioxidant and antimicrobial properties. This study 
aimed to evaluate the effects of WV supplementation through drinking water on the cecal microbial population, volatile 
fatty acid (VFA) concentrations, antioxidant enzyme activity, and apparent ileal nutrient digestibility in broiler chickens.

Materials and Methods: A total of 432 1-day-old male Cobb 500 broiler chicks were randomly assigned to six groups 
(n = 72 per group; 6 replicates of 12 birds each). Treatments included a negative control (T1), a positive control with 0.02% 
oxytetracycline (T2), and WV-supplemented groups at dilution ratios of 1:100 (T3), 1:200 (T4), 1:500 (T5), and 1:1000 (T6) in 
drinking water. The experiment lasted 35 days. Plasma antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], 
glutathione peroxidase [GPx], total antioxidant capacity [T-AOC]), VFA profiles, ileal digestibility (crude protein [CP], ash, 
ether extract [EE]), and cecal microbial populations were assessed. Statistical analysis was performed using the General 
Linear Model and Duncan’s multiple range tests (p < 0.05).

Results: WV supplementation enhanced antioxidant status, with significant increases in GPx (T5 and T6) and T-AOC (T6), while 
CAT and SOD remained unaffected. T5 significantly elevated acetic, butyric, and total VFA levels. WV-treated birds (T3–T6) 
showed reduced Salmonella, Escherichia coli, and Enterobacteria counts and increased bifidobacteria and total bacteria 
compared with controls. T4 showed the highest digestibility of CP, while T5 significantly improved ash and EE digestibility.

Conclusion: WV supplementation, particularly at a 1:200 dilution (T4), effectively improved gut microbial balance, enhanced 
antioxidant enzyme activity, and promoted nutrient digestibility. These results support WV as a viable natural alternative to 
antibiotic growth promoters in broiler production.

Keywords: antibiotic alternative, antioxidant enzymes, broiler chickens, cecal microbiota, nutrient digestibility, volatile fatty 
acids, wood vinegar.
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INTRODUCTION

Poultry production is increasingly challenged by 
environmental stressors and disease pressures that 
compromise the physiological function, welfare, and 
productivity of chickens [1, 2]. These challenges often 
trigger metabolic imbalances leading to excessive prod-
uction of free radicals and reactive oxygen species (ROS), 

which damage critical biomolecules, including DNA, 
lipids, proteins, and carbohydrates, ultimately impairing 
cellular function and promoting disease onset [3, 4].

To mitigate these effects, antibiotics have histo-
rically been incorporated into poultry feeds to promote 
growth and prevent disease [5, 6]. However, routine use 
of antibiotics in animal production has raised significant 
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concerns about drug residues in meat products and 
the emergence of antimicrobial-resistant pathogens in 
humans [7, 8]. In response, regulatory bans, especially 
within the European Union, have restricted antibiotic 
use in livestock, prompting an urgent search for safer, 
natural alternatives that support intestinal health and 
productivity.

Recent research by Kareem et al. [9] has high-
lighted the critical role of the gut microbiota in sha-
ping intestinal development, immune modulation, 
microbial resistance, and nutrient utilization in poultry. 
Consequently, bioactive alternatives such as organic 
acids, wood vinegar (WV), plant extracts, probiotics, 
postbiotics, enzymes, acidifiers, and essential oils have 
gained traction as functional feed additives [10–13]. 
Among these, acidifiers have been particularly noted for 
their ability to lower the gastrointestinal pH, enhance 
nutrient absorption, and suppress the growth of patho-
genic microorganisms [14].

WV, also known as pyroligneous acid, is a 
liquid by-product of charcoal production, composed 
predominantly of water (80%–90%) and a complex 
mixture of over 200 organic compounds (10%–20%), 
many of which exhibit potent antifungal, antibacterial, 
and antioxidant activities [15–23]. WV has been 
shown to inhibit pathogens such as Salmonella spp., 
Escherichia coli, Bacillus subtilis, and Staphylococcus 
aureus [24, 25]. In animal studies, dietary WV suppl-
ementation has improved performance, nutrient 
digestibility, gut microbial balance, and meat quality, 
while also mitigating fecal gas emissions [26, 27]. It 
may also support intestinal integrity and oxidative 
balance, particularly in pigs [28]. The potent antib-
acterial and antioxidant activities of WV are well 
documented [20, 29, 30]; despite these promising 
properties, limited data exist on the combined effects 
of WV on plasma antioxidant enzyme activity, cecal mic-
robial community, and digestibility in broiler chickens.

While the antimicrobial and antioxidant prop-
erties of WV have been widely acknowledged acr-
oss various animal models, including pigs and fish, 
its application in poultry nutrition remains relatively 
underexplored. Existing studies have largely focused 
on WV’s effect on growth performance and meat 
quality, with less emphasis on its role in modulating 
intestinal health parameters such as gut microbiota 
composition, volatile fatty acid (VFA) production, and 
nutrient absorption in broiler chickens. In addition, the 
influence of WV on systemic oxidative stress markers, 
especially plasma antioxidant enzyme activity, has 
not been comprehensively studied in broilers. Given 
that gut health and oxidative balance are critical for 
optimal poultry productivity and disease resistance, 
the absence of integrated data addressing these 
biological endpoints presents a significant knowledge 
gap. Moreover, the dose–response relationship of WV 
supplementation in drinking water and its comparative 

efficacy with conventional antibiotic treatments in 
broiler chickens remains insufficiently characterized in 
the literature.

This study was designed to comprehensively 
evaluate the effects of graded levels of WV supple-
mentation in drinking water on key physiological 
and intestinal health parameters in broiler chickens. 
Specifically, the research aimed to (i) assess the impact 
of WV on the composition of cecal microbiota, including 
both beneficial and pathogenic bacterial populations; 
(ii) quantify changes in cecal VFA profiles as indicators 
of microbial fermentation activity; (iii) measure plasma 
antioxidant enzyme activity – namely glutathione pero-
xidase (GPx), superoxide dismutase (SOD), catalase 
(CAT), and total antioxidant capacity (T-AOC) – to dete-
rmine systemic oxidative balance; and (iv) evaluate 
the apparent ileal digestibility (AID) of crude protein 
(CP), ether extract (EE), and ash to determine nutrient 
utilization efficiency. By examining these parameters in 
tandem, the study sought to determine whether WV 
could serve as a natural and effective alternative to 
antibiotics, thereby contributing to the development of 
sustainable poultry production strategies.

MATERIALS AND METHODS

Ethical approval
The study was approved by the Institutional Animal 

Care and Use Committee (IACUC) under reference num-
ber UPM/IACUC/AUP-R05/2022.

Study period and location
The study was conducted from September to 

November 2022 at the Department of Animal Science, 
Faculty of Agriculture, Universiti Putra Malaysia, Ser-
dang, 43400, Selangor, Malaysia

Experimental design and animal management
A total of 432 one-day-old male broiler chicks 

(Cobb 500) were procured from a commercial supplier. 
Upon arrival, the chicks were individually tagged, 
weighed, and randomly allocated to six treatment 
groups using a completely randomized design. Each 
treatment group consisted of six replicates with 12 
chicks per replicate.

The birds were reared in a closed-house system 
with a controlled initial temperature of 33°C ± 1°C, 
which was gradually reduced to approximately 25°C 
± 1°C by day 15. Relative humidity was maintained 
between 60% and 70% throughout the experiment. 
Feed and water were provided ad libitum during the 
entire 35-day trial.

All birds were fed a common basal diet, and the 
treatment differences were applied only to the drinking 
water. The feeding schedule was divided into three 
phases: Starter (days 0–14), grower (days 15–28), and 
finisher (days 29–35). The experimental diets are det-
ailed in Table 1.

The six experimental groups were defined as 
follows:
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•	 T1: Basal diet + plain water (negative control)
•	 T2: Basal diet + 0.02% (w/v) oxytetracycline in 

drinking water (positive control)
•	 T3: Basal diet + 1:100 (v/v) WV in drinking water
•	 T4: Basal diet + 1:200 (v/v) WV
•	 T5: Basal diet + 1:500 (v/v) WV
•	 T6: Basal diet + 1:1000 (v/v) WV

The WV used in this study was derived from 
bamboo and administered through drinking water.
Sample collection and handling

At the end of the 35-day feeding trial, six broiler 
chickens from each treatment group were randomly 
selected and slaughtered in accordance with halal 
guidelines outlined in MIS500:2009 [31]. Blood sam-
ples were collected through venipuncture into ethyle-
nediaminetetraacetic acid-coated vacutainer tubes 
(BD Vacutainer, New Jersey, USA), maintained on ice, 
and centrifuged at 3500 × g for 15 min at 4°C. The 
plasma was then separated and stored at −80°C for sub-
sequent antioxidant enzyme analysis.

Ileal digesta was collected to determine nutrient 
digestibility, while cecal chyme was harvested for VFA 
analysis and microbial quantification [32].
Plasma antioxidant enzyme activity

Plasma activities of SOD, CAT, and GPX were 
assessed using EnzyChrom™ assay kits (Bioassay 

Syst-ems, Hayward, CA, USA) and T-AOC was measured 
using the QuantiChrom™ assay kit (Elabscience, 
E-BC-K219, Houston, TX, USA), following the 
manufacturer’s instru-ctions. Detailed protocols are as 
previously reported by Azizi et al. [33].

T-AOC was measured based on the reduction of 
Cu2+ to Cu⁺, which then forms a colored complex with 
a dye reagent; absorbance was directly proportional to 
antioxidant capacity. GPx activity was quantified based 
on the oxidation of nicotinamide adenine dinucleotide 
phosphate at 340 nm. CAT activity was measured thro-
ugh hydrogen peroxide degradation using a redox dye, 
and SOD activity was evaluated by monitoring the red-
uction of superoxide (O₂⁻) using the WST-1 dye. All abs-
orbance readings were taken using a Multiskan™ Go 
spectrophotometer (Thermo Scientific, MA, USA).

VFA analysis
Cecal VFA concentrations were determined 

following a modified method described in Kareem 
et al. [34]. Approximately 1 g of cecal content was mixed 
with 1 mL of 24% metaphosphoric acid in 1.5 molar 
sulfuric acid and left overnight at 25°C. Samples were 
centrifuged at 10,000× g for 20 min at 4°C, and 0.5 mL 
of the supernatant was transferred into a 1.5-mL glass 
vial containing 0.5 mL of 20 mM 4-methyl-valeric acid 
(internal standard).

VFA separation was conducted using a Quadrex 
007 gas chromatography (GC) system (Quadrex Corp., 
New Haven, CT 06525, USA), with a fused silica capillary 
column (15 m × 0.32 mm inner diameter, 0.25 µm 
film thickness) and a flame ionization detector. Liquid 
nitrogen was used as the carrier gas at a flow rate of 
60 mL/min. The column temperature was set at 200°C, 
and both injector and detector temperatures were 
maintained at 230°C. VFA peaks were identified using 
commercial standards, and the GC was calibrated 
internally for accuracy

Cecal microbial population quantification
Cecal contents were aseptically collected, 

snap-frozen in liquid nitrogen, and stored at −80°C 
until analysis. The cecal microbial populations were 
quantified following the procedure outlined by Humam 
et al. [35]. DNA was extracted using the QIAamp DNA 
Stool Mini Kit (Qiagen, Hilden, Germany) according to 
the manufacturer’s protocol. Approximately 200 mg of 
cecal content was treated with InhibitEX buffer, heated 
at 95°C, vortexed, and centrifuged. The supernatant 
was subjected to enzymatic digestion with Proteinase 
K and buffer AL, followed by ethanol precipitation and 
purification using QIAamp spin columns. The final DNA 
was eluted in 50 μL ATE buffer and stored at −20°C. 
DNA concentration and purity were determined by a 
NanoDrop 2000 spectrophotometer (Thermo Scientific 
Wilmington, DE, USA) before quantitative polymerase 
chain reaction (qPCR).

qPCR was conducted using CAPITAL™ qPCR Green 
Master Mix (Biotechrabbit GmbH, Neuendorfstraße 24a, 

Table 1: Nutrient composition of starter, grower, and 
finisher diets.

Ingredients Starter Grower Finisher

Corn 54.00 58.36 57.20
Soybean meal 36.50 29.80 27.10
Wheat pollard 3.77 7.10 6.27
Palm oil 0.70 0.70 2.83
Lysine 0.27 0.34 0.31
Dicalcium phosphate 18% 3.30 1.90 1.70
Salt 0.35 0.35 0.35
Toxin binder 0.10 0.10 0.10
Mineral mix 0.15 0.15 0.15
Choline chloride 0.10 0.10 0.10
Vitamin mix 0.15 0.15 0.15
 Methionine 0.36 0.35 0.33
Antioxidant 0.10 0.10 0.10
Threonine 0.15 0.16 0.12
Calcium carbonate - 0.30 0.28
L-arginine - 0.04 0.05
Palm kernel cake - - 2.86
Total 100.00 100.00 100.00
Calculated analysis

Metabolizable energy (Kcal/kg) 2903.11 2,950.72 3050.52
Protein (%) 21.08 19.05 18.03
Fat (%) 2.99 3.11 5.37
Fiber (%) 4.20 4.09 4.23
Calcium (%) 1.15 0.81 0.74
Total phosphorus (%) 1.05 0.79 0.80
Available phosphorus (%) 0.60 0.41 0.37

Vitamin premix supplied/diet Kg. Vitamins=(22 g=B2, 90 g=E, 7 g=B1, 
35 Million International Unit (MIU) A, 6 g=K3, 0.070 g=B12, 9 MIU=D3, 
12 g=B6, 120 g=Nicotinic acid, 300 mg=Biotin, 3 g=B9, 35 g=Pantothenic 
acid, 25000 FTU=Phytase). Per kg of diet, mineral mix supplied. Zn=80, 
Fe=80 g, Na=1.5 g, I=1 g, Cu=15 g, Mn=100 g, K=4 g, Se=0.2 g, Co=0.25 g
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16761 Hennigsdorf, Germany) with 1 μL each of forward 
and reverse primers, 1 μL DNA template, and RNase-
free water to a final volume of 20 μL. Amplification was 
performed using a BioRad CFX96 real-time PCR (Bio-Rad 
Hercules, California, USA) system with the following 
thermal conditions: Initial denaturation at 95°C for 30 s; 
40 cycles of denaturation at 95°C for 5 s; annealing at 
primer-specific temperatures (58°C for Lactobacillus, 
55°C for total bacteria, 60°C for Bifidobacterium, and 
50°C for E. coli, Enterobacteriaceae, Enterococcus, 
and Salmonella); and extension at 72°C for 20 s. 
Primer sequences and target bacteria are listed in 
Table 2 [36–39].

Apparent ileal digestibility of nutrients
The AID of CP, dry matter (DM), EE, and ash 

was calculated using titanium dioxide (TiO2) as an 
indigestible marker, following the method of Short et 
al. [40]. Appr-oximately 0.1 g of ileal digesta was ashed 
at 580°C for 13 h, cooled, and digested in 10 mL of 7.4 
M H2SO4. The mixture was boiled for 60 min, diluted 
with 25 mL of distilled water, filtered using Whatman 
No. 541 filter paper, and transferred into a 100 mL 
volumetric flask.

To each flask, 20 mL of 30% hydrogen peroxide 
(H2O2) was added and the volume was adjusted to 
100 mL with distilled water. A 0.3 mg/mL working 
standard of TiO2 was prepared by dissolving 150 mg 
TiO2 in 100 mL of H2SO4, boiling, and diluting to 500 mL. 
A standard curve was generated using solutions ranging 
from 0 to 10 mL. Absorbance was measured at 410 nm 
using a spectrophotometer. Digestibility coefficients 
were computed using standard formulas as reported by 
Goh et al. [41].

  
× ×  
  −        

2

2

%TiO in feed
100

%TiO in digesta
AID%=100

%Nutrient digesta
%Nutrient feed

Statistical analysis
Statistical analyses were performed using the 

General Linear Model (GLM) of SAS software [42] 
version 9.4 (SAS Institute Inc., Cary, NC, USA) using 
one-way analysis of variance. Treatment means were 
compared using Duncan’s multiple range test, and 
significance was accepted at p < 0.05 [39]. Linear and 
quadratic responses to increasing WV concentrations 
were evaluated using orthogonal polynomial contrasts. 
The statistical model was Yijk = μ+Tij+Eijk where Yijk is the 
dependent variable, μ is the general mean, Tij is the 
effect of WV, and Eijk is the experimental error.

RESULTS

Antioxidant enzyme activity
The activities of CAT and SOD were not significantly 

affected (p > 0.05) across the treatment groups. In 
contrast, T-AOC was significantly increased (p < 0.05) 
in all WV-treated groups compared with the T1 and T2 
groups, with T6 exhibiting the highest T-AOC activity. 
GPx activity was also significantly elevated (p < 0.05) 
in the T5 and T6 groups relative to the other treatment 
groups, whereas T1 recorded the lowest GPx activity 
among all groups (Table 3).

VFA profile
The effects of WV supplementation on cecal 

VFA concentrations are summarized in Table 4. Acetic 
acid production was significantly higher (p < 0.05) in 
the T3 and T5 groups compared to the control groups 
(T1 and T2). However, no significant differences (p > 0.05) 
were observed in acetic acid concentrations among the 
T4, T6, and control groups.

Propionic acid levels were significantly elevated in 
the T6 group, whereas T1 had the lowest concentrations. 
The propionic acid values in T3, T4, and T5 were similar to 
T2 but were significantly higher than those in T1. Butyric 
acid production was significantly enhanced (p < 0.05) 
in the T5 group. Similarly, the total VFA concentration 
showed a significant linear and quadratic trend in 
T5. Other VFAs – including isobutyric, isovaleric, and 

Table 2: Primer sequences used for quantitative PCR of cecal microbial populations in broiler chickens.

Target microbe Primer sequence 5'–3' Product size (bp) Reference

Total bacteria CGGCAACGAGCGCAACCC–F
CCATTGTAGCACGTGTGTAGCC–R

145 [36]

Enterococcus CCCTTATTGTTAGTTGCCATCATT–F
ACTCGTTGTACTTCCCATTGT–R

144 [36]

Bifidobacteria GGGTGGTAATGCCGGATG–F
TAAGCCATGGACTTTCACACC–R

278 [37]

Lactobacillus CATCCAGTGCAAACCTAAGAG–F
GATCCGCTTGCCTTCGCA–R

341 [38]

Salmonella TCGTCATTCCATTACCTACC–F
AAACGTTGAAAAACTGAGGA–R

119 [39]

E. coli GTGTGATATCTACCCGCTTCGC–F
AGAACGCTTTGTGGTTAATCAGGA–R

82 [38]

Enterobacteria CATTGACGTTACCCGCAGAAGAAGC–F
CTCTACGAGACTCAAGCTTGC–R

195 [38]

R=Reverse; F=Forward; bp=Base pair
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valeric acids – did not differ significantly (p > 0.05) 
across treatments.

Cecal microbial population
The effects of WV supplementation on the cecal 

microbial population of broiler chickens are illustrated in 
Figure 1. The total bacterial population was significantly 
higher (p < 0.05) in the T3 and T4 groups compared to 
the control group (T1). However, the populations of 
Enterococcus and Lactobacillus were not significantly 
influenced by treatment.

WV supplementation significantly increased 
(p < 0.05) the population of Bifidobacterium spp., with 
T4 and T5 groups showing the highest counts relative 
to T1 and T2 groups. In contrast, E. coli levels exhibited 
a significant linear and quadratic increase in T1, while 
all WV-treated groups had reduced E. coli populations. 
Similarly, Salmonella counts were significantly higher 
(p < 0.05) in T1 and declined across WV-treated groups 
(T3, T4, T5, and T6). The Enterobacteria population was 
also significantly higher in the T1 group compared to T3, 
T4, T5, and T6.

Nutrient digestibility
WV supplementation had no significant effect 

(p > 0.05) on DM digestibility. However, CP, ash, and 
EE digestibility were significantly influenced (p < 0.05) 
by the treatments. CP digestibility was highest in the 
T4 group, whereas T1 had the lowest. Ash digestibility 
increased significantly in a linear and quadratic manner 
in the T5 group. EE digestibility was significantly higher 
in all WV-treated groups compared to T1 (Table 5).

DISCUSSION

Antioxidant enzyme activity
Oxidative stress occurs when there is an imba-

lance between ROS and the body’s antioxidant defense 
mechanisms. The accumulation of ROS can damage 
essential biomolecules, including proteins, DNA, 
and lipids, leading to cellular injury [43]. Enhancing 
antioxidant capacity is therefore critical to maintaining 
redox balance and physiological function in poultry. As 
reported by Geret et al. [44], GPx, CAT, and SOD are key 
antioxidant enzymes that serve as the body’s primary 

Table 3: Antioxidant enzyme activity in broiler chickens supplemented with WV and drinking water.

Parameters Treatments 1SEM p-value 2Contrast p-value

T1 T2 T3 T4 T5 T6 Linear Quadratic

T-AOC (μM) 373.41c 404.36b 425.79b 428.17ab 428.17ab 435.31a 6.03 0.0037 0.053 0.0040
GPX (μmol/L) 231.07c 271.05c 308.10bc 357.98b 461.78a 421.43a 22.54 0.0020 0.4102 0.0005
SOD (U/mL) 2.22 2.20 2.71 2.44 2.51 2.24 0.13 0.8742 0.2425 0.8831
CAT (U/mL) 23.75 27.37 33.36 29.53 37.18 28.16 1.67 0.2435 0.1277 0.2519

Mean values in a row with dissimilar alphabets (a,b,c) as superscripts vary substantially (p < 0.05). T1=Negative control, T2=Positive control, T3=1:100 
(v/v) WV, T4=1:200 (v/v) WV, T5=1:500 (v/v) WV, T6=1:100 (v/v) WV, CAT=Catalase, T-AOC=Total antioxidant capacity, SOD=Superoxide dismutase, 
GPx=Glutathione peroxidase, 1SEM=Standard error of mean, 2Contrast p-values=Linear and quadratic response determined with orthogonal polynomial 
contrast, WV=Wood vinegar

Table 4: Concentrations of cecal volatile fatty acids in broiler chickens supplemented with WV windring water.

Parameters Treatments 1SEM p-value 2Contrast p-value

T1 T2 T3 T4 T5 T6 Linear Quadratic

Acetic acid 33.55b 33.60b 44.29a 34.74b 48.67a 36.79b 1.33 0.0002 0.0082 0.1118
Propionic acid 1.11c 2.34b 2.38b 2.35b 2.85b 3.97a 0.17 <0.0001 0.1666 <0.0001
Butyric acid 3.50e 4.76d 6.24b 5.61c 7.70a 5.25cd 0.24 <0.0001 <0.0001 <0.0001
Others 0.70 1.34 1.23 0.86 1.51 1.44 0.09 0.0626 0.5207 0.0966
Total VFA 38.87d 42.04cd 54.13b 43.55cd 60.72a 47.45c 1.63 <0.0001 0.0025 0.0092

Mean values in a row with dissimilar alphabets (a,b,c,d) as superscripts vary substantially (p < 0.05). T1=Negative control, T2=Positive control, T3=1:100 
(v/v) WV, T4=1:200 (v/v) WV, T5=1:500 (v/v) WV, T6=1:1000 (v/v) WV, 1SEM=Standard error of mean, 2Contrast p-values=Linear and quadratic response 
determined with orthogonal polynomial contrast, WV=Wood vinegar

Table 5: Nutrient digestibility of broiler chickens supplemented with WV and drinking water.

Parameters Treatments 1SEM p-value 2Contrast p-value

T1 T2 T3 T4 T5 T6 Linear Quadratic

Dry matter 67.08 67.04 67.00 67.17 67.17 67.00 0.15 0.1897 0.5624 0.6434
Ash 36.64d 36.41d 40.09c 45.27b 46.96a 42.80b 0.77 <0.0001 <0.0001 0.0037
Ether extract 61.90c 64.59c 70.24b 73.87a 72.77a 72.46a 2.07 0.0199 0.0017 0.0814
Crude protein 68.05e 71.26d 75.59c 80.84a 76.46b 74.19c 0.60 <0.0001 0.5723 0.7925

Mean values in a row with dissimilar alphabets (a,b,c, and d) as superscripts vary significantly (p < 0.05). T1=Negative control, T2=Positive control, 
T3=1:100 (v/v) WV, T4=1:200 (v/v) WV, T5=1:500 (v/v) WV, T6=1:1000 (v/v) WV, 1SEM=Standard error of mean, 2Contrast p-values=Linear and quadratic 
response determined with orthogonal polynomial contrast, WV=Wood vinegar
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defense against ROS. According to Azizi et al. [32], both 
GPx and SOD are essential in mitigating free radical-
induced damage, while CAT specifically degrades H2O2 
into oxygen and water, protecting cells from oxidative 
harm [45].

T-AOC is a comprehensive indicator of the cumu-
lative activity of all antioxidants within the body [43]. 
Thus, T-AOC, along with SOD and CAT, is a vital parameter 
for assessing systemic oxidative resistance [46].

In the present study, WV supplementation resulted 
in a marked improvement in GPx and T-AOC activities, 
particularly at higher concentrations, whereas CAT 
and SOD activities remained unchanged. This aligns 
with the findings of Wang et al. [47], who reported 
similar selective modulation of antioxidant enzymes. 
The observed effects may be attributed to phenolic 
compounds and organic acids in WV, which enhance 
the body’s oxidative stability [15, 20, 48]. WV acts as 
a natural antioxidant and microbial inhibitor, helping to 
reduce oxidative stress and enhance animal health [20]. 
By suppressing ROS generation, WV potentially miti-
gates cellular damage and supports overall well-being in 
broilers [49]. The unchanged CAT and SOD activities may 
reflect the generally optimal health and management 
conditions during the trial, which may have sustained 
baseline antioxidant enzyme levels [48].

VFAs
Short-chain fatty acids (SCFAs), such as butyric, 

propionic, and acetic acids, are produced during 
the microbial fermentation of carbohydrates in the 
avian gut and serve as key indicators of fermentation 
efficiency and microbial activity [50]. The present study 
demonstrated that WV supplementation increased 

acetic, propionic, butyric, and total VFA concentrations 
compared with the negative control, especially in the T5 
group.

WV likely promotes VFA production by enha-
ncing the availability of nutrients for microbial ferme-
ntation and by increasing the abundance of beneficial 
microbes. Notably, acetic acid, identified as the primary 
organic compound in WV [51], was also found at the 
highest concentrations among all VFAs in this study, 
confirming earlier observations by Han et al. [52]. These 
findings are consistent with Kareem et al. [34], who 
reported elevated VFA levels in broilers following suppl-
ementation with postbiotics, and with Goiri et al. [53], 
who observed similar effects with biochar in the diet.

The cecum is the primary site of microbial 
fermentation in poultry, where indigestible carboh-
ydrates are metabolized into SCFAs and gases [54]. 
VFAs help lower intestinal pH, which discourages the 
growth of pathogenic organisms [55]. The observed 
increase in total VFAs likely reflects improved microbial 
fermentation and an enriched population of beneficial 
bacteria such as Bifidobacterium and Lactobacillus, 
potentially explaining the increased acetic acid levels. 
To date, limited studies have examined the effect of WV 
on VFAs in broilers, highlighting the novelty of these 
findings.

Cecal microbial population
WV supplementation promoted a general increase 

in total bacterial populations while concurrently supp-
ressing pathogenic bacteria in the cecal digesta of 
broiler chickens. The cecum is the most microbially 
dense section of the poultry gut and plays a crucial 
role in nutrient metabolism, immune regulation, and 
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maintaining microbial balance [56, 57]. Its favorable 
environment supports the proliferation of commensal 
bacteria, which enhance animal health and produ-
ctivity [58, 59].

The increase in beneficial microbial populations 
observed in WV-treated groups may be attributed to a 
reduction in intestinal pH through acetic acid elevation, 
thereby creating an unfavorable environment for 
pathogens [59]. Organic acids – including those present 
in WV – can penetrate bacterial cell membranes and 
disrupt their function, limiting colonization and infection 
risk [51, 60]. WV, being a natural source of organic 
acids, has been shown to modulate gut microbiota 
composition by promoting beneficial bacteria and 
reducing pathogen burden [61].

These findings align with previous studies by 
Kareem [34] and Muhammad et al. [62], which reported 
reduced bacterial loads and enhanced populations of 
Lactobacillus and Bifidobacterium following postbiotics 
or organic acid supplementation in broilers. Although 
differences in Lactobacillus abundance were not stati-
stically significant across treatments, a numerical 
increase was observed in the WV groups, suggesting 
a positive modulatory effect. According to Dibner 
et al. [63], WV inclusion suppresses pathogens while 
improving beneficial bacterial populations such as 
Enterococcus and Bifidobacterium. Similar findings have 
been reported in pigs and ducks [64–66], while Saleem 
et al. [67] found reduced bacterial counts following 
organic acid supplementation in poultry.

Contrastingly, Hanchai et al. [59] found no effect of 
WV on chicken gut flora, indicating potential variability 
based on experimental conditions. Nonetheless, the 
present study supports findings from Yan et al. [64] 
and Watarai and Tana [68] that WV exerts both antim/
icrobial and probiotic-like actions, enhancing gut health 
by reducing harmful bacteria and supporting the develo-
pment of beneficial microbes.

Nutrient digestibility
WV supplementation improved the AID of CP, EE, 

and ash. This enhancement may be attributed to WV’s 
ability to reduce gastrointestinal pH, thereby facilitating 
optimal enzyme activity and nutrient breakdown. 
Organic acids are known to support nutrient digestibility 
by modulating intestinal pH and suppressing microbial 
competition for nutrients [26].

Studies by Choi et al. [26] and Yan et al. [64] 
have shown that dietary WV inclusion at 0.1%–0.3% 
improves nutrient digestibility in pigs, and Sureshkumar 
et al. [69] demonstrated similar effects in grower-
finisher pigs. The present findings are also in agreement 
with Khooshechin et al. [70], who reported improved 
ileal digestibility in broilers fed diets supplemented 
with organic acids. These effects are likely due to the 
antimicrobial and acidifying properties of WV, which 
stabilize gut conditions and enhance nutrient utili-
zation [69].

Organic acids have also been reported to improve 
nutrient absorption and gut health in broilers by 
lowering gut pH and inhibiting the growth of harmful 
microbes [71, 72]. WV shares these functional prop-
erties, and its supplementation has been linked to 
enhanced digestion and absorption of key nutrients [73]. 
According to Ju et al. [74], dietary WV may reduce 
pathogenic bacteria by modulating gut pH, which in 
turn supports better nutrient digestibility. Therefore, 
the improved nutrient utilization observed in this study 
may stem from WV’s regulatory effects on gut microbial 
composition and gastrointestinal pH.

CONCLUSION

This study demonstrated that dietary supplem-
entation of WV through drinking water had a positive 
influence on antioxidant status, cecal microbial popu-
lations, VFA production, and nutrient digestibility in 
broiler chickens. Specifically, WV at 1:200 (v/v) and 
1:500 (v/v) dilutions significantly enhanced GPx and 
T-AOC without adversely affecting CAT or SOD. In addition, 
WV supplementation led to increased concentrations of 
acetic, propionic, and butyric acids in the cecum, with 
the T5 group showing the most pronounced effect. 
WV-treated groups also exhi-bited a significant increase 
in beneficial bacteria (Bifidob-acterium spp. and total 
bacteria) and a marked reduction in pathogenic bacteria 
(Salmonella, E. coli, and Enterobacteriaceae). Apparent 
ileal digestibility of CP, ash, and EE was notably improved, 
particularly in the T4 and T5 groups.

From a practical standpoint, these findings suggest 
that WV can serve as an effective natural alternative 
to in-feed antibiotics, promoting gut health, microbial 
balance, and nutrient utilization without compromising 
oxidative stability. Its ease of administration through 
drinking water and dose-dependent efficacy make WV 
a feasible option for sustainable poultry production 
systems, especially in antibiotic-restricted or antibiotic-
free environments.

A major strength of this study lies in its integrated 
assessment of physiological, microbial, and nutritional 
outcomes using a well-structured randomized design and 
multiple WV inclusion levels. However, one limitation is 
that the study did not evaluate morphological changes 
in gut histology or the expression of immune-related 
genes, which could further elucidate the mechanistic 
effects of WV.

Future research should investigate the long-
term impacts of WV on broiler health, meat quality, 
gut morphology, and immune gene expression under 
commercial field conditions. Studies exploring the 
synergistic effects of WV with other phytogenic or 
postbiotic compounds could also enhance its application 
in precision poultry nutrition.

In conclusion, WV supplementation – particularly 
at a concentration of 1:200 (v/v) – holds strong potential 
as a multifunctional feed additive that supports oxidative 
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balance, improves gut microbiota, and enhances nut-
rient digestibility, thereby contributing to more resilient 
and sustainable poultry farming practices.
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