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A B S T R A C T

Kisspeptin and leptin (LEP) are two essential proteins that play a central role in regulating reproductive hormones in small 
ruminants through the hypothalamic-pituitary-gonadal axis. These proteins influence the secretion of gonadotropin-
releasing hormone, which, in turn, controls key hormones such as follicle-stimulating hormone and luteinizing hormone. 
Acting in synergy, kisspeptin and LEP also interact with other metabolic and reproductive signals, including insulin, estrogen, 
and neuropeptides, to coordinate reproductive function. Despite their importance, the detailed mechanisms by which 
these proteins operate, especially in relation to body condition score are not yet fully understood. This review explores 
their biological roles, interactions, and potential as markers for selecting high-performing livestock. External factors such 
as diet, stress, and seasonal changes can further influence their expression and activity. Understanding these pathways can 
support improved fertility management and the development of genetic or therapeutic strategies to enhance reproductive 
efficiency in goats and sheep. 
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INTRODUCTION

The selection of livestock based on reproductive 
parameters is essential for the efficient utilization of 
time and resources [1]. Specific genetic traits and protein 
markers significantly influence reproductive efficiency, 
particularly in small ruminants. Gonadotropin-releasing 
hormone (GnRH) is a key protein that regulates the 
secretion of gonadotropin hormones and is vital to the 
reproductive cycles of these animals. The secretion 
of gonadotropins – such as luteinizing hormone (LH), 
follicle-stimulating hormone (FSH), and inhibin – is 
primarily governed by GnRH [2]. In addition to GnRH, 
other hypothalamic regulators such as gonadotropin-
inhibiting hormone (GnIH) and kisspeptin have been 

identified; GnIH suppresses, while kisspeptin enhances, 
GnRH secretion – underscoring kisspeptin’s pivotal 
role in reproductive regulation. Leptin (LEP) is another 
essential protein known to influence GnRH activity 
through its receptor (LEP receptor [LEPR]) and is closely 
associated with key reproductive traits, including 
lactation performance, calving frequency, and age at 
first parturition. Given the physiological importance 
of kisspeptin and LEP in the hypothalamic-pituitary-
gonadal (HPG) axis, their roles in small ruminant 
reproductive function merit further investigation [3].

Although the roles of kisspeptin and LEP in 
reproductive regulation have been well-documented 
in various mammalian species, there remains a lack of 
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comprehensive synthesis focusing specifically on small 
ruminants. The dynamic interactions between these 
two proteins and their collective influence on GnRH, 
LH, and FSH secretion under varying physiological and 
environmental conditions, such as body condition score 
(BCS), nutritional status, and photoperiod, have not 
been thoroughly explored. Furthermore, the genetic 
polymorphisms and tissue-specific expression patterns 
of kisspeptin (KiSS-1) and LEP genes, particularly their 
implications for fertility traits, remain underreported 
in the context of goats and sheep. This represents 
a significant gap in the literature on reproductive 
physiology and animal genetics.

This review aims to critically synthesize current 
knowledge on the roles of kisspeptin and LEP in the 
reproductive physiology of small ruminants. Specifically, 
it examines their regulatory mechanisms within the HPG 
axis, their interactions with metabolic cues and BCS, 
as well as their genetic and molecular characteristics. 
In addition, the review highlights their potential utility 
as biomarkers and therapeutic targets for improving 
reproductive efficiency and guiding precision breeding 
strategies in small ruminants. The graphical abstract is 
presented as Figure 1.

KISSPEPTIN: ORIGIN, BIOLOGICAL ROLES, AND 
FUNCTION IN SMALL RUMINANTS

Kisspeptin, also known as metastin, was originally 
identified as an anti-metastatic peptide by Lee 
et al. in 1996 [4]. It was later recognized as a critical 
neuroendocrine regulator of GnRH signaling, particularly 
in stimulating the secretion of LH. In small ruminants, 
kisspeptin plays a central role in reproductive regulation 
by acting on hypothalamic neurons. The peptide is 

encoded by the KiSS-1 gene, a member of the RF-amide 
peptide family, and acts through its receptor G protein-
coupled receptor 54 (GPR54), which is highly expressed 
in the hypothalamus and actively participates in the 
HPG axis [5]. In humans, the KiSS-1 gene is located on 
chromosome 1q32 [6], whereas in goats and sheep, it is 
mapped to chromosome 16 [7].

Kisspeptin neurons are primarily located in the 
hypothalamus, although some studies have reported 
limited expression in placental tissues. Wakabayashi 
et al. [8] localized kisspeptin neurons predominantly 
to the arcuate nucleus (ARC) in goats. Complementary 
findings by Ohkura et al. [9, 10] confirmed the 
distribution of kisspeptin-expressing neurons in both the 
ARC and preoptic area (POA) of male goats. Expression 
of the KiSS-1 gene has also been detected in the POA of 
female goats, although this remains a topic of scientific 
debate. These neurons are primarily concentrated 
in the caudal ARC, dorsomedial nucleus, and medial 
POA (mPOA) [11]. In sheep, kisspeptin-expressing 
cells are predominantly found in the periventricular 
nucleus (POV), in close proximity to GnRH neurons. 
Notably, in goats, the expression of KiSS-1 or its product 
KP-54, through the GPR54 receptor, is higher in the 
hypothalamus than in peripheral reproductive tissues 
such as the ovary, oviduct, and endometrium [12].

The influence of KiSS-1 on GnRH secretion has 
been demonstrated in both goats [13] and sheep [14]. 
Although polymorphisms in exon 1 of the KiSS-1 gene 
in goats have been investigated since 2009, their 
functional implications remain unclear [15]. Several 
mutations have been identified: three in intron 1 and 
two in exon 3. While some are considered non-causal, 
they may still affect nearby regulatory elements that 

Figure 1: Graphical abstract.
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influence reproductive function [16]. Experimental 
study by Han et al. [13] indicates that administration 
of kisspeptin at concentrations ranging from 1 µM to 
100 µM enhances the steroidogenic activity of Leydig 
cells in goat testes, where KiSS-1 gene expression has 
also been confirmed [17]. Although kisspeptin activity 
has been detected in Sertoli cells, spermatids, and 
spermatozoa in other species, its presence in these 
cells in goats remains unverified [18]. Collectively, these 
findings suggest that the KiSS-1/GPR54 system may 
exert both central and peripheral regulatory effects on 
reproduction.

In ewes, administration of kisspeptin analogues 
such as TAK-683 and C6 has been shown to induce 
estrus, indicating potential reproductive applications 
in goats. Moreover, ovariectomized ewes exhibited 
elevated LH and GnRH levels in cerebrospinal fluid 
following intravenous injection of KP-10, reinforcing 
kisspeptin’s stimulatory role in reproductive hormone 
release [19].

LEP: ORIGIN, MOLECULAR BASIS, AND 
REPRODUCTIVE FUNCTION IN SMALL RUMINANTS

LEP is a protein hormone encoded by the LEP 
gene, located on chromosome 7q31.3. It was initially 
identified in human adipose tissue in 1994 and later 
in goats in 2005, where it was characterized as a 
16-kDa protein [12, 20]. In Raini cashmere goats, LEP 
gene expression has been observed across multiple 
tissues, including adipose tissue, liver, kidney, lung, and 
heart, with the highest expression detected in adipose 
tissue and liver, and the lowest in the heart [21]. LEP 
is synthesized as a prohormone comprising 167 amino 
acids, which is processed into its biologically active form 
consisting of 146 amino acids [22].

In the context of reproduction, LEP acts as 
a neuromodulator by binding to its receptors and 
influencing neuropeptide Y (NPY), a critical regulator 
of gonadal activity in the central nervous system [23]. 
Its primary physiological role is to convey the animal’s 
nutritional status to the brain, thereby modulating key 
reproductive functions such as the onset of puberty 
and the secretion of gonadotropins, particularly LH and 
FSH. Polymorphisms within intron 1 of the LEP gene 
have been associated with metabolic and endocrine 
traits, including variations in beta-hydroxybutyrate 
(BHBA), free thyroxine (fT4), insulin-like growth 
factor-1 (IGF-1), triglyceride levels, and milk somatic 
cell counts [24]. Additionally, the T117C polymorphism 
has been associated with differences in milk yield 
performance at 140 days in goats [25].

LEPRs in the ARC of the hypothalamus interact 
with NPY and glucagon-like peptide-1, integrating 
energy balance and reproductive signals. Under 
growth hormone (GH) activation, LEP also functions as 
a negative regulator of GnRH secretion and has been 
reported to suppress cortisol production [26]. The 

connection between LEP and reproduction was first 
recognized through studies on placental LEP secretion, 
which demonstrated LEP resistance during mid-
gestation in cattle. This resistance results in increased 
appetite despite weight gain, reflecting the elevated 
nutritional demands of pregnancy [27].

Moreover, LEP directly stimulates GnRH receptor 
expression and FSH secretion by inhibiting the translation 
of Musashi protein mRNA in goats. In females, elevated 
LEP concentrations promote estrogen production, 
thereby inducing the LH surge necessary for ovulation. 
LEP also plays an indirect role in oocyte maturation. In 
both sexes, LEP is a critical regulator of puberty onset. 
Experimental reductions in LEP levels by 50%–90% 
have been shown to delay sexual maturation, suppress 
gonadal activity, and hinder testicular and ovarian 
development. However, excessive LEP levels, such as 
those observed in obesity, can lead to LEP resistance, 
which may impair reproductive function [28].

EXPRESSION AND LOCALIZATION OF KISSPEPTIN 
AND LEPRS IN SMALL RUMINANTS

Research in goats has predominantly focused 
on two major KiSS-1 gene products: KP-10 and 
KP-54 [29]. KP-10 is a decapeptide with a molecular 
weight of 1302.4  g/mol, whereas KP-54 consists 
of 54 amino acids and weighs approximately 
5857  g/mol [30]. Administration of KP-10 during the 
luteal phase has been shown to stimulate the secretion 
of LH and FSH, without significantly altering levels of GH 
or prolactin [31]. Another variant, KP-135, contains 135 
amino acids and has a molecular mass of approximately 
14.38 kDa [32].

Comparative sequence analysis indicates that 
the goat KiSS-1 nucleotide and amino acid sequences 
share greater similarity with those of other livestock 
species than with those of humans or rodents. The 
goat KiSS-1 polypeptide includes a signal peptide, 
supporting its classification as a precursor for secreted 
bioactive peptides [18]. Structurally, goat kisspeptin 
is predicted to contain an LRY-amide motif at its 
C-terminal end, a feature conserved across rodent 
and bovine species. The full-length KiSS-1 gene 
transcript in goats spans approximately 408 base pairs, 
comprising two coding exons and one intron, encoding 
a 135-amino acid peptide [7]. The mechanism by which 
kisspeptin regulates reproduction in goats is illustrated 
in Figure 2.

LEP, primarily produced and secreted by 
adipocytes, plays a critical role in energy homeostasis 
and reproductive function [24]. Its expression has been 
extensively documented in various livestock species, 
including small ruminants, where genotypic diversity 
and metabolic adaptation have been noted [33]. In 
these species, the LEP gene is located on chromosome 
4 and comprises three exons [34]. Fluorescence in situ 
hybridization has localized this gene specifically to 
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chromosome 4q32. In Bligon goats, four novel single-
nucleotide polymorphisms (SNPs) have been identified 
within introns 1 and 2 of the LEP gene [35]. These 
intronic polymorphisms are associated with important 
metabolic traits, including BHBA, fT4, IGF-1, triglyceride 
concentrations, and milk somatic cell counts [36].

Plasma LEP concentrations serve as permissive 
signals for the initiation of sexual maturity in small 
ruminants [28], particularly during gestation and 
lactation, when LEP levels are significantly elevated 
between days 2 and 9 postpartum [24]. LEP also 
facilitates the attainment of a critical body size threshold 
necessary for the onset of puberty [28]. Notably, 
livestock subjected to restricted nutrition may still 
achieve puberty on exogenous LEP administration. This 
response involves cross-talk between LEP signaling and 
estrogen receptors in the gonads and hypothalamus, 
as well as circulating IGF-1 levels [37]. Administration 
of physiological doses of LEP (0.2–2  ng/mL) has been 
reported to increase LH secretion by approximately 1.5-
fold, whereas higher doses exceeding 20 ng/mL produce 
no significant reproductive effects [38]. The detailed 
mechanism by which LEP regulates reproductive 
pathways in small ruminants is depicted in Figure 3.

RECEPTOR EXPRESSION AND LOCALIZATION

The receptor for kisspeptin, GPR54 – also referred 
to as kisspeptin receptor (KiSS-1r) – exhibits notable 
genetic polymorphisms in female goats, including five 
mutations within exon 1 and a partial mutation in exon 
5 [39]. GPR54 encodes a transmembrane G-protein-
coupled receptor and is expressed more abundantly in 
the ovaries compared to the hypophysis, oviduct, and 
endometrium of female goats [12]. Both KiSS-1 and 
GPR54 genes are expressed across several brain regions, 
with prominent localization in the hypothalamus, basal 
ganglia, and arcuate nuclei. In the hypophysis, GPR54 
is predominantly found in the median eminence (ME), 
particularly within GnRH neurons [40], while peripheral 
expression has also been reported outside the cerebral 

vasculature [41]. In ewes, expression of KiSS-1 and 
GPR54 has been documented in the pituitary gland, 
endometrium, ovaries, and oviducts [12, 29]. High 
expression levels of GPR54 have been observed in the 
brain and in several peripheral tissues as well [42]. An 
immunolocalization study by Han et al. [13] further 
confirms the presence of kisspeptin in Leydig and Sertoli 
cells, as well as in spermatids of goats.

Kisspeptin fibers are secreted into the portal 
vasculature, with dense clusters of immunoreactive 
fibers found outside the ME [43]. In various species, 
kisspeptin-secreting neurons are located in the internal 
zone of the hypothalamus, allowing for interregional 
neuroendocrine communication. These fibers are 
especially concentrated in the ARC, proximal to 
kisspeptin neuronal somata. Most GnRH neurons are 
located in the septo-POA, where kisspeptin fibers are 
also frequently detected [44]. In addition, a major 
population of kisspeptin fibers runs adjacent to the 
third ventricle, and all fibers within the ME appear 

Figure 2: Kisspeptin mechanism in goat reproduction [Source: The figure was generated by the authors].

Figure  3: Mechanism of leptin in small ruminant bodies 
[Source: The figure was generated by the authors].
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to originate from the ARC [45], indicating minimal 
contribution from other hypothalamic regions. 
Anterograde tracing in ewes further supports direct 
projections from ARC kisspeptin neurons to the ME [45]. 
Moreover, kisspeptin/neurokinin B/dynorphin (KNDy) 
neurons have been identified as the primary afferent 
inputs to preoptic kisspeptin neurons [46, 47].

The long-form LEPRb, a member of the class  I 
cytokine receptor family, exists in six isoforms and is 
the functionally active variant in reproduction [48]. In 
Black Bengal goats, two polymorphisms in intron 3 and 
one in exon 4 of the LEPRb gene have been associated 
with variation in litter size [49]. LEPRb mRNA has been 
detected in reproductive tissues such as the ovaries 
and mammary glands of female goats [25, 50]. Within 
the hypothalamus, LEPRs are highly expressed and 
play a central role in modulating GnRH secretion [28]. 
LEPRb is localized in the ME-ARC and shows heightened 
responsiveness in animals with adequate nutritional 
status. Under conditions of fasting or negative energy 
balance, LEP signaling supports the recovery of 
hypothalamic function and GnRH pulsatility, which 
may otherwise be suppressed through GABAergic 
pathways [51]. Additional LEP-mediated modulation 
of GnRH secretion is facilitated by neuropeptides such 
as melanocyte-stimulating hormone, cocaine- and 
amphetamine-regulated transcript, and galanin-like 
peptide [52].

In small ruminants, LEPRs are primarily localized 
to the gonadotroph cells in the pars tuberalis of the 
adenohypophysis (70%–90%), and to a lesser extent in 
the pars distalis (<30%). In the ovaries, LEPRs are found 
in corpus luteum cells and are involved in promoting 
oocyte maturation. Moreover, LEP supports the 
structural development and functional maintenance of 
the corpus luteum [37, 53]. Expression of LEPRs has also 
been confirmed in granulosa and theca cells, oocytes, 
and placental tissues, underscoring its broad regulatory 
influence on reproductive physiology.

SYNERGISTIC INTERACTIONS IN REPRODUCTIVE 
REGULATION

Kisspeptin and LEP act synergistically to stimulate 
the HPG axis, thereby promoting the secretion 
of key reproductive hormones. This interaction 
underscores the coordinated regulatory role of both 
proteins in governing reproductive functions in small 
ruminants [54]. LEP, secreted predominantly by adipose 
tissue, indirectly influences GnRH-secreting neurons 
in the hypothalamus, even though LEP itself is not 
expressed in these neurons. Instead, LEP’s effects 
are mediated through neural circuits that intersect 
with the kisspeptin signaling pathway through the 
KiSS-1/GPR54 axis.

This metabolic-reproductive interface highlights 
how body condition and nutritional status modulate 
reproductive function. Under normal physiological 

conditions, LEP downregulates NPY expression, thereby 
reducing appetite and enhancing reproductive activity. 
Evidence suggests a direct association between LEP 
protein levels and kisspeptin receptor activity. Notably, 
intracerebral LEP administration in undernourished 
sheep has been shown to upregulate KiSS-1 gene 
expression [55].

Experimental studies have demonstrated that 
administering LEP at concentrations between 10⁻8 M 
and 10⁻7 M significantly increases kisspeptin secretion, 
with levels peaking at approximately 30 h – rising from 
36 to over 175 pg. However, concentrations outside this 
range (e.g., 10⁻5 M) reduce kisspeptin secretion to levels 
below baseline, indicating a dose-dependent, biphasic 
relationship between LEP and kisspeptin [54]. These 
findings emphasize the importance of maintaining an 
optimal BCS to ensure efficient reproductive function, 
as balanced LEP levels are essential for activating 
kisspeptin-mediated pathways.

Comparable studies by Backholer et al. [56] and 
Scott et al. [57] have shown that intracerebroventricular 
LEP infusion in lean ewes results in increased kisspeptin 
expression, although at lower levels than in adequately 
nourished animals, and subsequently enhances LH 
secretion. The interaction between LEP and kisspeptin 
can thus be summarized as follows: nutritional status 
influences LEP levels, which interact with the LEPR to 
modulate kisspeptin signaling. This, in turn, regulates 
GnRH secretion and downstream release of FSH and 
LH, ultimately affecting estrogen and testosterone 
production [58].

Interestingly, this synergistic relationship 
appears to be functionally active only after puberty. 
During early developmental stages, LEP signaling and 
receptor expression are limited, despite the presence 
of kisspeptin receptors in the hypothalamus. Cravo 
et al. [59] suggest that LEP may contribute to pubertal 
onset by promoting STAT3 phosphorylation, which is 
involved in upregulating KiSS-1 receptor expression, 
thereby initiating sexual maturation. Nonetheless, this 
mechanism remains a subject of ongoing investigation. 
The integrated signaling between kisspeptin and LEP is 
illustrated in Figure 4.

MECHANISMS OF KISSPEPTIN AND LEP IN SMALL 
RUMINANTS

Kisspeptin-producing (KiSS-1) neurons in the 
forebrain serve as critical intermediaries in regulating 
the HPG axis, responding to diverse internal and 
external cues, such as gonadal steroid hormones and 
photoperiodic changes. In males, kisspeptin facilitates 
testicular development and testosterone synthesis 
through the HPG axis, paralleling its function in female 
reproductive regulation [13]. In small ruminants, 
kisspeptin is highly expressed in Leydig cells, and 
its inhibition significantly reduces testosterone 
secretion [17]. Similar effects have been observed in 
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the ovarian tissues of females, indicating a conserved 
regulatory mechanism across sexes [60]. Within 
the hypothalamus, kisspeptin neurons are primarily 
localized in the POA and ARC, where they co-express 
estrogen receptor α, progesterone, and androgen 
receptors. These neurons govern GnRH neuron activity, 
thus regulating the broader endocrine cascade of the 
HPG axis [61].

Kisspeptin mediates feedback regulation from 
steroid hormones and stimulates FSH secretion; 
however, it exhibits a stronger and more immediate 
effect on LH release. Central administration of 
kisspeptin results in delayed FSH secretion relative to 
LH, and in vivo data suggest that FSH is approximately 
200-fold less sensitive to kisspeptin stimulation 
compared to LH [62, 63]. The mechanisms underlying 
this disparity may include intrinsic differences in LH 
and FSH release patterns, kisspeptin’s preferential 
promotion of high-frequency GnRH pulses, which 
favor LH, and the modulatory influence of gonadal 
peptides, such as inhibins, on FSH secretion. In addition 
to its central expression, kisspeptin is present in extra-
hypothalamic sites, including the placenta, specifically 
in syncytiotrophoblasts and trophoblast giant cells, 
and the pancreas, where its receptor GPR54 is also 
expressed [64].

Emerging evidence supports the role of ARC 
kisspeptin neurons as part of the GnRH pulse generator. 
This is substantiated by multi-unit activity recordings 
and rhythmic intracellular Ca²⁺ oscillations in ARC 
neurons corresponding to LH pulses in goats [65, 66]. 
Optogenetic activation and inhibition of these neurons 
have been shown to initiate or suppress pulsatile 
LH secretion, respectively. Functional diversity 
among kisspeptin isoforms, such as KP-10, KP-13/16, 
and KP-53/54, adds further complexity, although 
the mechanisms behind these differences remain 
incompletely understood. Species-specific variation in 
kisspeptin amino acid sequences, particularly in the 

C-terminal pharmacophore region of KP-10 in sheep 
and goats, suggests differential biological activity that 
may necessitate tailored administration strategies [67].

LEP, although exerting its reproductive effects 
primarily through hypothalamic action, is not 
directly expressed in GnRH neurons. This indicates 
that intermediary pathways, particularly involving 
kisspeptin, are responsible for transmitting LEP’s 
signals to the reproductive axis [68]. Kisspeptin may 
thus serve as a key link between LEP signaling and 
reproductive hormone regulation. This model aligns 
with findings implicating the LEP/LEPR and kisspeptin/
KiSS-1 receptor systems as central to puberty initiation. 
The pharmacophore region of kisspeptin, which binds 
to and activates GPR54, initiates intracellular cascades 
that drive GnRH secretion—an essential process for the 
onset of puberty and reproductive maintenance [69].

Kisspeptin also acts as a metabolic sensor, convey-
ing information about energy status to the central 
nervous system. It regulates positive and negative 
feedback loops of gonadal steroids and is sensitive to 
nutritional changes. Under physical stress or energy 
deficits (e.g., excessive exercise and fasting), KiSS-1 
expression may decrease, impairing fertility [70, 71]. 
Pubertal initiation and activation of the HPG axis are 
closely linked to body fat and energy balance. Elevated 
serum kisspeptin levels have been observed in obese 
individuals, indicating an overabundance of energy 
reserves [72]. In obese mice, increased LEP and 
inflammatory cytokines reflect an excess energy status; 
however, paradoxically, obesity may suppress kisspeptin 
expression and impair HPG axis function due to LEP 
resistance and inflammatory interference [73].

Both short-  and long-term changes in energy 
balance modulate LEP signaling, which feeds back to the 
hypothalamus to influence reproductive hormones. In 
LEP-deficient obese mice, reduced kisspeptin expression 
and neuron count have been observed [73]. Although 
kisspeptin neurons appear to contain LEPRs, their 

Figure  4: Mechanism of kisspeptin and leptin synergy. (a) Normal physiology and (b) obese or lean pathology in small 
ruminants [Source: The figure was generated by the authors].
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function is compromised in states of LEP resistance, 
affecting both central and peripheral systems [74]. 
LEP replacement therapy in such models has restored 
fertility by correcting GnRH secretion defects, 
underscoring the pivotal role of intact LEP–kisspeptin 
signaling in reproductive competency [75].

BCS and hormonal regulation in small ruminants
BCS is a practical and widely adopted tool for 

evaluating the nutritional and physiological status of 
small ruminants, such as goats and sheep [76]. BCS 
significantly influences reproductive performance 
by modulating the secretion of key metabolic and 
reproductive hormones, particularly LEP and kisspeptin. 
LEP, secreted primarily by adipose tissue, serves as a 
signal of energy reserves to the brain, while kisspeptin, 
a hypothalamic neuropeptide, plays a central role in 
stimulating GnRH secretion, which subsequently drives 
the release of FSH and LH.

Correlation between BCS and LEP in small ruminants
LEP is a critical protein hormone involved in 

regulating appetite, energy balance, and body weight in 
both humans and livestock, including small ruminants. 
Acting through central pathways in the hypothalamus, 
LEP signals satiety and reduces food intake, thereby 
directly impacting BCS. It is primarily produced by 
white adipose tissue, although its gene expression 
has also been documented in embryonic tissues [78], 
mammary glands [79], the intestine, abomasum, 
duodenum, and hypothalamus in ruminants [80]. LEP 
levels reflect the animal’s nutritional and health status, 
making it a valuable indicator in livestock management 
for optimizing diet, body mass, and reproductive 
efficiency [77].

A robust positive correlation between serum LEP 
concentrations and fat mass has been established across 
various species, including humans [81], rats [82], sheep 
[83], and cattle [84]. Beyond its metabolic role, LEP 
modulates a wide range of physiological processes, 
such as endocrine regulation, immune responses, 
reproductive function, renal activity, hematopoiesis, and 
angiogenesis [85]. LEP exerts anorexigenic effects and 
enhances sympathetic nervous system activity, thereby 
increasing basal metabolism and energy expenditure. 
These energy-related signals are integrated within the 
hypothalamic network to activate neuroendocrine 
pathways controlling reproductive function [86].

Gallego-Calvo et al. [87] reported that animals 
with reduced BCS exhibited impaired ovarian responses, 
lower estrus expression, and diminished reproductive 
performance. However, the lack of variation in plasma 
LEP among experimental groups suggests that other 
factors may influence these reproductive parameters. 
Consistent with this, a prior study by Henry et al. [88] 
indicate that short-term energy restriction, such as fasting 
for 32 h or reduced feed intake over 94 days [89], does 
not significantly alter plasma LEP levels in lean sheep.

Nevertheless, BCS remains a reliable indicator of 
energy balance and stress adaptation. Gámez-Vázquez 
et al. [90] demonstrated a direct correlation between 
BCS and plasma LEP concentrations in goats. LEP plays 
a key role in pubertal onset, and its serum levels are 
positively correlated with BCS during the breeding 
season. This relationship has been further validated by 
Zhang et al. [91] and Towhidi et al. [92] in sheep, who 
found significant correlations between BCS, LEP, and 
FSH levels in Iranian fat-tailed ewes during mating.

Correlation between BCS and kisspeptin in small 
ruminants

Current research highlights the pivotal role 
of kisspeptin as an intermediary regulator of GnRH 
secretion in the hypothalamic control. Nutritional 
deficits, such as those induced by food restriction 
or prolonged fasting, lead to a decline in BCS, which 
subsequently suppresses kisspeptin gene expression 
and peptide production [47]. This inhibition disrupts the 
GnRH –LH axis, particularly during the anestrus season, 
resulting in reduced frequency and amplitude of GnRH 
and LH pulses. The hypothalamus integrates multiple 
metabolic signals, including circulating insulin and LEP 
levels, to assess the animal’s nutritional status and 
modulate GnRH release through kisspeptin signaling. 
In ewes, dietary restrictions have been shown to 
impair hormone secretion and suppress gonadotropin 
release [93].

BCS is closely linked to reproductive performance 
in small ruminants. Animals with low BCS often 
experience delayed puberty, reduced conception rates, 
and irregular estrous cycles. Conversely, individuals with 
optimal BCS display enhanced reproductive efficiency 
and consistent cyclicity. Kisspeptin plays a central role in 
initiating this reproductive activity by stimulating GnRH 
secretion, which drives the subsequent release of LH 
through the hypophysial portal circulation. In sheep and 
goats, kisspeptin neurons are primarily distributed in 
the mPOA and ARC [94].

Expression of the KiSS-1 gene and its encoded 
peptide is seasonally regulated. During the anestrus 
period, kisspeptin expression in the ARC is significantly 
reduced compared to the breeding season. Experimen-
tal administration of kisspeptin in anestrus females 
has been shown to induce ovulation, suggesting that 
seasonal fluctuations in receptor expression and 
peptide availability modulate responsiveness. The 
heightened effect of kisspeptin during the non-breeding 
season may be attributed to the increased expression 
of its receptor, GPR54, in GnRH neurons. Supporting 
this, a previous study by Smith et al. [95] reported a 
5-fold increase in the number of kisspeptin-expressing 
neurons in the ARC during the breeding season 
compared to the non-breeding season. The limited 
number of kisspeptin neurons during anestrus may 
contribute to variability in detection and quantification 
across studies.
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In addition to its reproductive function, kisspeptin 
and GPR54 also influence seasonal and metabolic 
regulation. GPR54 is not only highly expressed in 
reproductive tissues but also detected in the pancreas, 
where kisspeptin potentiates glucose-stimulated 
insulin secretion, implicating a role in pancreatic 
β-cell activity [96]. These findings emphasize the 
responsiveness of kisspeptin expression to nutritional 
cues. Consequently, fluctuations in BCS can alter 
kisspeptin signaling pathways, potentially impacting 
reproductive performance and metabolic homeostasis 
in small ruminants.

RELATIONSHIP BETWEEN KISSPEPTIN, LEP, AND 
BCS IN SMALL RUMINANT REPRODUCTION

Kisspeptin actions in small ruminant reproduction
Kisspeptin was initially identified for its role in 

inhibiting tumor metastasis. Subsequent discoveries 
have established its critical involvement in reproductive 
physiology, particularly through its stimulation of GnRH 
and LH secretion. In small ruminants, LH is released from 
the anterior pituitary as part of the neuroendocrine 
cascade that governs reproductive processes (Figure 5). 
Increasing attention has been paid to the role of 
kisspeptin in the metabolic regulation of reproduction, 
puberty onset, and sex steroid feedback modulation. 
Kisspeptin and its receptor GPR54 have emerged as 
essential components in the control of the reproductive 
axis in ruminants.

Kisspeptin as a puberty inducer
During the onset of puberty, kisspeptin-expressing 

neurons in the anteroventral periventricular nucleus 
(AVPV) of both male and female animals reach adult-
like levels, indicating their involvement in stimulating 
GnRH neurons, which are critical for pubertal initiation. 
In ruminants, the pubertal transition is marked by a 
reduced sensitivity to estradiol’s inhibitory feedback 
on LH secretion. Kisspeptin, along with neurokinin B 
(NKB), which is co-expressed in many hypothalamic 

neurons, appears to facilitate this transition [97]. Hu 
et al. [98] have confirmed that kisspeptin induces 
puberty by activating GnRH release, which in turn 
stimulates pulsatile secretion of LH and FSH through 
GPR54 signaling.

In male knockout mice lacking KiSS-1 or GPR54, 
testicular development and testosterone production 
are arrested, further supporting the central role of 
kisspeptin in pubertal regulation [13]. While some 
studies by Samir et al. [17], Greives et al. [99], and 
Ando et al. [100] suggest minimal GPR54 expression 
in Leydig cells, this remains a topic of scientific 
debate [101]. Nonetheless, strong kisspeptin activity 
has been observed in round spermatids within the 
seminiferous tubules, and GPR54 expression has 
been confirmed in Sertoli cells, implying a possible 
role in enhancing sperm maturation and motility 
[13, 102]. Furthermore, elevated levels of kisspeptin 
and GPR54 have been detected in adult goats 
compared to prepubertal counterparts, coinciding 
with higher testosterone concentrations, supporting 
the hypothesis that kisspeptin contributes to pubertal 
initiation [18]. In a previous study, administration 
of 10 µM kisspeptin for 24 h increased testosterone 
production and upregulated KiSS-1 and GPR54 
expression in Leydig cells. Interestingly, a higher 
concentration of 100 µM led to reduced testosterone 
levels in prepubertal Shiba goats, suggesting a dose-
dependent biphasic effect [103].

In females, kisspeptin neurons cooperate 
with NKB to initiate puberty through interneuronal 
communication, with both peptides co-localized in the 
same hypothalamic neurons [5, 63]. Similar to male 
models, the absence of kisspeptin or NKB results in 
failure of pubertal development in female sheep [3]. 
In ewes approaching puberty, numerous kisspeptin-
immunoreactive fibers form close appositions with GnRH 
neurons, and this connectivity increases significantly 
following puberty. In addition, kisspeptin expression in 
the ARC of the hypothalamus rises during the normal 
reproductive cycle, underscoring its importance in the 
maintenance of female reproductive function [63].

Kisspeptin as a potent stimulator of GnRH secretion
Kisspeptin has been widely recognized as one 

of the most potent stimulators of GnRH secretion in 
adult animals. Sharma et al. [104] have demonstrated 
that exogenous administration of kisspeptin effectively 
stimulates the release of GnRH, LH, and FSH from the 
pituitary gland. In female ruminants, two distinct modes 
of GnRH secretion have been characterized: A pulsatile 
mode and a surge mode. Pulsatile GnRH secretion 
governs the baseline release of LH and FSH, essential 
for follicular development and steroidogenesis. In 
contrast, the surge mode, typically occurring during the 
preovulatory phase of the estrous cycle, is responsible 
for inducing the LH surge that triggers ovulation and 
corpus luteum formation.

Figure  5: Kisspeptin actions during small animal 
reproduction [Source: The figure was generated by the 
authors].
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Pulsatile GnRH secretion is tightly regulated 
through a negative feedback loop involving sex steroids 
secreted by developing follicles and the corpus luteum. 
On the other hand, surge-mode secretion is governed 
by a positive feedback mechanism, wherein elevated 
estradiol levels from mature follicles stimulate a massive 
release of GnRH, ultimately leading to ovulation [66].

Recent evidence suggests that ARC kisspeptin 
neurons – particularly those co-expressing NKB and 
dynorphin (collectively termed KNDy neurons) – are 
critical components of the GnRH pulse generator. Within 
this neuronal network, NKB exerts a stimulatory effect 
while dynorphin provides inhibitory input, together 
regulating kisspeptin activity. This interplay drives the 
rhythmic oscillations in kisspeptin output that translate 
into pulsatile GnRH release [105]. Moreover, kisspeptin 
has been hypothesized to modulate irregular GnRH 
firing patterns during specific reproductive states. The 
majority of hypothalamic GnRH neurons in rodents 
express the KiSS-1R, and ex vivo studies using rat 
hypothalamic explants have confirmed kisspeptin’s 
stimulatory action on GnRH release. Additionally, in vitro 
experiments have demonstrated that kisspeptin can 
pharmacologically stimulate gonadotropin production 
in pituitary cells and tissue explants [43].

Sex steroid-mediated feedback regulation of GnRH 
secretion

Sex steroids, particularly estrogen and 
progesterone, are principal modulators of the 
gonadotropic axis and exert dual regulatory control, 
positive and negative, over GnRH secretion. Estrogen, 
for example, can elicit a preovulatory LH surge in 
females during the follicular phase, representing a 
classic example of positive feedback. However, this 
effect is limited to specific stages of the ovarian cycle 
and is not observed under basal conditions.

In ewes, KiSS-1 mRNA expression in the ARC 
increases significantly during the late follicular phase of 
the estrous cycle, when circulating estrogen levels are 
at their peak. During the lambing phase – characterized 
by heightened estrogenic activity – kisspeptin 
neurons in the ARC receive enhanced synaptic input 
compared to those in the luteal phase. This dynamic 
highlights the involvement of ARC kisspeptin neurons 
in mediating estrogen-induced negative feedback on 
GnRH secretion.

In contrast, kisspeptin neurons located in the POA 
and AVPV are implicated in positive feedback regulation. 
Estrogen acts directly on these neurons to enhance 
kisspeptin expression, facilitating the preovulatory 
GnRH surge [57]. The dichotomous role of kisspeptin 
neurons, negative feedback in the ARC and positive 
feedback in the POA/AVPV, is essential for coordinating 
reproductive hormone dynamics across the estrous 
cycle.

The dual action of kisspeptin in integrating sex 
steroid feedback is illustrated in Figure 6 [106], which 

depicts how estrogen modulates GnRH release through 
region-specific activation or suppression of kisspeptin 
neurons.

LEP ACTIONS DURING SMALL RUMINANT 
REPRODUCTION

LEP influences reproductive physiology in small 
ruminants through both central and peripheral 
mechanisms. It modulates the HPG axis and exerts 
direct effects on the ovaries, uterus, oocytes, and 
developing embryos. Genetic polymorphisms in the LEP 
gene (LEP/Sau3AI) and its receptor (LEPR/T945M) have 
been linked to economically significant reproductive 
traits, including milk yield, lambing interval, and age at 
first lambing [107]. Fertile animals have been shown to 
exhibit higher circulating LEP levels than repeat breeders, 
suggesting LEP’s role in reproductive efficiency [108]. 
Ninpetch et al. [108] have confirmed a relationship 
between LEP gene polymorphisms, circulating LEP 
concentrations, and reproductive outcomes in small 
ruminants.

Central effects of LEP on the HPG axis
LEP plays a crucial role in regulating energy 

homeostasis, feed intake, and neuroendocrine 
signaling. Its central reproductive action is primarily 
mediated through the HPG axis. The hypothalamus, 
the key integrative center for metabolic and endocrine 
cues, expresses LEP receptors (ObRs), particularly in 
the ARC and ventromedial hypothalamus, as well as in 
the anterior pituitary of several species, including pigs, 
ewes, rats, and mice [109, 110].

The LEP receptor gene (obR) encodes a cytokine 
receptor with six isoforms generated through alternative 
splicing of 20 exons. These include four short forms 
(obRa, obRc, obRd, and obRf), a long form (obRb), and 
a soluble form (obRe) [111]. The long isoform obRb 
(1,162 amino acids) mediates the biological functions of 
LEP through its interaction with Janus kinase-2 (JAK2), 
a cytoplasmic tyrosine kinase. Binding of LEP to obRb 
activates JAK2 autophosphorylation and downstream 
intracellular signaling cascades [112].

LEP has been shown to increase the pulsatility of 
GnRH in the ARC without affecting pulse amplitude, 
indicating a modulatory role rather than a direct 
initiator [113]. GnRH neurons – key regulators of the 
HPG axis – are primarily modulated by neurotransmitters 
such as GABA, as well as neuropeptides including 
kisspeptin and NPY. Although LEP does not act directly 
on GnRH neurons (which lack LEPRs), it exerts its 
influence through intermediary pathways involving 
kisspeptin neurons [114].

In fasted ewes, LEP administration restores LH 
levels, highlighting its role as a permissive factor for the 
onset of puberty [115]. However, LEP alone does not 
stimulate LH secretion in prepubertal ewes, as shown 
in a study where 10-day LEP treatment failed to induce 
LH pulses [28]. Similar findings in goats demonstrate 
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that LEP administration affects LH secretion only 
under specific metabolic conditions, such as in fasted 
or energy-flushed animals, but not in those fed ad 
libitum [116].

LEP concentrations typically rise from the 
preovulatory to the follicular phase, implicating LEP in 
the LH surge and ovulatory mechanisms. Administration 
of LEP at physiological concentrations (10⁻8–10⁻7 M) 
enhances FSH secretion, whereas supraphysiological 
doses (>10⁻5 M) reduce FSH levels, and sub-threshold 
levels (<10⁻8 M) exert no measurable effect [117].

Sexual dimorphism and nutritional influence on LEP 
levels

Sexual dimorphism in LEP concentrations has 
been documented in sheep, with rams consistently 
exhibiting lower levels than females, consistent with 
findings in other mammalian species. Prepubertal ewe 
lambs display significantly higher plasma LEP levels 
than male lambs of comparable age and nutritional 
status [118]. Similarly, adult ewe lambs have been 
reported to exhibit greater LEP concentrations than 
both intact and castrated rams [119]. These differences, 
while genetically influenced, are also modulated by 
environmental factors, such as dietary intake and body 
fat composition. Obesity and overnutrition can elevate 
LEP levels, although this may lead to LEP resistance, 
which negatively impacts reproductive function.

Peripheral effects of LEP on the ovary and uterus
Ovarian follicular development is regulated by 

intricate interactions between gonadotropins, local 
growth factors, and metabolic signals. LEP has been 
shown to influence folliculogenesis by modulating 
granulosa cell proliferation, steroid hormone production, 
and apoptotic pathways [120]. In vitro studies using 
ovarian cells from various species (rats, cattle, pigs, 
and humans) have demonstrated that LEP can either 
stimulate or inhibit the secretion of key reproductive 
hormones such as progesterone, androgens, and 
estradiol. In goats, fasting-induced reductions in 
circulating LEP have been linked to impaired luteal 
function and disruptions in estrus, suggesting LEP’s 
involvement in ovarian regulation under metabolic 
stress [121].
LEP exerts both inhibitory and stimulatory actions on 
ovarian function:
•	 Inhibitory actions:

1.	 LEP suppresses insulin, IGF-1, transforming 
growth factor-β, and glucocorticoid-induced 
steroidogenesis in granulosa cells.

2.	 Acute LEP administration in gonadotropin-
primed immature animals has been shown to 
inhibit ovulation.

3.	 In preantral follicles, LEP interferes with FSH-
induced growth and maturation [122].

Figure 6: The mechanism of kisspeptin-mediated positive and negative feedback control of gonadotropin-releasing hormone 
secretion by sex steroids [106].
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•	 Stimulatory actions:
1.	 LEP accelerates the onset of puberty in small 

ruminants [123].
2.	 It promotes ovulation in the absence of GnRH, 

especially in animals pre-treated with equine 
or human chorionic gonadotropins.

3.	 LEP activates intracellular signaling pathways, 
namely JAK2/STAT3 and MEK1/2, to enhance 
oocyte meiotic maturation and developmental 
competence in rabbit models [124].

Direct effects of LEP on oocytes and embryos
An in vitro study by Alshaheen et al. [125] 

demonstrated that LEP supplementation at 
concentrations of 10, 100, and 1000  ng/mL in 
culture media accelerates preimplantation embryo 
development and increases blastocyst cell numbers, 
particularly in the trophectoderm layer. LEP modulates 
oocyte maturation through the activation of specific 
transcription factors, particularly via the STAT3 pathway, 
which is crucial for nuclear maturation. The surrounding 
cumulus cells significantly enhance LEP signaling by 
mediating LEP–STAT3 communication during oocyte 
meiosis. Notably, only the full-length isoform of the 
LEPRb contains the intracellular domains required to 
activate the JAK2/STAT3 and MAPK pathways, which are 
essential for these reproductive functions [126].

Correlation between BCS and reproductive perfor-
mance in small ruminants

BCS serves as a reliable indicator of nutritional 
status, energy balance, and reproductive potential 
in goats and sheep [127]. Regular monitoring of 
BCS – especially during critical periods such as pre-
drying, lambing, post-lambing (30–60  days), mating 
preparation, and breeding – can optimize reproductive 
outcomes. BCS assessments typically involve palpating 
skeletal landmarks such as the hooks, pins, transverse 
and spinous processes, tailhead, and rib region [128].

BCS is directly correlated with internal energy 
reserves and has been linked to reproductive traits 
including estrus onset, ovulation rate, fertility, and 
gestational success. It influences hypothalamic 
GnRH activity and pituitary sensitivity to GnRH and 
indirectly modulates ovarian hormone profiles and the 
neuroendocrine responsiveness of the HPG axis [37].

The recommended BCS range for dairy goats during 
the rearing period is 3.0–3.5 (on a 5-point scale) [128]. 
A  minimum BCS of 2.75 is suggested to minimize the 
risk of seasonal anestrus. Higher BCS is associated 
with earlier estrus onset, regular cycles, higher service 
rates, and improved conception. Conversely, a low 
BCS is associated with ovarian dysfunction, including 
anovulation, and reduced levels of cholesterol, glucose, 
calcium, and magnesium in follicular fluid [127, 129]. 
Enhanced reproductive performance in high-BCS goats 
may be attributed to elevated insulin and glucose levels, 

which improve metabolic support for reproductive 
function [128].

BCS should ideally not exceed 3.5 to avoid excessive 
adiposity, which can also impair reproduction. Goats with 
BCS 3.5 show the lowest incidence of anestrus, whereas 
those with a BCS of 1.5 exhibit the highest [130]. Proper 
energy reserves are essential for maintaining fertility, 
particularly in dairy cows. Sitaresmi et al. [127] and 
Yilmaz et al. [131] have consistently reported that higher 
BCS at mating correlates with increased fecundity and 
larger litter sizes. Furthermore, ewes with BCS 3 during 
mid-pregnancy demonstrate higher maternal behavior 
scores compared to those with BCS 2. However, both 
extremely low and excessively high BCS values have 
been linked to dystocia, indicating the importance of 
maintaining optimal BCS for reproductive health [132].

Effects of kisspeptin excess and deficiency
Kisspeptin, a neuropeptide primarily produced 

in the hypothalamus, plays a crucial role in regulating 
reproductive function by controlling the HPG axis. 
It is synthesized by two major neuronal populations 
located in the rostral periventricular region of the third 
ventricle (RP3V) and the ARC. Kisspeptin’s primary role 
is the stimulation of GnRH neurons, which promotes 
the secretion of LH and FSH, critical hormones for 
folliculogenesis, ovulation, and reproductive cyclicity.

Energy balance has been shown to exert 
a modulatory effect on kisspeptin signaling. 
Undernutrition or overnutrition can suppress the 
kisspeptin system, leading to altered reproductive 
output. In such cases, reduced expression of KiSS-1 and 
its receptor KiSS-1R (GPR54) contributes to attenuated 
LH pulsatility and disruption of HPG axis activity, 
particularly during periods of physiological or metabolic 
stress [13, 133].

Kisspeptin functions in tandem with GnIH, 
forming a dual regulatory system: kisspeptin stimulates, 
whereas GnIH suppresses, reproductive function. Their 
opposing actions respond dynamically to internal (e.g., 
hormonal status and energy reserves) and external 
(e.g., photoperiod and nutrition) cues, thereby fine-
tuning reproductive activity in small ruminants [134].

Deficiency in kisspeptin or its receptor results in 
significant reproductive dysfunction. In various species, 
including humans, inactivating mutations in KiSS-1R, 
TAC3 (NKB), or TACR3 (its receptor) lead to pubertal 
failure and hypogonadotropic hypogonadism [135]. 
Experimental models demonstrate that a functional 
kisspeptin response is necessary to restore GnRH-
induced LH pulsatility and resume normal pubertal 
progression [98]. Although direct evidence in goats 
remains limited, kisspeptin deficiency in other mammals 
has been associated with reduced ovulation rates 
and impaired oocyte quality, underscoring the need 
for species-specific research to improve reproductive 
health and productivity in goats.



doi: 10.14202/vetworld.2025.1614-1633

1625

Effects of LEP excess and deficiency
LEP, an adipocyte-derived hormone, is a critical 

regulator of energy balance, feed intake, immune 
function, and reproduction in small ruminants. In 
goats, LEP influences multiple physiological processes, 
including growth, lactation, metabolic stability, 
and reproductive performance. Administration of 
recombinant bovine LEP has been shown to enhance 
feed intake, body weight gain, and milk yield in lactating 
goats [136].

LEP also contributes to reproductive function 
by acting on the hypothalamus to modulate GnRH 
secretion and influence the production of LH and FSH. It 
is particularly important for signaling sufficient energy 
reserves necessary for the onset of puberty, estrus 
expression, and successful conception. Moreover, 
LEP has been implicated in reducing the incidence 
of metabolic disorders such as fatty liver, ketosis, 
and mastitis, thereby supporting overall health and 
reproductive capacity [33, 137].

However, chronic caloric overconsumption 
may lead to LEP excess and the development of LEP 
resistance, a condition in which the sensitivity of LEPRs 
is diminished. This results in impaired regulation of 
appetite and energy metabolism, often culminating in 
obesity. In goats, LEP resistance can adversely affect 
reproductive performance by disrupting hormonal 
signaling pathways essential for ovarian function, estrus 
behavior, and fertility [138].

In contrast, LEP deficiency, often associated with 
negative energy balance or malnutrition, may result 
in delayed puberty, anestrus, and reduced conception 
rates due to insufficient stimulation of the reproductive 
axis. Thus, optimal LEP concentrations are crucial for 
maintaining reproductive efficiency in small ruminants.

Kisspeptin and LEP as potential reproductive markers 
and therapeutic agents in small ruminants

Kisspeptin and LEP, due to their regulatory roles 
in reproduction and energy metabolism, present 
significant potential as genetic markers and therapeutic 
targets for improving reproductive performance in small 
ruminants. Their protein functions and polymorphic 
variants influence key reproductive traits, including 
litter size, puberty onset, and hormone secretion.

Kisspeptin: Genetic markers and therapeutic potential
Kisspeptin has been identified as a central regulator 

of the HPG axis. In Indian goat breeds, SNPs such as 
g2540 C>T in the KiSS1 gene (with CT and TT genotypes 
predominating over CC) have been shown to have a 
potential association with reproductive traits [139]. In 
the Jining Gray goat, polymorphisms in intron 1 (G296C, 
G45T, and T505A) and exon 3 (G3433A and C3688A) are 
associated with improved fecundity. Similarly, Chinese 
goats exhibit SNPs (G484G>A, G1147T>C, G1317G>A, 
G1428_1429delG, and G2124C>T) linked to higher 
litter size [140]. In goats, SNPs in exons 1–3 of the KiSS1 

gene are more strongly associated with litter size than 
mutations in exons 4–12, likely due to their greater 
impact on mRNA stability and protein structure [140]. 
In ewes, polymorphisms in exons 1, 2, and 5 are also 
correlated with fecundity traits [141].

Mutations in KiSS1 or GPR54 impair reproductive 
development, delay puberty, disrupt Leydig cell activity, 
and alter gonadal function, confirming the gene’s critical 
role in reproductive maturation [98, 135]. However, 
further mechanistic studies are warranted to investigate 
how LEP resistance might influence kisspeptin signaling 
and its downstream effects on pubertal timing and 
fertility [7].

Therapeutically, kisspeptin shows promise in 
enhancing reproductive function. Administration of 
10 µM kisspeptin for 24 h has been shown to increase 
testosterone production in goat Leydig cells [13]. 
Subcutaneous injection of kisspeptin-10 (KP-10) at 
doses of 5  µg/kg body weight (BW) in male Shiba 
goats [142] and 1.5–10  mg/kg BW in females [143] 
significantly stimulates GnRH and LH secretion. In 
addition, KP-10 injection in ovariectomized goats and 
ewes elevates circulating GnRH and steroid hormones 
such as estrogen and progesterone [143]. Kisspeptin 
analogs have also been reported to enhance milk 
production in ruminants [144], potentially through 
improved neuroendocrine stimulation of lactogenesis.

LEP: Polymorphisms and therapeutic implications
LEP contributes to reproductive physiology by 

modulating the metabolic-reproductive axis, including 
lactogenesis, litter size, nutritional balance, and HPG 
axis activity [33]. In goats, polymorphisms in LEP, 
particularly in intron 1, influence RNA expression, 
feed intake, and nutrient assimilation [145]. These 
variations affect metabolic hormones, thyroid function, 
and feeding behavior, thereby influencing reproductive 
efficiency [146].

In males, mutations at the LEP 170G>A locus 
have been associated with altered sperm motility and 
viability. Another SNP, 332G>A in the Sanjabi breed, 
has been linked to infertility, reflecting the deleterious 
effects of amino acid changes on reproductive protein 
function [147, 148]. In females, LEPR polymorphisms 
have been associated with seasonal estrus expression, 
puberty onset, gestational success, and milk 
yield [149, 150]. These associations may be mediated by 
the receptor’s expression in the suprachiasmatic nucleus 
– a key circadian regulator – and its communication with 
the pineal gland.

Therapeutically, LEP administration at 1–100 ng/mL 
has been shown to enhance oocyte nuclear maturation 
by activating the MAPK and JAK2/STAT3 signaling 
pathways [120]. LEP injections at various physiological 
doses stimulate the onset of estrus in seasonally 
breeding ewes and does [115], and infusion of 
1–25 µg/h for 8 days has been reported to elevate GH, 
FSH, and LH pulse frequency in ewes [151].
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Marker-assisted selection and therapeutic applications
The genetic variability of KiSS1, LEP, and their 

respective receptors (GPR54 and LEPR) holds significant 
promise for marker-assisted selection programs aimed 
at enhancing reproductive traits in goats and sheep. In 
addition, their physiological functions position them as 
candidates for therapeutic intervention in managing 
infertility, delayed puberty, and other reproductive 
disorders. The strategic use of kisspeptin and LEP 
analogs or agonists could help sustain reproductive 
performance in metabolically challenged or subfertile 
livestock, offering both genetic and pharmacological 
solutions for enhancing productivity in small ruminant 
systems.

CONCLUSION

This review consolidates the pivotal roles of 
kisspeptin and LEP in regulating reproductive physiology 
in small ruminants, emphasizing their mechanistic 
influence on the HPG axis, metabolic integration, and 
reproductive hormone secretion. Kisspeptin acts as a 
central stimulator of GnRH, LH, and FSH release, initiating 
and maintaining reproductive cyclicity, pubertal 
onset, and ovulation. LEP, a metabolic hormone, 
complements kisspeptin signaling by conveying energy 
availability to the reproductive axis and modulating the 
neuroendocrine response to nutritional status.

Practical applications of these findings include 
the use of KiSS1 and LEP gene polymorphisms as 
candidate markers in genetic selection programs 
aimed at improving reproductive traits such as litter 
size, puberty onset, and fertility rates. Moreover, the 
administration of kisspeptin and LEP analogs offers 
therapeutic potential for overcoming reproductive 
inefficiencies, especially under metabolic or seasonal 
constraints. Controlled kisspeptin or LEP dosing has 
been demonstrated to stimulate ovulation, support 
oocyte maturation, and enhance steroidogenesis, even 
in subfertile or prepubertal animals.

The strengths of this review lie in its integrative 
focus, encompassing molecular, physiological, and 
applied aspects of reproductive endocrinology in small 
ruminants. It provides comparative insights into gene 
polymorphisms across breeds and highlights synergistic 
interactions between metabolic and reproductive 
signaling pathways.

However, certain limitations exist. Most 
mechanistic data on kisspeptin and LEP originate from 
rodent or human models, with limited functional 
validation specific to goats and sheep. In addition, 
while several polymorphisms have been statistically 
associated with reproductive traits, functional causality 
and tissue-specific expression studies remain sparse. 
The interactions between LEP resistance and kisspeptin 
signaling under field conditions also remain poorly 
understood.

Future research should prioritize functional 
genomics to validate causal SNPs, explore LEP–
kisspeptin cross-talk in energy-deficient states, and 
assess the long-term impacts of exogenous hormone 
administration on fertility, offspring viability, and 
endocrine homeostasis. Advancing transcriptomic and 
proteomic profiling in hypothalamic and gonadal tissues 
across physiological stages will provide deeper insights 
into the regulation of reproductive competence.

Kisspeptin and LEP emerge as promising 
reproductive biomarkers and therapeutic agents in 
small ruminant production systems. Their strategic 
integration into breeding and reproductive management 
programs could enhance fertility outcomes, especially 
in nutritionally challenged environments. Unlocking 
their full potential will require translational research 
linking molecular insights to field-based applications in 
goat and sheep husbandry.
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