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A B S T R A C T

Background and Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in 
goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, 
quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into 
reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional 
convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-
fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.

Materials and Methods: We analyzed publicly available scRNA-seq datasets from monotocous and polytocous goats. A set 
of 44 differentially expressed genes (DEGs) (False discovery rate ≤0.01, log2 fold change ≥1.5) was identified and used to 
distinguish FS-GCs and NFS-GCs through Leiden clustering. The expression profiles of these DEGs served as input to train a 
hybrid 1DCNN-GRU classifier. Model performance was evaluated using accuracy, precision, recall, and F1 score.

Results: The optimized hybrid model achieved high classification performance (accuracy = 98.89%, precision = 100%, recall 
= 97.83%, and F1 score = 98.84%). When applied to scRNA-seq datasets, it identified a significantly higher proportion of 
FS-GCs in the polytocous sample (87%) compared to the monotocous sample (10.17%). DEG overlap across samples further 
confirmed the model’s biological consistency and generalizability.

Conclusion: This study presents the first application of deep learning-based classification of goat GCs using scRNA-seq 
data. The hybrid 1DCNN-GRU model offers a robust and quantifiable method for evaluating GC fertility, holding promise 
for improving reproductive selection in livestock breeding programs. Future validation in larger datasets and across species 
could establish this model as a scalable molecular tool for precision livestock management.
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INTRODUCTION

Fertility evaluation in goats plays a vital role 
in breeding programs and enhancing livestock 
productivity, facilitating the selection of animals with 
high fecundity and superior reproductive traits, such 
as shorter kidding intervals and larger litter sizes. 
Furthermore, a deeper understanding of the genetic 
factors influencing fertility can enhance breeding 
management strategies and optimize goat production 
systems [1]. Among several biological indicators, 

granulosa cells (GCs) have gained prominence as key 
predictors in fertility assessments. GCs are essential for 
follicular development and oocyte maturation, offering 
structural support to ovarian follicles and regulating 
hormonal signaling throughout folliculogenesis [2, 3]. 
Through a bidirectional communication system, oocytes 
release signals that stimulate GC proliferation and 
differentiation, whereas GCs provide critical nutrients 
and growth factors to the oocytes. Therefore, GC 
quality is considered a reliable indicator of oocyte 
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developmental competence in various livestock species, 
including goats. Although several traditional methods 
are available to evaluate GC quality, they often fail to 
reliably predict oocyte competence in goats [4–7].

Ligand–receptor interactions between GCs and 
oocytes modulate gene expression in both cell types, 
further reinforcing the link between GC transcriptomic 
signatures and their functional status [2, 8]. As a 
result, gene expression profiles have become valuable 
predictors of fertility outcomes in goats [2, 8]. 
Transcriptomic profiling has emerged as a powerful 
strategy to address the limitations of conventional 
GC assessment methods, providing molecular-level 
insights into the mechanisms of follicular and oocyte 
development. Among these technologies, single-cell 
RNA sequencing (scRNA-seq) stands out for its ability 
to generate high-resolution data on gene activity at the 
individual cell level. Advances in goat scRNA-seq research 
have revealed distinct gene expression signatures in GCs 
that correlate with fertility, confirming the relevance of 
this technique for reproductive studies [8, 9].

Compared to traditional, non-molecular 
approaches that provide bulk measurements of 
hormone levels or protein markers, scRNA-seq offers a 
much more nuanced view of GC diversity. It distinguishes 
subtypes of GCs across different follicular stages, traces 
their developmental trajectories, and reveals dynamic 
transcriptional changes during follicular maturation. 
It also uncovers regulatory networks and fertility-
associated marker genes that remain undetected with 
conventional techniques [9–11].

Gene expression profiling enables the identification 
of differentially expressed genes (DEGs) that may serve 
as biomarkers of fertility. Recent studies by Xu et al. [8] 
and Ding et al. [12] using scRNA-seq have compared 
DEGs between high-prolificacy (polytocous) and low-
prolificacy (monotocous) goat breeds, identifying 
genes associated with reproductive traits. Despite 
these findings, directly applying DEGs as biomarkers 
for fertility assessment presents challenges, especially 
when trying to develop a quantifiable grading system 
to evaluate fertility across goat samples. Although 
DEG expression levels differ between GCs supporting 
high and low fertility, these differences are not easily 
translated into a standardized grading framework. 
A robust evaluation system would need to account for 
dynamic DEG expression patterns at the single-cell level, 
necessitating a more advanced strategy to accurately 
assess GC quality.

In the ovaries of polytocous goats, the presence 
of both fertility-supporting GCs (FS-GCs) and non-
fertility-supporting GCs (NFS-GCs) is expected, with 
a higher FS-to-NFS ratio promoting the development 
of multiple follicles and larger litter sizes [2, 8]. 
Conversely, monotocous goats, which typically produce 
a single oocyte per cycle, are expected to have a lower 
proportion of FS-GCs. This difference in GC composition 

can affect the sensitivity of differential gene expression 
(DGE) analysis. When FS-GCs and NFS-GCs coexist 
within the same sample, transcriptomic contrasts 
between monotocous and polytocous groups become 
less pronounced, leading to the detection of fewer 
DEGs due to population heterogeneity.

Although DGE analysis provides important 
insights, no standardized, gene expression-based metric 
currently exists for assessing GC quality in goat fertility 
evaluation. Developing such a tool could significantly 
improve the precision and efficiency of breeding 
programs. In response to this need, deep learning offers 
a promising solution for modeling high-dimensional 
DEG expression data. Deep learning models such as 
convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs) are particularly adept at 
uncovering complex patterns in gene expression data 
without requiring manual feature selection [13]. These 
models also incorporate dimensionality reduction 
methods, such as autoencoders, which preserve 
essential biological signals while removing noise, 
ultimately improving the fidelity of fertility assessments 
derived from gene expression profiles [14].

Among deep learning architectures, one-
dimensional CNNs (1DCNNs) are particularly suited for 
analyzing sequential data such as DEG profiles. These 
models can automatically learn spatial features and 
eliminate irrelevant signals, enabling them to distinguish 
between FS-GCs and NFS-GCs effectively [15]. 
In addition, gated recurrent units (GRUs) – a variant 
of RNNs – are well-equipped to model temporal 
dependencies in gene expression dynamics. GRUs track 
cellular state transitions and preserve the sequential 
integrity of expression profiles, offering deeper insight 
into GC quality [14]. Integrating 1DCNNs with GRUs in 
a hybrid architecture enables the simultaneous capture 
of spatial patterns and temporal dynamics, thereby 
enhancing the accuracy of GC classification.

Wolf et al. [16] have demonstrated that hybrid 
1DCNN-GRU models outperform traditional machine-
learning approaches in classifying gene expression 
data, making them particularly well-suited for fertility 
prediction tasks based on DEG signatures. Furthermore, 
the hybrid model supports a quantitative framework by 
predicting the proportion of FS-GCs within a population, 
providing a scalable metric for assessing cellular quality 
in reproductive biology.

Despite significant advances in single-
cell transcriptomic profiling and its application 
in reproductive biology, a major gap remains in 
translating DGE data into practical, quantifiable tools 
for fertility assessment in goats. The current studies 
have identified numerous fertility-associated DEGs 
by comparing GCs from monotocous and polytocous 
goats; however, these findings have largely remained 
descriptive or correlation-based. No standardized metric 
or computational model currently exists to classify GC 
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subpopulations (i.e., FS vs. NFS) at the single-cell level 
using gene expression data. Furthermore, conventional 
DEG-based comparisons do not account for intra-sample 
cellular heterogeneity, leading to reduced sensitivity 
and potentially misleading conclusions in differential 
analyses. While deep learning models have shown 
promise in other areas of transcriptomic classification, 
their application to reproductive cell-type classification 
in livestock, especially integrating temporal and spatial 
patterns in gene expression, has not been explored. 
There is, therefore, a critical unmet need for a robust, 
biologically informed, and scalable framework that can 
classify GCs based on their fertility potential using high-
resolution transcriptomic data.

This study aimed to develop and validate a hybrid 
deep learning model that integrates 1DCNNs and GRUs 
to classify caprine GCs into FS and NFS categories using 
scRNA-seq data. By leveraging DEGs identified between 
monotocous and polytocous goat samples, the model 
was trained to recognize complex gene expression 
patterns indicative of cellular fertility function. This 
work not only provides a proof-of-concept for deep 
learning-based reproductive cell classification in goats 
but also introduces a potential quantitative metric 
for evaluating GC quality. Ultimately, the proposed 
framework may support future integration into breeding 
programs as a transcriptomic-based fertility grading 
tool and could be extended to other livestock species 
for broader applications in reproductive precision 
management.

MATERIALS AND METHODS

Ethical approval
No ethical approval was required as the study 

exclusively used previously published scRNA-seq 
datasets (SRR9945436 and SRR9945437) obtained from 
the National Center for Biotechnology Information 
Sequence Read Archive database (https://www.ncbi.
nlm.nih.gov/sra).

Study period and location
This study was conducted between April 2024 

and September 2024. All computational analyses 
were performed using the high-performance server 
infrastructure provided by the Office of Academic 
Resources and Information Technology, Rajamangala 
University of Technology, Tawan-OK, Thailand.

Sample datasets
This study analyzed scRNA-seq datasets of GCs 

derived from monotocous (SRR9945436) and polytocous 
(SRR9945437) goats. The monotocous goat has a 
consistent history of producing a single offspring per 
parity. On the contrary, the polytocous goat was 3 years 
old that had a documented history of at least triplet 
births per parity over three generations of breeding 
records. Both goats underwent estrous synchronization 
through controlled internal drug release for 17 days.

Experimental design
Figure 1 illustrates the workflow of our study, 

comprising four main components:
1. Data preparation
2. Preparation of training data: FS-GCs and NFS-GCs 

selection
3. Training a hybrid 1DCNN-GRU model
4. Model-based estimation of FS-GCs.

In the “(1) Data Preparation” section, we pre-
processed all scRNA-seq datasets, transforming them 
into gene expression profiles of monotocous and 
polytocous goat samples. The “(2) Preparation of 
training data: Fertility-supporting and Non-fertility-
supporting cell selection” section utilized the prepared 
gene expression profiles to identify FS-candidate cell 
populations and NFS-candidate cell populations, and 
subsequently, all expression profiles were used to 
train the hybrid 1DCNN-GRU model in the “(3) Training 
hybrid 1DCNN-GRU model” section. The trained model 
was subsequently applied back to monotocous and 
polytocous samples’ expression profiles in the “(4) 
Model-based estimation of fertility-supporting cell 
percentages” section, enabling the quantification of 
FS-GCs and NFS-GCs in each sample.

Data preparation
The preprocessing of raw scRNA-seq datasets 

was conducted following established protocols. Briefly, 
low-quality sequences and adapter contamination 
were removed using the “Flexbar” program (version 
3.5.0) [17]. The filtered sequences were then aligned to 
the Agricultural Research Service 1 reference genome 
(RefSeq accession: GCF_001704415.1) using “STARsolo” 
software (version 2.7.10a) [18]. Downstream processing 
was performed using the “scanpy” toolkit (version 
1.9.6) [19], with a subsequent imputation process using 
the “scImpute” library (version 0.0.9) [20]. Only cells 
with a minimum total count of 10,000, at least 1,500 
detected genes, and a mitochondrial read fraction 
below 25% were retained.

Preparation of training data: FS and NFS cell selection
To identify FS-GCs and NFS-GCs candidates in 

the preprocessed scRNA-seq samples, we applied 
Leiden clustering as a semi-supervised approach 
using DEG expression profiles through the “scanpy” 
toolkit (version 1.9.6) [19]. First, transcript-per-million 
normalization was performed, followed by DGE analysis 
between monotocous and polytocous samples using 
a modified t-test with thresholds of log2 fold change 
≥1.5 and FDR ≤0.01. We refer to these DEGs as “Model-
Training DEGs.”

The identified model-training DEGs were then 
used to construct a concatenated expression matrix 
combining GCs from both sample types (model-
training gene expression profiles in Figure 1), which 
underwent Leiden clustering [21] with a resolution 
parameter equal to 0.5. We selected a resolution 
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parameter of 0.5 because this value produced 
clusters with the highest relative enrichment of 
either polytocous or monotocous GCs, thereby 
facilitating a clear distinction between FS-GCs and 
NFS-GCs. The clustering results were visualized using 

a two-dimensional Uniform Manifold Approximation 
and Projection plot.

We considered only clusters with at least 75 valid 
cells to avoid overinterpreting small, potentially spurious 
clusters. Clusters comprising ≥80% of the cells in the 

Figure 1: Overview of the analytical workflow. The workflow consisted of four main components: (1) Data preparation, 
(2) preparation of training data: fertility-supporting and non-fertility-supporting cell selection, (3) training hybrid 1DCNN-GRU 
model, and (4) model-based estimation of fertility-supporting cells. Each component covered specific analytical processes 
involving distinct data types as inputs and outputs. The white rectangles indicate the data types used as inputs or generated 
as outputs, and the gray rectangles represent the analytical processes, including the names of the programs or packages 
used. 1DCNN-GRU=One-dimensional convolutional neural networks-gated recurrent unit.
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polytocous sample were classified as FS-cell clusters. 
In comparison, clusters with ≥80% of the cells from 
the monotocous sample were designated as NFS- 
cell clusters. The model-training DEG expression 
profiles of FS-GCs and NFS-GCs identified by Leiden 
clustering were subsequently used to train a 
classification model.

Training the hybrid 1DCNN-GRU model
Overview of 1DCNN and GRU models

The combination of 1DCNN and GRU networks 
exploits the strengths of both convolutional and 
recurrent architectures to effectively analyze sequential 
data [22, 23]. In this study, we employed this hybrid 
approach to classify FS-GCs and NFS-GCs based on their 
expression profiles of Model-Training DEGs.

A 1DCNN processes sequential data by scanning 
input sequences to identify spatial patterns and local 
dependencies within numerical sequences, such as 
expression profiles of Model-Training DEGs [24]. This 
enables the detection of high-level features essential 
for distinguishing between FS-GCs and NFS-GCs.

In contrast, the GRU component captures 
temporal dependencies, making it particularly effective 
for modeling sequential relationships in gene expression 
data. Through its gating mechanisms – update and 
reset gates – the GRU regulates the information flow, 
ensuring the retention of biologically relevant signals 
while preventing gradient vanishing during training.

Integrating the 1DCNN and GRU layers enhances 
model performance by leveraging their complementary 
functions. The 1DCNN layer extracts localized features, 
thereby reducing input complexity before passing 
the data to the GRU, which then captures long-range 
dependencies. This preprocessing minimizes gradient 
decay and stabilizes training, thereby improving the 
efficiency and classification accuracy, particularly for 
FS-GC classification in this study.

Hybrid 1DCNN-GRU architecture
The hybrid 1DCNN-GRU model was optimized to 

classify GCs as either FS-GCs or NFS-GCs. The architecture 
of our hybrid model consisted of sequential 1DCNN 
layers for feature extraction (Table 1), followed by GRU 
layers to model their temporal relationships (Table 2). 
The GRU output was reshaped into a one-dimensional 
vector using a flattened layer before being processed 
by fully connected (Dense) layers, which synthesized 
the extracted features for classification. The final cell 
classification was determined using an activation 
function that distinguished FS-GCs from NFS-GCs.

Model training and evaluation
The hybrid 1DCNN-GRU model was trained and 

evaluated using TensorFlow (version 2.15.0), Keras 
(version 2.15.0), and KerasTuner (version 1.4.6) [25], 
with input datasets consisting of FS-GCs and NFS-GCs 
identified through Leiden clustering [26–28].

To ensure robust performance assessment, the 
dataset was partitioned into training and testing 
subsets, with 20% allocated for testing using the 
train_test_split function from the scikit-learn library 
(version 1.3.2) (https://scikit-learn.org/stable/index.
html). Hyperparameter tuning was conducted using 
KerasTuner to optimize the model’s performance.

The hyperparameters were tuned by gradually 
exploring them within predefined ranges. We tuned 
the number of filters in the initial 1D convolutional 
layer from 16 to 128 in increments of 4. The number 
of units in the GRU layer was varied from 16 to 128 in 
step 4. We tested the fully connected dense layer with 
values ranging from 16 to 256 in step 4. We tuned the 
dropout rate as a hyperparameter by testing values 
between 0.1 and 0.5 in increments of 0.1 to optimize 
model regularization and prevent overfitting.

We searched the learning rate of the Adam 
optimizer on a logarithmic scale ranging from 10−4 to 
10−2 to identify the optimal training dynamic. We trained 
the model using 80% of the data for training and 20% 
for validation, with stratified sampling to maintain class 
balance across the splits. We fixed a random seed (42) 
to ensure reproducibility. We ran the training process 
for 10 epochs with a batch size of 32, allowing the 
model to iteratively learn and evaluate its performance 
on a held-out validation set during each epoch.

During the training process, the model was 
validated on 30% of the training data to monitor 
performance. To alleviate overfitting, early stopping 
regularization was applied, and the model was compiled 
using the categorical cross-entropy loss function. The 
Adam optimizer with a learning rate of 0.001 was used 
for parameter optimization.

The model performance was assessed using 
accuracy, precision, recall, and F1-score metrics. 
Predictions for each test sample were generated based 
on the computed probabilities belonging to either the 
FS-GCs or NFS-GCs categories. The final performance 
metrics were calculated using the following equations:
Accuracy = (TP + TN)/Total samples

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)
F1 score = 2 × (Precision × Recall)/(Precision + Recall)
Where:

•	 True positive (TP): Number of FS-GCs correctly 
classified

•	 True negative (TN): Number of NFS-GCs 
correctly not classified

•	 False positive (FP): Number of NFS-GCs 
incorrectly classified as FS-GCs

•	 False negative (FN): Number of FS-GCs 
incorrectly classified as NFS-GCs.

Model-based estimation of FS cell percentages
The optimized hybrid 1DCNN-GRU model was used 

to predict class probabilities for each GC in monotocous 
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and polytocous goats. Each cell was classified into the 
FS or NFS category based on the highest predicted 
probability using a classification threshold of 0.95 to 
prioritize high-confidence predictions. We considered 
GCs falling below the threshold as ambiguous and thus 
excluded from class-specific interpretation.

DGE analysis was subsequently performed 
between the predicted FS-GCs and NFS-GCs across 
monotocous and polytocous samples using the modified 
t-test method from the scanpy toolkit (FDR ≤0.01 and 
log2 fold change ≥1.5).

After identifying DEGs in each sample, we used the 
matplotlib_venn library to generate a Venn diagram to 
visualize the overlap of DEGs identified in each sample 
with those used for model training. The observed 

overlap of DEGs identified in the polytocous and 
monotocous regions and the original model-training 
DEGs could be attributed to the biological consistency 
in gene expression profiles characterizing FS-GCs and 
NFS-GCs. This overlap (hypergeometric test, p ≤ 0.05) 
supported the model’s generalizability beyond the 
training data by indicating biological consistency in the 
gene expression profiles of FS-GCs and NFS-GCs across 
samples.

RESULTS

DGE in monotocous and polytocous goats
The scRNA-seq data of GCs from monotocous and 

polytocous goats were successfully pre-processed for 
downstream analysis. Following data preparation, 1,588 

Table 1: Components presented in 1DCNN architecture.

Components Summarized details Equations

Convolutional 
component

The component processed the sequential expression values 
of differentially expressed genes using convolutional filters 
to identify meaningful patterns or motifs in the data. Each 
filter was defined by its width (kernel size) and scanned 
across the input sequence to analyze a specified number 
of data points. These filters adaptively learned weights 
and biases to emphasize critical features while suppressing 
noise or irrelevant information. By aggregating the 
results from all filters, the model generated feature maps 
representing the presence and intensity of specific patterns 
across the sequence. This process employed Conv1D layers, 
where the filters and kernel sizes were tuned to effectively 
extract features by identifying recurring or localized 
patterns within the gene expression data.

z = x w +bt t+i-1
i=1

k

i∑ ⋅

Where:
xt+i-1 is the input at position t+i-1.
wi is the weight of the ith filter.
b is the bias term.
k is the kernel size.

Normalization 
component

This component incorporates BatchNormalization layers 
following the Conv1D layers to standardize data across 
training batches. Batch normalization was instrumental 
in stabilizing and accelerating the training process by 
reducing internal covariate shifts, ensuring that the input 
to each layer maintained consistent mean and variance. 
This standardization enhanced the optimization efficiency, 
contributed to smoother gradient updates, and reduced 
the risk of overfitting, thereby improving the overall model 
performance.

z =
z -

t

`
t µ
σ

Where:
µ is the Mean of the mini-batch.
σ is the standard deviation of zt.

Pooling 
component

The pooling component is responsible for dimensionality 
reduction and focuses on the most critical features in the 
data. The proposed method employs MaxPooling1D layers, 
which reduces the dimensionality by selecting the maximum 
value within the defined windows (pool size) of the input 
data. This operation effectively downsampled the data, 
preserving the most significant features while discarding 
less relevant information. By summarizing each window, 
MaxPooling1D facilitated computational efficiency and 
emphasized dominant patterns, which contributed to the 
model’s ability to learn representative features effectively.

ap = max at, at+1,., at+p

Where:
at is the output after applying the activation function.
ap is the result of max pooling operation over a window of 
size p.

Dropout 
component

The dropout component mitigated overfitting by randomly 
deactivating a subset of data units during training. 
This process introduces stochasticity into the network, 
preventing reliance on specific neurons and enhancing 
generalization to unseen data. The modified output with 
dropout can be expressed as the described equation.

a' =a mp p t⋅

Where:
ap is the result of max pooling operation.
mt is a mask vector with elements set to 0 (drop) or 1 
(keep) based on the dropout rate.

a'p is the resulting activations after applying dropout to ap.

1DCNN-GRU=One-dimensional convolutional neural networks-gated recurrent unit
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GCs were obtained from the monotocous goat sample 
and 1,536 from the polytocous goat sample. DGE 
analysis identified 44 genes (Supplementary Table 1) 
with statistically significant differences between the two 
groups (p ≤ 0.01, log2 fold-change ≥1.5). These genes 
were designated as “Model-Training DEGs” and were 
used in subsequent clustering and model-training steps.

Identification of FS and NFS cells through Leiden 
clustering

Leiden clustering based on the expression profiles 
of the 44 model-training DEGs revealed 28 distinct 
GC clusters (Figure 2 and Table 3), each containing 
varying proportions of cells from the monotocous and 
polytocous samples. Clusters 0 and 17, each comprising 

Table 2: Components presented in GRU architecture.

Components Summarized details Equations

GRU 
component

The GRU layer processed the sequential features 
extracted by the one-dimensional convolutional 
neural network to model the temporal or 
sequential evolution of these patterns. This 
approach enabled the network to capture the 
relationships essential for distinguishing between 
different cell types and conditions.
The GRU architecture consisted of three key 
components: the Update Gate, Reset Gate, and 
Candidate Hidden State, which collaboratively 
managed the information flow:

1.  Update gate: This mechanism determines the 
extent to which past expression values of DEGs 
influence the current hidden state. The proposed 
model selectively retained critical information 
from prior states, thereby ensuring continuity 
when modeling sequential dependencies.

2.  Reset gate: This gate allows the model to 
focus on new gene expression patterns by 
controlling the influence of past states. When 
activated, the GRU was able to disregard 
outdated dependencies and promote adaptive 
learning of recent gene activity.

3.  Candidate hidden state: this represented 
the potential updated state of gene activity, 
integrating current DEG expression patterns 
with selectively retained information from 
past states. It is a candidate for updating the 
final hidden state.

4.  Final hidden state: This component 
encapsulates the cumulative effects of gene 
interactions and regulatory dependencies up 
to the current time step, providing a dynamic 
representation of temporal relationships in 
gene expression data.

The GRU design allows it to efficiently model 
sequential dependencies and adapt to dynamic 
patterns in gene expression, making it highly 
effective for tasks such as distinguishing between 
cell types or identifying condition-specific 
regulatory mechanisms.

Update gate
zt = σ (Wz * Norm (h (t-1)) + Uz * Norm (xt) + bz)
Reset gate
rt = σ (Wr * Norm (h (t-1)) + Ur * Norm (xt) + br)
Candidate hidden state

h =tanh W *Norm r h +U *Norm x +bt

`

h t t-1 h t h ( )( ) ( )( )
Final hidden state

h =Norm 1-z h +z ht t t-1 t t

`

( )



( ) 

Where:
xt The input feature vector at time t, derived from the 1D-CNN 
layer, represents normalized differential gene expression values.
ht-1 The hidden state from the previous time step t-1, encoding 
past information about sequential dependencies.
ht The updated hidden state at the current time step t, combining 
information from ht-1, xt, and gates.
ht The candidate hidden state at time t, represents a potential 
update for ht based on reset-modulated memory and input.
zt The update gate value, controlling the weighting between ht-1 
and ht in forming ht.
rt The reset gate value, determining the degree of influence of ht-1 
on ht during candidate computation.
Wz, Wr, Wh Weight matrices applied to ht-1 in the computation of 
zt, rt, and ht, respectively.
Uz, Ur, Uh Weight matrices applied to xt in the computation of zt, 
rt, and ht, respectively.
bz, br, bh Bias terms added to the linear transformations for zt, rt, 
and ht.
σ The sigmoid activation function, ( ) -x

1
x =

1+e
σ , used for zt and rt 

calculations.
tanh The hyperbolic tangent activation function, tanh (x) = ex-e−x 
ex+e−x, used for calculation.
⊙ The element-wise (Hadamard) multiplication operator used to 
apply gate outputs to the hidden state.
Norm(.) A normalization function is applied to stabilize inputs or 
outputs.

Normalization 
component

This component includes LayerNormalization 
layers to enhance model stability and 
performance. By normalizing the input across 
features, LayerNormalization ensured that the 
scale of the data remained consistent, which 
improved the training dynamics and reduced the 
sensitivity to variations in the input distribution. 
This standardization step stabilized the data 
before passing them to subsequent layers, 
thereby facilitating more effective learning and 
convergence during model training.

Norm a a( ) = ( ) +( )- /µ σ ε2

Where:
µ Mean of a.
σ2 Variance of aa.
εA small constant to prevent division by 0.

GRU=Gated recurrent unit, DEG=Differentially expressed genes
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more than 75 cells and with over 80% of their cells 
derived from the polytocous sample, were designated 
as FS cell clusters. Conversely, clusters 1 and 5, each 

with more than 75 cells and >80% of their composition 
from the monotocous sample, were categorized as NFS 
clusters.

Notable expression differences of model-training 
DEGs were observed between FS (clusters 0 and 17) and 
NFS clusters (clusters 1 and 5), as shown in Figure 3. 
Some variability in expression patterns was also seen 
within clusters. The scaled expression data from 
these FS-GCs and NFS-GCs were then used to train a 
classification model in the next step.

Training and optimization of the hybrid 1DCNN-GRU 
model

Using the DEG expression profiles from FS-GCs 
and NFS-GCs, a hybrid 1DCNN-GRU model was 
developed and optimized using Keras Tuner. The 
final model achieved high classification performance 
with an accuracy of 98.89%, a precision of 100%, 
a recall of 97.83%, and an F1 score of 98.84%. The 
final model architecture is presented in Figure 4, and 
detailed specifications are summarized in Table 4. In 
addition, a saliency-based analysis of individual gene 
contributions to model predictions is provided in 
Supplementary Table 1.

Model-based estimation of FS-GCs in monotocous and 
polytocous samples

The trained 1DCNN-GRU model was applied 
to classify individual GCs from the monotocous and 

Figure 2: Uniform manifold approximation and 
projection visualization of granulosa cell clusters and 
sample types. (a) Granulosa cell clusters identified by 
Leiden clustering are displayed, each represented by 
a unique color. (b) The distribution of sample types 
categorized granulosa cells into fertility-supporting and 
non-fertility-supporting groups.

b

a

Table 3: Leiden clusters and corresponding polytocous and monotocous granulosa cell counts.

Leiden cluster number Total number of cells Polytocous granulosa cells Monotocous granulosa cells

Cell number Percentage Cell number Percentage

0 336 315 93.75 21 6.25
1 332 6 1.81 326 98.19
2 298 206 69.13 92 30.87
3 199 144 72.36 55 27.64
4 172 78 45.35 94 54.65
5 152 5 3.29 147 96.71
6 121 71 58.68 50 41.32
7 114 34 29.82 80 70.18
8 112 73 65.18 39 34.82
9 102 38 37.25 64 62.75
10 101 62 61.39 39 38.61
11 97 70 72.16 27 27.84
12 92 35 38.04 57 61.96
13 85 23 27.06 62 72.94
14 83 47 56.63 36 43.37
15 83 19 22.89 64 77.11
16 79 53 67.09 26 32.91
17 76 76 100.00 0 0.00
18 76 49 64.47 27 35.53
19 65 18 27.69 47 72.31
20 56 32 57.14 24 42.86
21 53 23 43.40 30 56.60
22 52 7 13.46 45 86.54
23 51 11 21.57 40 78.43
24 44 12 27.27 32 72.73
25 42 5 11.90 37 88.10
26 31 15 48.39 16 51.61
27 20 9 45.00 11 55.00
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polytocous samples. Using a confidence threshold of 
0.95, the model identified 360 FS-GCs in the polytocous 
sample and 160 FS-GCs in the monotocous sample, 
corresponding to 87% and 10.17% of the total cells, 
respectively (Figure 5).

Figure 4: Architecture of the proposed 1DCNN-GRU model for granulosa cell classification. The proposed model began 
with an input layer, an orange parallelogram corresponding to the input data – DEG profiles from FS-GCs and NFS-GCs. 
Layer 1 consisted of a 1D Convolutional layer (Conv1D) with 64 filters and kernel size 2, which is visualized as stacked green 
rectangles. This was followed by BatchNormalization in Layer 2 as a yellow rectangle. Layer 3 applied MaxPooling1D with 
a pool size of 2, effectively reducing the spatial dimensions of the feature map. Layer 4 includes a dropout layer with a 
dropout rate of 0.2 to mitigate overfitting. The GRU layer, visualized as stacked GRU cell diagrams, constituted Layer 5 and 
consisted of 64 units for sequence processing, followed by LayerNormalization in Layer 6 (yellow rectangle) to normalize 
the outputs of the GRU layer. In Layer 7, the outputs are flattened into a single-dimensional vector for the subsequent 
fully-connected layer. Layer 8 is a fully connected Dense layer with 192 units. The model concluded with Layer 9, an output-
dense layer with 2 units and a Sigmoid activation function, which predicted the probabilities for the two classes: FS-GCs or 
NFS-GCs. The final model output was an oval with pink arrows indicating the flow through the network. 1DCNN-GRU=One-
dimensional convolutional neural networks-gated recurrent unit, FS=Fertility-supporting, NFS=Non-fertility-supporting, 
DEGs=Differentially expressed genes, GCs=Granulosa cells, GRU=Gated recurrent unit.

Figure 3: Expression patterns of model-training DEGs in FS-GCs and NFS-GCs clusters. Each row represents a Leiden cluster, 
with clusters 0 and 17 corresponding to FS-GCs and clusters 1 and 5 corresponding to NFS-GCs. Columns represent DEGs in 
Ensembl IDs and are color-coded according to their expression levels (scaled from 0 to 1.2 in the color bar). Yellow indicates 
higher expression levels, whereas dark purple indicates lower expression levels. Noticeable differences in expression 
patterns were presented between FS-GCs and NFS-GCs clusters, as well as subtle variations within each cluster. FS=Fertility-
supporting, NFS=Non-fertility-supporting, DEGs=Differentially expressed genes, GCs=Granulosa cells.

Further DEG analysis between predicted FS-GCs 
and NFS-GCs within each sample revealed gene sets 
that overlapped substantially with the original model-
training DEGs. We define “Polytocous DEGs” as DEGs 
distinguishing FS-GCs within the polytocous sample 
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Table 4: Summary of the hybrid 1DCNN-GRU model 
architecture.

Component Architecture

1DCNN Layer 1 -  Conv1D (Filters: 64 filters, Kernel  
size 2): Features extracted from the input 
data using 64 filters of size 2 with ReLU 
activation function.

Layer 2 -  BatchNormalization: Normalized the layer 
inputs to improve training stability.

Layer 3 -  MaxPooling1D (Pool size 2): The 
dimensionality of the data is reduced by 
taking the maximum value from every 
window of size 2.

Layer 4 -  Dropout (Rate: 0.2): Randomly doped 
20% of the activations during training to 
prevent overfitting.

The GRU Layer 5 -  GRU (Units: 64, Dropout: 0.2, Return 
Sequences: False): The GRU layer 
captured sequential dependencies and 
temporal patterns in the data processed 
by the preceding 1DCNN layers.

Layer 6 -  LayerNormalization: This layer ensures 
that the standardized data across features 
improves stability and convergence 
during training.

Layer 7 -  Flatten: Reshapes the data to a 
one-dimensional vector.

Layer 8 -  Dense (Units: 192 units): The first 
fully-connected layer with 192 neurons 
and ReLU activation.

Layer 9 -  Dropout (Rate: 0.2): Randomly doped 
20% of the activations during training to 
prevent overfitting.

Layer 11 -  Dense (Units: 2): Output layer with 
2 units and sigmoid activation for 
predicting probabilities of belonging 
to 2 different classes – fertility- and 
non-fertility-supporting classes.

Model 
compilation

Loss: Categorical cross-entropy.
Optimizer:  Adam optimizer with a learning  

rate of 0.001.
Metrics (to monitor classification performance): 
Accuracy, Precision, Recall, and F1 score.

1DCNN=One-dimensional convolutional neural networks, GRU=Gated 
recurrent unit, ReLU=Rectified linear unit

(194 genes, Supplementary Table 2) and “Monotocous 
DEGs” as those differentiating FS-GCs within the mono-
tocous sample (53 genes, Supplementary Table 3).

As shown in the Venn diagram (Figure 6), 30 DEGs 
were common among the model-training, polytocous, 
and monotocous DEG sets. Notably, the polytocous DEG 
set encompassed nearly all genes found in the other 
two groups, indicating a broader and more distinct 
transcriptional profile for FS-GCs in polytocous goats.

DISCUSSION

Integrating deep learning with DEG analysis for fertility 
assessment

DGE analysis of GC scRNA-seq profiles has 
become a powerful method for evaluating fertility in 
goats. It enables the identification of DEGs that serve 

as potential biomarkers, offering insight into ovarian 
processes crucial for oocyte maturation [8, 12]. In this 
study, we proposed a novel method that integrates DEG 
expression data with a hybrid deep learning model – 
specifically, a 1DCNN-GRU architecture – to assess GC 
quality. The model was trained using DEGs identified 
between monotocous and polytocous samples, with 

Figure 5: UMAP visualization of granulosa cell classification 
in polytocous and monotocous samples. UMAP projections 
of granulosa cells from polytocous (top panel) and 
monotocous (bottom panel) samples, classified into three 
categories: fertility-supporting cells (blue), non-fertility-
supporting cells (orange), and undefined cells (green). The 
classification highlighted distinct clustering patterns based 
on the fertility-supporting capacity of the cells, reflecting 
biological differences between the two reproductive types. 
UMAP=Uniform manifold approximation and projection.

Figure 6: Venn diagram illustrates the overlap between 
model-training DEGs, Polytocous DEGs, and Monotocous 
DEGs. The Venn diagram depicts the distribution of 
DEGs across model-training DEGs (the circle with the 
blue outline), Polytocous DEGs (the circle with orange 
outline), and Monotocous DEGs (the circle with the green 
outline). Notably, most model-training DEGs overlapped 
with both Polytocous and Monotocous DEGs. In contrast, 
135 DEGs were exclusively identified as Polytocous DEGs, 
highlighting the distinct characteristics of these DEG 
categories. DEGs=Differentially expressed genes.
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FS-GCs and NFS-GCs defined through Leiden clustering. 
The model demonstrated high classification accuracy 
and successfully identified a higher proportion of FS-GCs 
in the polytocous sample, showing its potential as a 
transcriptomic-based GC grading tool, even for samples 
with comparable fertility.

Biological relevance and limitations of the DEG set
The analysis confirmed distinct DEGs between 

monotocous and polytocous samples, suggesting 
underlying GC subtype differences. While this finding is 
promising, the study’s small dataset – comprising only 
one monotocous and one polytocous sample – limits its 
generalizability. To strengthen model reliability, future 
studies should expand sample sizes and include animals 
with diverse reproductive phenotypes and genetic 
backgrounds.

Previous studies by Sharma and Sharma [2], Xu 
et al. [8], and Xie et al. [11] examining DEGs between 
GCs from monotocous and polytocous goats have 
reported key genes associated with litter size and 
fertility traits. Despite variations in study designs, our 
findings corroborated several critical DEGs reported 
in earlier scRNA-seq work, including TGFB2, WNT5B, 
EDN1, and DES [8]. Functional enrichment analysis 
of these DEGs indicated significant involvement in 
translation, cell cycle regulation, and angiogenesis 
– key processes for GC differentiation and follicular 
support. In addition, enriched cellular components, 
such as ribosomal structures and the endoplasmic 
reticulum, suggested high biosynthetic activity in GCs 
(Supplementary Figure 1). These findings supported the 
use of this DEG set for modeling, justifying their label as 
“Model-Training DEGs.”

Leiden clustering captures biologically meaningful GC 
subtypes

Leiden clustering of scRNA-seq data filtered 
by Model-Training DEGs enabled the identification 
of biologically distinct GC subtypes. Consistent with 
emerging single-cell literature, our results support the 
classification of GCs into FS-GCs and NFS-GCs [8], with 
a higher FS-GC ratio expected in polytocous samples. 
Our choice of an 80% threshold to define cluster 
identity, while somewhat arbitrary, is consistent with 
best practices in exploratory single-cell studies. Future 
research could refine this cutoff using larger datasets.

To minimize overfitting and artifacts from scImpute 
and Leiden clustering, we applied a stricter minimum 
cell threshold of 75 cells per cluster. This helped reduce 
the influence of small or potentially spurious clusters. 
Although intra-cluster variability in DEG expression 
was observed (Figure 3), the hybrid model was still 
able to extract discriminative features, indicating the 
robustness of the training strategy.

Advantages of the 1DCNN-GRU hybrid model
Our results demonstrate that the hybrid 

1DCNN-GRU model offers significant advantages over 

traditional machine learning methods and standalone 
deep learning models, such as CNN, GRU, and long 
short-term memory. The hybrid model’s ability to 
handle sequential gene expression data without manual 
feature selection positions it ahead of methods, such as 
Support Vector Machine and Random Forest [29]. The 
GRU layer captures temporal dependencies, whereas 
the CNN layer extracts local features and mitigates noise, 
improving generalization and training efficiency [29, 30]. 
This complementary integration enhanced accuracy and 
model convergence across most evaluations.

Mechanism of feature extraction and interpretation
The model’s design leverages the strengths of both 

architectures: 1DCNNs extract sharp expression trends 
or gene activation patterns [31, 32], whereas GRUs 
capture spatial and sequential dependencies across 
DEGs [32]. Dimensionality reduction through pooling 
preserved relevant features without distortion, allowing 
the GRU layers to track gene expression dynamics critical 
for cell classification. Consistent with this rationale, 
the model estimated FS-GC proportions of 87% in the 
polytocous and 10.17% in the monotocous sample 
(Figure 5), supporting its application as a molecular 
fertility assessment tool.

Biological implications of within-sample DEG analysis
GC composition heterogeneity reduced DEG 

detection sensitivity in inter-group comparisons, as 
the presence of both FS-GCs and NFS-GCs diluted 
transcriptomic contrasts. However, within-sample 
DEG analysis – particularly in polytocous samples 
– revealed larger and more distinct DEG sets, 
indicating clearer expression differences between 
FS-GCs and NFS-GCs. Notably, the 194 “Polytocous 
DEGs” (Supplementary Table 2) captured nearly all  
genes included in the 44 model-training DEGs and the 
53 “monotocous DEGs” (Supplementary Table 3), as 
shown in Figure 6.

Conserved fertility-associated transcriptional signatures
Thirty genes were shared among all three DEG 

groups (Model-Training, Polytocous, and Monotocous 
DEGs), suggesting the presence of a conserved core 
transcriptional program underlying GC fertility. These 
genes likely play essential roles in GC function and 
oocyte support and may be broadly applicable as fertility 
biomarkers. The broader transcriptomic divergence 
observed in polytocous samples may indicate higher 
GC subtype complexity, potentially linked to enhanced 
reproductive potential [8].

Ovarian heterogeneity and its functional relevance
Our findings support the concept that ovarian 

cellular heterogeneity, including subtype-specific GC 
profiles, may significantly influence reproductive traits. 
This heterogeneity may play a key role in follicular 
development and oocyte maturation. Future studies 
should use advanced lineage tracing and functional 
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assays to validate the roles of individual subtypes. 
Identifying and targeting subtype-specific gene 
markers may open avenues for precision reproductive 
diagnostics and interventions in goat breeding.

Model utility and future applications
This study highlights the utility of deep learning in 

translating scRNA-seq data into biologically meaningful 
fertility assessments. Although biological validation 
was beyond the scope of this study, the model lays 
the groundwork for future validation and translational 
research. The ability to compute a fertility score based 
on FS-GC proportions offers a promising tool for 
reproductive management. With further validation, this 
model could complement traditional fertility metrics in 
selecting high-fertility donors, optimizing mating plans, 
or screening reproductive health in goats and other 
livestock species.

CONCLUSION

This study presents a novel deep learning-based 
framework for evaluating GC fertility potential in goats 
by integrating scRNA-seq data with a hybrid 1DCNN-GRU 
model. By leveraging 44 DEGs (model-training DEGs) 
identified between monotocous and polytocous goat 
GCs, the model was trained on biologically validated 
subpopulations of FS and NFS GCs defined through 
Leiden clustering. The optimized model achieved a 
classification accuracy of 98.89%, with a precision of 
100%, a recall of 97.83%, and an F1 score of 98.84%, 
demonstrating exceptional performance in classifying 
GCs based on fertility-associated transcriptomic 
profiles.

Importantly, the model predicted a significantly 
higher proportion of FS-GCs in the polytocous sample 
(87%) compared to the monotocous sample (10.17%), 
consistent with known biological expectations. This 
ability to quantify FS-GC ratios introduces a practical 
and scalable method for molecular-level fertility 
assessment, offering potential utility in reproductive 
management, the early selection of high-fertility 
individuals, and the screening of donor suitability for 
embryo transfer programs.

A major strength of this study lies in its 
methodological innovation, which integrates spatial 
and temporal pattern recognition through a 1DCNN-
GRU hybrid architecture while minimizing manual 
feature engineering. The approach also incorporated 
robust clustering strategies and conservative thresholds 
to reduce overfitting and false classifications, thereby 
increasing the biological reliability of cell subtype 
identification.

Nonetheless, the study has limitations. The analysis 
was based on a limited dataset (one monotocous and 
one polytocous goat), restricting the generalizability 
of the findings. Further, the model’s predictions, while 
biologically plausible, have not yet been validated 
through functional assays or lineage tracing.

Future research should focus on expanding 
the dataset across diverse genetic backgrounds, 
reproductive phenotypes, and developmental stages. 
Functional validation of FS-GC markers, refinement of 
clustering thresholds, and incorporation of additional 
cell types (e.g., theca or stromal cells) could further 
enhance the model’s predictive power. Integration of 
such a system into practical fertility screening tools 
or breeding decision platforms would offer significant 
benefits to livestock production.

In conclusion, this study provides proof-of-
concept for using deep learning to evaluate GC fertility 
at single-cell resolution. It bridges a critical gap between 
transcriptomic data and actionable reproductive 
metrics, paving the way for precision breeding in goats 
and potentially other livestock species.
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