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A B S T R A C T 

Background and Aim: The Alope village chicken is an indigenous Indonesian line developed to combine local adaptability with 

improved growth potential. However, age-specific physiological and metabolic reference data remain limited, constraining 

evidence-based feeding and health management. This study aimed to integrate blood biochemical profiling and plasma 

metabolomics to characterize age-related metabolic changes, establish baseline reference values, and identify putative age-

discriminant biomarkers in Alope village chickens. 

Materials and Methods: A cross-sectional design was applied using 30 clinically healthy female Alope village chickens (Gallus 

gallus domesticus), stratified into three age groups: G1 (8 weeks), G2 (12 weeks), and G3 (16 weeks) (n = 10 per group). Blood 

samples were collected for biochemical analysis of glucose, total protein, urea, and triglycerides using enzymatic colorimetric 

assays. Plasma metabolomic profiling was conducted using untargeted gas chromatography–mass spectrometry. Multivariate 

analyses, including principal component analysis and partial least squares–discriminant analysis, were used to explore age-

associated metabolic patterns. Discriminant metabolites were identified based on variable importance in projection values 

and descriptive receiver operating characteristic analysis. 

Results: All biochemical parameters increased significantly with age (p < 0.05), remaining within physiological reference 

ranges, indicating normal metabolic development. Multivariate metabolomic analysis revealed clear age-dependent 

separation, with distinct metabolic signatures characterizing each growth stage. Exploratory pathway mapping indicated age-

associated involvement of amino acid metabolism (glycine, serine, and threonine), lipid metabolism (glycerolipid and 

glycerophospholipid turnover), purine metabolism, the citrate cycle, and nodes linked to the pentose phosphate pathway. 

Seven metabolites demonstrated strong discriminatory performance (variable importance in projection ≈ 1.17–1.35; area 

under the curve ≥ 0.985) and were identified as putative age-related biomarkers, reflecting coordinated shifts in one-

carbon/redox balance, membrane remodeling, and nucleotide and energy metabolism. 

Conclusion: Age was the primary determinant of metabolic organization in Alope village chickens from 8 to 16 weeks. The 

integration of blood biochemistry and plasma metabolomics revealed coordinated physiological transitions from early growth 

toward enhanced energy handling and metabolic stabilization. The identified candidate metabolites provide an exploratory 

framework for defining physiological age and support the potential application of age-informed metabolic indicators for 

precision nutrition and health monitoring in indigenous village chicken production systems. 

Keywords: age-related biomarkers, Alope village chicken, blood biochemistry, Gallus gallus domesticus, GC–MS 

metabolomics, growth physiology, plasma metabolomics, precision nutrition. 
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INTRODUCTION 

The Alope variety of village chickens was developed to integrate the environmental resilience typical of 

Indonesian backyard poultry with improved growth performance and economic value under smallholder 

production systems [1]. Despite its increasing adoption, age-resolved physiological baselines specific to this 

variety remain limited, thereby constraining evidence-based ration formulation, health monitoring, and breeding 

decisions [2, 3]. In village chickens, growth from the early grower to pre-adult stages is characterized by 

coordinated changes in tissue accretion, organ functional maturation, and metabolic efficiency, which 

progressively modify nutrient requirements [4]. In practical production systems, the ages of 8, 12, and 16 weeks 

represent biologically meaningful decision points, corresponding to early growth (rapid muscle accretion and high 

protein demand), mid-growth transition (shifts in energy partitioning and metabolic flexibility), and late grower 

stages approaching physiological maturity, during which lipid deposition and metabolic homeostasis become 

increasingly prominent [4]. 

Blood biochemistry provides a concise overview of these ontogenetic changes. Circulating glucose reflects 

the balance between energy provision and utilization through glycolytic and gluconeogenic pathways; total 

protein serves as an index of nutritional adequacy and hepatic synthetic capacity; urea, although present at low 

concentrations in birds, remains a useful indicator of overall nitrogen turnover and amino acid catabolism; and 

triglycerides reflect lipid mobilization and hepatic lipoprotein packaging [5, 6]. Collectively, these markers are 

expected to change systematically with age, mirroring a shift in substrate allocation from anabolic tissue accretion 

toward enhanced management of energy reserves and more stable metabolic homeostasis at later growth stages 

[7]. 

Metabolomics complements these composite indices by resolving pathway-level mechanisms underlying 

metabolic adaptation. Mapping the plasma small-molecule spectrum to curated databases such as Human 

Metabolome Database (HMDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enables the identification 

of coordinated metabolic modules, commonly involving amino acid metabolism (including glycine, serine, and 

threonine, as well as branched-chain amino acids), carbohydrate–lipid interfaces such as glycerolipid and 

glycerophospholipid metabolism, purine turnover associated with nucleotide economy and redox buffering, and 

contributions from the pentose phosphate pathway that supply nicotinamide adenine dinucleotide phosphate 

(NADPH) for biosynthesis and oxidative defense [8, 9]. Importantly, outputs from pathway enrichment analyses 

should be interpreted as topological representations of shared metabolic nodes rather than evidence of direct 

pathway activation and therefore require careful contextualization within avian physiology [10]. 

Unlike previous poultry metabolomics studies that have largely focused on commercial broilers, breeder 

stocks, or experimental lines, the present study establishes physiological age stratification in an indigenous village 

chicken using an integrated clinical biochemistry–metabolomics approach. To date, comparable integrative 

metabolomic investigations in village or indigenous chicken populations remain scarce, highlighting a clear 

knowledge gap in poultry systems relevant to smallholder and One Health contexts [2, 11]. Accordingly, this study 

was designed as a hypothesis-driven, cross-sectional investigation, based on the premise that both classical blood 

biochemistry and pathway-level plasma metabolomic profiles would consistently reflect age-associated metabolic 

reprogramming in Gallus gallus domesticus. By addressing this gap, the study aims to generate age-specific 

biochemical and metabolomic reference baselines and to nominate candidate biomarkers that may support 

precision nutrition, health surveillance, and sustainable improvement strategies for smallholder production 

systems of Alope chickens (G. g. domesticus) [12]. 

Although blood biochemical profiling and metabolomics have been increasingly applied to poultry research, 

most existing studies have focused on commercial broilers, breeder stocks, or experimentally selected lines, with 

limited relevance to indigenous or village chicken populations. For Alope chickens, age-specific physiological 

reference values remain poorly defined, particularly those integrating classical blood biochemistry with pathway-

level plasma metabolomic information. Available reports generally provide isolated biochemical ranges or omics-

based snapshots without explicitly linking metabolic organization to biologically meaningful growth stages. 

Moreover, integrative metabolomic investigations in village chickens remain scarce, creating a critical gap in 

understanding how metabolic reprogramming progresses with age in G. g. domesticus under smallholder-relevant 

conditions. This lack of age-resolved metabolic baselines constrains the development of precision feeding 

strategies, limits early physiological monitoring, and hampers the identification of robust metabolic indicators 

applicable to sustainable village chicken production and One Health–oriented systems. 
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Accordingly, the present study aimed to characterize age-associated metabolic reorganization in Alope 

chickens by integrating blood biochemical parameters with untargeted plasma metabolomic profiling across key 

growth stages. Specifically, this study sought to (i) establish age-specific reference patterns for glucose, total 

protein, urea, and triglycerides, (ii) describe age-dependent shifts in plasma metabolomic signatures and 

associated metabolic pathways, and (iii) nominate putative age-discriminant metabolites as candidate biomarkers 

reflecting physiological maturation in G. g. domesticus. By generating integrated biochemical and metabolomic 

baselines, this work aims to support age-informed precision nutrition, physiological monitoring, and sustainable 

improvement strategies for Alope chickens under smallholder production systems. 

MATERIALS AND METHODS 

Ethical approval 

The experimental protocol, including handling and blood sampling, was approved by the Ethics Committee 

of the Faculty of Animal Science, Hasanuddin University (Approval No. 016/UN4.12/EC/VI/2025). Blood collection 

was performed by trained personnel using standard restraint to minimize stress, and all birds were monitored for 

adverse effects throughout the procedure, in compliance with applicable institutional and national animal welfare 

guidelines. 

Study period and location 

The study was conducted from June to October 2025. Clinical chemistry analyses were performed at the 

Faculty of Animal Science, Universitas Hasanuddin (Makassar, Indonesia), and metabolomic profiling was 

conducted at the National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia. 
Study design and experimental overview 

A cross-sectional experimental design was employed to characterize age-related differences in blood 

biochemical parameters and plasma metabolomic profiles of Alope village chickens (G. g. domesticus). Thereafter, 

the species is referred to as G. g. domesticus. A total of 30 clinically healthy female birds were included and 

stratified into three biologically relevant age groups: G1 (8 weeks), G2 (12 weeks), and G3 (16 weeks), with n = 10 

birds per group. Birds were reared under a semi-intensive floor housing system with litter, provided ad libitum 

access to feed and drinking water, and maintained under typical tropical environmental conditions. The primary 

objective was to conduct an age-wise comparison of classical biochemical indices and untargeted plasma 

metabolomic signatures to describe metabolic maturation during growth. Blood samples were collected in the 

morning before feeding, without prolonged fasting, to minimize postprandial variation while avoiding fasting-

induced metabolic stress. 

The analytical workflow integrated clinical chemistry assays, untargeted gas chromatography–mass 

spectrometry (GC–MS)–based plasma metabolomics, and univariate and multivariate statistical analyses to 

identify age-associated metabolic patterns and putative biomarker candidates. 

Housing, diet composition, and feeding management 

Birds were fed a commercially formulated grower diet commonly used for village and slow-growing chickens 

under semi-intensive systems. Feed and clean drinking water were provided ad libitum throughout the 

experimental period. The same diet was offered to all age groups to ensure that observed metabolic differences 

primarily reflected age-related physiological variation rather than dietary effects. The diet contained 

approximately 18%–19% crude protein and 2,800–2,900 kcal/kg metabolizable energy on a dry matter basis, 

consistent with recommended nutrient specifications for growing chickens between 8 and 16 weeks of age. Feed 

was offered twice daily, and minimal refusals were observed, indicating consistent intake across groups. 

Sample collection 

Blood was collected from the brachial (wing) vein of each bird in the morning before feeding. Two tubes 

were obtained per bird: a lithium-heparin tube for plasma intended for biochemical analysis and a dipotassium 

ethylenediaminetetraacetic acid (K₂-EDTA) tube for plasma intended for metabolomic analysis. Tubes were gently 

inverted 8–10 times, kept on wet ice, and processed within 30 min. Plasma was separated by centrifugation at 

1,500–2,000 × g for 10–15 min at 4°C, aliquoted into pre-chilled microtubes, immediately frozen, and stored at 

−80°C with a single freeze–thaw cycle maximum. Heparinized plasma was used for biochemical analyses, whereas 

EDTA plasma was used for metabolomic analyses [13]. 
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Biochemical analysis 

Glucose, total protein, urea, and triglycerides were quantified in lithium-heparin plasma by enzymatic 

colorimetry using an automated clinical analyzer (cobas c 311, Roche Diagnostics, Mannheim, Germany) with 

manufacturer-supplied reagents and calibrators. When automation was unavailable, identical chemistries were 

performed in 96-well format using a microplate spectrophotometer (Multiskan SkyHigh, Thermo Fisher Scientific, 

Waltham, MA, USA). Assay principles included the hexokinase/glucose-6-phosphate dehydrogenase (G6PD) 

method for glucose (340 nm), the biuret method for total protein (540–560 nm), the urease–glutamate 

dehydrogenase ultraviolet method for urea (decrease of nicotinamide adenine dinucleotide, reduced form 

[NADH], at 340 nm), and the glycerol-3-phosphate oxidase–peroxidase (GPO–PAP) method for triglycerides 

(~500–550 nm, with glycerol blank where applicable). 

Although uric acid (UA) is the primary nitrogenous waste product in birds, urea was included as a supportive 

indicator of general nitrogen turnover and amino acid catabolism, as commonly applied in avian biochemical 

profiling and comparative physiological studies. Each analytical batch included multilevel calibration and two-level 

internal quality controls (Liquichek, Bio-Rad Laboratories, Irvine, CA, USA). Samples were analyzed in duplicate, 

with intra-assay coefficients of variation <5% for glucose and total protein and <7% for urea and triglycerides. 

Samples exceeding predefined acceptance criteria were reanalyzed. Plasma was separated within 30 min of 

venipuncture and subjected to a single freeze–thaw cycle before analysis [14]. 

Metabolomic analysis 

Metabolite extraction and derivatization 

An untargeted plasma metabolomics approach was employed. A 50 µL aliquot of plasma was transferred 

into a 1.5 mL microtube, followed by the addition of 150 µL methoxyamine hydrochloride in methanol (1 mg/mL) 

and 350 µL extraction solvent (ultrapure water:methanol, 1:4). Samples were vortexed for 1 min and centrifuged 

at 14,171 × g for 20 min at 4°C. The supernatant was filtered through a 25-mm syringe filter and transferred to a 

new microtube. Filtrates were evaporated at 36°C using a vacuum evaporator for approximately 2 h until complete 

dryness and stored at 20°C until derivatization [15]. 

For derivatization, 100 µL N-trimethylsilyl-N-methyl trifluoroacetamide with 1% trimethylchlorosilane 

(MSTFA + 1% TMCS) was added, followed by incubation at 70°C for 1 h. Samples were centrifuged again at 14,171 

× g for 10 min at 4°C, and supernatants were transferred into amber glass GC vials. Two pooled quality control 

(QC) samples were prepared from equal volumes of all samples. Features with coefficients of variation >30% in 

QC samples were excluded, and QC-based signal correction and normalization were applied prior to multivariate 

analyses. 

GC–MS analysis 

Metabolomic profiling was performed using a GC–MS system (GCMS-QP2010, Shimadzu Co., Japan) 

equipped with an SH-RI-5MS capillary column (30 m × 0.25 mm × 0.25 µm). A 1 µL aliquot of each derivatized 

sample was injected. Injector, interface, and ion source temperatures were set at 270°C, 260°C, and 200°C, 

respectively. Helium (99.9%) was used as the carrier gas at a flow rate of 3 mL/min. The oven temperature 

program was set to hold at 80°C for 2 min, increase to 325°C at 10°C/min, and hold for 6 min. The solvent cut-off 

time was 3 min. Electron ionization was performed at 70 eV, and mass spectra were acquired over a range of 30–

600 m/z. 

Metabolite identification was performed by matching mass spectra against the National Institute of 

Standards and Technology (NIST) 20 mass spectral library and confirmed using retention index (RI) comparison 

derived from alkane standards. Identifications were assigned according to the Metabolomics Standards Initiative, 

with metabolites matched by both mass spectra and RI classified as Level 2 (putatively annotated compounds). 

Results are reported as relative abundances [16]. 

Statistical analysis 

Blood biochemical data were tested for normality using the Shapiro–Wilk test and analyzed using one-way 

analysis of variance (ANOVA), followed by Tukey’s honest significant difference post hoc test where appropriate. 

Results are presented as mean ± standard deviation, and statistical significance was set at p < 0.05. Raw GC–MS 

data were processed using MetaboAnalyst 6.0 for peak detection, deconvolution, and retention time alignment. 

Features with coefficients of variation >30% in QC samples or present in <50% of samples in at least one group 

were excluded. Data were normalized, log-transformed, and Pareto-scaled prior to analysis. Principal component 
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analysis was used for exploratory visualization, and age-discriminant metabolites were identified using partial 

least squares–discriminant analysis. Model robustness was evaluated using 7-fold cross-validation and 200 

permutation tests. Univariate metabolite differences were assessed using ANOVA with Benjamini–Hochberg false 

discovery rate correction. Metabolites with variable importance in projection >1.0 and adjusted p < 0.05 were 

considered discriminant, and receiver operating characteristic curve analysis was used to assess classification 

performance by area under the curve (AUC). Statistical analyses were conducted using SPSS version 26.0 (IBM 

Corp., Armonk, NY, USA), MetaboAnalyst 6.0, and GraphPad Prism 9.0 (GraphPad Software Inc., San Diego, CA, 

USA). 

RESULTS 

Blood biochemical parameters 

Four plasma biochemical parameters, namely glucose, total protein, urea, and triglycerides, were measured 

in Alope chickens across increasing ages (Figure 1). Glucose increased from 177.80 ± 10.32 mg/dL at 8 weeks to 

193.30 ± 10.13 mg/dL at 12 weeks and 216.60 ± 10.78 mg/dL at 16 weeks, corresponding to relative gains of 8.72% 

(8→12 weeks) and 12.05% (12→16 weeks). Total protein increased from 4.01 ± 0.14 g/dL to 4.26 ± 0.14 g/dL and 

4.54 ± 0.15 g/dL, representing increases of 6.23% and 6.57%, respectively. Urea concentrations increased from 

14.94 ± 0.65 mg/dL to 17.50 ± 0.63 mg/dL and 19.43 ± 1.12 mg/dL (17.14% and 11.03%, respectively). Triglyceride 

levels increased from 108.10 ± 4.56 mg/dL to 115.80 ± 5.41 mg/dL and 127.00 ± 6.18 mg/dL, corresponding to 

relative increases of 7.12% and 9.67%. All biochemical parameters differed significantly among age groups (p < 

0.05) and remained within published physiological reference ranges for growing chickens, indicating normal 

metabolic status throughout the study period. Effect size estimates (η²) indicated moderate to large age effects, 

particularly for glucose and triglycerides, underscoring the biological relevance of the observed age-associated 

changes. 

 

 

 

 

Figure 1: Age-related changes in blood biochemical 

parameters of Alope chickens across the 8–16-week growth 

period. Mean ± standard deviation values of glucose, total 

protein, urea, and triglycerides are shown for G1 (8 weeks), 

G2 (12 weeks), and G3 (16 weeks). Different superscript 

letters above bars within each panel indicate statistically 

significant differences among age groups (p < 0.05). The 

progressive increase in all parameters reflects coordinated 

metabolic maturation with age. 

Differential metabolite profiles 

Multivariate projection of the plasma metabolome revealed a clear age-dependent structure. The three age 

groups formed tight, non-overlapping clusters in the principal component analysis (PCA) score plot (Figure 2A), 

with G1 loading predominantly on negative PC1, G2 on positive PC2, and G3 on positive PC1/negative PC2, 

indicating marked between-group separation and limited within-group dispersion. Partial least squares–

discriminant analysis (PLS-DA) analysis (Figure 2B) identified metabolites driving this separation, with several 

HMDB-annotated features aligning toward the G3 centroid, whereas others were associated with G1 or G2, 

consistent with progressive metabolic changes across growth stages. 

Univariate screening supported these findings. The ANOVA bubble plot (Figure 3A) demonstrated numerous 

features with strong evidence of group differences, indicated by higher −log₁₀p values and larger effect 

magnitudes across the m/z–retention-time space. Similarly, hierarchical clustering analysis (Figure 3B) clearly 

separated samples by age and revealed coherent metabolite modules that increased monotonically from G1 to 

G3 or declined in the opposite direction, with G2 exhibiting an intermediate, transitional profile. The VIP score 

plot (Figure 4) ranked the metabolites contributing most strongly to class separation (VIP ≈ 1.2–1.37), with 

accompanying heat strips showing consistent age-related abundance gradients. Collectively, these analyses 
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demonstrate robust, system-level remodeling of the plasma metabolome with age in Alope chickens and define 

a focused subset of metabolites for downstream pathway analysis and validation. 

 

Figure 2. Multivariate analysis of plasma metabolites in Alope village chickens across age groups. (A) Principal component 

analysis score plot showing age-dependent clustering of samples. (B) Partial least squares–discriminant analysis biplot 

highlighting metabolites contributing to group separation. 

 

Figure 3. Differential metabolites in Alope village chickens across age groups. (A) Analysis of variance bubble plot showing 

metabolites with significant age-associated differences. (B) Hierarchical clustering heatmap illustrating age-dependent 

metabolite abundance patterns. 

Pathway-level metabolite enrichment 

Pathway enrichment analysis was performed in an exploratory manner to contextualize age-associated 

metabolite differences at the pathway-level. Twelve KEGG pathways contained at least one matched metabolite; 

however, none reached statistical significance after false discovery rate correction (all FDR ≥ 0.35). Accordingly, 

pathway-level findings are reported descriptively as associative patterns rather than causal inferences. The 

A B 

A 

B 
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glycine, serine, and threonine metabolism pathway exhibited the highest topology impact (0.331; hits = 2: 

HMDB0000167, HMDB0000139) and moderate signal intensity on the bubble plot (−log₁₀p ≈ 1–1.2). Glycerolipid 

metabolism (impact = 0.093; HMDB0000139) and the citrate cycle (impact = 0.090; HMDB0000094) also showed 

non-trivial impacts based on single metabolite hits. The pentose phosphate and glyoxylate/dicarboxylate 

pathways each included two hits (FDR = 0.347) but exhibited low impact scores (≤ 0.042 and 0.010, respectively). 

Additional single-hit associations were observed for histidine, purine, glycerophospholipid, β-alanine, and 

branched-chain amino acid biosynthesis pathways (FDR = 0.62–1.00). Overall, these results suggest that age-

associated metabolic variation is primarily linked to amino acid metabolism, with secondary contributions from 

lipid and central energy-related processes. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Partial least squares–discriminant 

analysis variable importance in projection 

score plot of differential metabolites in 

Alope village chickens across age groups. 

Biomarker candidate identification 

Supervised multivariate modeling identified seven putative biomarker candidates with high discriminatory 

contribution (VIP ≈ 1.17–1.35) and strong single-analyte classification performance (AUC ≥ 0.985). These 

candidates were derived from internal model optimization and should therefore be considered hypothesis-

generating rather than definitive diagnostic markers. Three metabolites characterized the youngest age group 

(G1): HMDB0000625, HMDB0001448, and HMDB0000177. HMDB0000139 peaked at mid-growth (G2), whereas 

HMDB0000094, HMDB0000167, and HMDB0000289 were enriched in the oldest group (G3), collectively reflecting 

age-related shifts in amino acid, purine, and carbohydrate–lipid metabolism. Group-wise boxplots demonstrated 

minimal overlap among age categories, supporting monotonic age-associated abundance trends. Despite strong 

internal discrimination, external validation using independent and preferably longitudinal cohorts is required to 

confirm robustness and minimize overfitting. From a practical standpoint, several of these metabolites are 

chemically stable and analytically accessible, supporting their potential use in future targeted assays and 

positioning them as discovery-level leads for age-informed metabolic indicators in village chicken production 

systems. 

DISCUSSION 

Age-associated metabolic reorganization 

Age emerged as the dominant axis structuring metabolism in Alope chickens. Across the 8–16-week growth 

window, concordant changes in blood biochemistry and plasma metabolomics indicate coordinated metabolic 

reorganization with growth rather than isolated shifts detected by either approach alone. The progressive 

increases in glucose, total protein, urea, and triglycerides observed in Figure 1 are consistent with a 

developmental transition from early lean tissue accretion toward greater emphasis on lipid handling and a more 

stable energy balance at later stages, with no evidence of a metabolic plateau within the studied age range [17, 
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18]. Multivariate projections clearly separated age groups in the PCA score plot and identified the metabolites 

driving this separation in the PLS-DA biplot (Figure 2), while univariate screening and hierarchical clustering 

revealed coordinated metabolite modules that increased or declined with age (Figure 3) [19,20]. Pathway-level 

trends supported these findings, with contributions from glycine–serine–threonine metabolism, glycerolipid and 

glycerophospholipid metabolism, purine metabolism, the citrate cycle, and nodes linked to the pentose 

phosphate pathway (Figure 5, Table 1) [21]. In the avian context, enrichment labels are best interpreted as 

topological descriptors of shared metabolic nodes rather than literal pathway activation, consistent with the 

dicarboxylate–tricarboxylic acid cycle. intersections suggested here [22]. 

 

 

 

 

 

Figure 5. Bubble plot of metabolite-associated pathways in Alope village 

chickens across age groups. 

Table 1: Exploratory pathway enrichment analysis of plasma metabolites across age groups in Alope village chickens. 
 

Pathway Total Hits FDR Impact Metabolite(s) 

The pentose phosphate pathway 23 2 0.34681 0.04185 HMDB0000625, HMDB0000139 

Glyoxylate and dicarboxylate metabolism 32 2 0.34681 0.00972 HMDB0000139, HMDB0000094 

Glycine, serine, and threonine metabolism 34 2 0.34681 0.33125 HMDB0000167, HMDB0000139 

Sulfur metabolism 7 1 0.62488 0.00278 HMDB0001448 

Biosynthesis of valine, leucine, and isoleucine 8 1 0.62488 0.00000 HMDB0000167 

Purine metabolism 67 2 0.62488 0.01326 HMDB0000289, HMDB0001448 

Glycerolipid metabolism 16 1 0.82987 0.09346 HMDB0000139 

Histidine metabolism 16 1 0.82987 0.22131 HMDB0000177 

Citrate cycle (TCA cycle) 20 1 0.86123 0.09038 HMDB0000094 

β-Alanine metabolism 21 1 0.86123 0.00000 HMDB0000177 

Alanine, aspartate, and glutamate metabolism 28 1 1.00000 0.00000 HMDB0000177 

Glycerophospholipid metabolism 36 1 1.00000 0.03208 HMDB0000177 

Pathway enrichment results are presented as exploratory associations. Total indicates the total number of metabolites mapped to each pathway, Hits 

represent the number of detected metabolites mapped to the pathway, FDR denotes false discovery rate–adjusted p value, Impact reflects pathway topology 

impact based on network position, HMDB = Human Metabolome Database, TCA = Tricarboxylic acid cycle. 

Pathway enrichment results are presented as exploratory associations. Total indicates the total number of 

metabolites mapped to each pathway, Hits represent the number of detected metabolites mapped to the 

pathway, FDR denotes false discovery rate–adjusted p value, Impact reflects pathway topology impact based on 

network position, HMDB = Human Metabolome Database, TCA = Tricarboxylic acid cycle. 

Functional interpretation of biomarker candidates 

Integration of biochemical and metabolomic layers enabled translation of these findings into stage-relevant 

nutritional implications. The seven putative biomarker candidates identified (Figure 6, Table 2) mapped 

consistently to three functional axes, namely one-carbon/redox economy, membrane-lipid turnover, and 

nucleotide/energy metabolism, reflecting the biochemical trajectories observed across ages. In the youngest age 

group, HMDB0000625 (pentose phosphate pathway), HMDB0001448 (sulfur and purine metabolism), and 

HMDB0000177 (histidine, β-alanine, and glycerophospholipid pathways) collectively indicate elevated 

requirements for NADPH generation, antioxidant and methyl-group capacity, histidine–carnosine buffering, and 

active membrane remodeling. From a nutritional standpoint, this stage would benefit from higher digestible 

protein density with balanced essential amino acids, adequate methionine and cysteine supply, sufficient 

glucogenic substrates to support one-carbon flux, and controlled lipid provision favoring membrane biogenesis 

over storage [23]. 
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Direction indicates the age group (G1, G2, or G3) in which the metabolite showed the highest relative 

abundance, VIP denotes variable importance in projection score derived from partial least squares–discriminant 

analysis, Pathway refers to the primary metabolic pathways associated with each metabolite, AUC represents the 

area under the receiver operating characteristic curve indicating classification performance, HMDB = Human 

Metabolome Database. 

Figure 6. Receiver operating characteristic boxplot of metabolite biomarker candidates in Alope village chickens across age 

groups. 

Table 2: Plasma metabolite biomarker candidates discriminating age groups in Alope village chickens. 
 

HMDB ID Direction VIP Pathway AUC 

HMDB0000625 G1 1.1666 The pentose phosphate pathway 1.000 

HMDB0000139 G2 1.1673 
Pentose phosphate pathway, Glyoxylate and dicarboxylate metabolism, Glycine, serine, and 

threonine metabolism, Glycerolipid metabolism 
0.985 

HMDB0000094 G3 1.1923 Glyoxylate and dicarboxylate metabolism 1.000 

HMDB0000167 G3 1.1925 Glycine, serine, and threonine metabolism, Biosynthesis of valine, leucine, and isoleucine 1.000 

HMDB0001448 G1 1.3042 Sulfur metabolism, Purine metabolism 1.000 

HMDB0000289 G3 1.2636 Purine metabolism 1.000 

HMDB0000177 G1 1.3502 Histidine metabolism, β-Alanine metabolism, Glycerophospholipid metabolism 1.000 

Direction indicates the age group (G1, G2, or G3) in which the metabolite showed the highest relative abundance, VIP denotes variable importance in 

projection score derived from partial least squares–discriminant analysis, Pathway refers to the primary metabolic pathways associated with each 

metabolite, AUC represents the area under the receiver operating characteristic curve indicating classification performance, HMDB = Human Metabolome 

Database. 

At the intermediate growth stage, HMDB0000139 showed peak abundance and bridged pentose phosphate, 
glycine–serine–threonine, glyoxylate–dicarboxylate, and glycerolipid metabolism, suggesting a transitional 
redistribution of carbon toward membrane assembly and one-carbon trafficking. At this stage, diets should 
maintain a balanced energy-to-protein ratio, ensure adequate glycine and serine availability, and provide choline 
and essential fatty acids to support phospholipid turnover without promoting excessive neutral-lipid deposition 
[4]. In the oldest chickens, enrichment of HMDB0000094 (glyoxylate–dicarboxylate metabolism), HMDB0000167 
(glycine–serine–threonine metabolism with links to branched-chain amino acids), and HMDB0000289 (purine 
metabolism) reflects increased mitochondrial flux and anaplerosis, reorganization of amino acid utilization as 
growth shifts toward maintenance, and heightened nucleotide turnover approaching physiological maturity. 
Nutritional strategies at this stage should emphasize slightly higher energy density with careful control of fat 
quality, continued amino acid balance with attention to threonine and branched-chain profiles, and 
micronutrients supporting redox balance and nucleotide economy, with field validation recommended prior to 
routine application [24]. 

Study limitations and future perspectives 

Several limitations should be considered when interpreting these findings. First, the study focused on a single 

village chicken variety with a modest sample size (n = 10 per age group), limiting statistical power and 

generalizability for omics-based inference [25]. Second, the cross-sectional design captured population-level age 

differences rather than individual developmental trajectories, and the restricted age window of 8–16 weeks 

precludes inference beyond this period [26]. Third, the metabolomics platform provided partial chemical coverage 

biased toward derivatizable compounds, and pathway enrichment signals did not withstand conservative 

multiple-testing correction, rendering pathway associations exploratory rather than confirmatory [27]. Fourth, 

UA, the principal nitrogenous waste product in birds, was not measured, and endocrine indicators of growth and 
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metabolism, including insulin, thyroid hormones, and corticosterone, were not assessed, limiting resolution of 

nitrogen handling and hormonal regulation [28]. Finally, environmental and management variability typical of 

smallholder systems was not explicitly modeled and may have influenced metabolic profiles [29]. 

Implications for village chicken production systems 

Taken together, Figures 1–6 and Tables 1–2 delineate a coherent trajectory of metabolic maturation in Alope 
chickens, in which early growth is characterized by elevated one-carbon/redox and membrane synthesis 
demands, mid-growth reflects transitional substrate redistribution, and later growth emphasizes mitochondrial 
energy handling and nucleotide turnover. Although these integrated biochemical and metabolomic patterns 
provide a robust descriptive framework, their application to precision feeding or routine physiological monitoring 
should be regarded as provisional, pending validation in larger, longitudinal cohorts under controlled dietary and 
environmental conditions. Notably, this study establishes age-stratified biochemical reference values for an 
indigenous village chicken genotype, integrates field-relevant clinical chemistry with untargeted plasma 
metabolomics, and introduces physiological age as a metabolomics-informed construct rather than relying solely 
on chronological age. By linking metabolic maturation to nutrition-sensitive pathways, this work contributes to 
sustainable poultry production and One Health–aligned food systems in low- and middle-income settings. 

CONCLUSION 

This study demonstrates that age is the primary determinant of metabolic organization in Alope chickens 
during the 8–16-week growth period. Progressive and significant increases in glucose, total protein, urea, and 
triglycerides (p < 0.05) indicate a coordinated physiological transition from early lean tissue accretion toward 
enhanced lipid handling and more stable energy balance. Concordant plasma metabolomic profiling revealed clear 
age-dependent clustering, coherent metabolite modules, and pathway-level shifts primarily involving amino acid 
metabolism, lipid turnover, purine metabolism, and central energy pathways. Seven putative age-discriminant 
metabolites were identified, showing strong internal discriminatory performance and reflecting coordinated 
changes in one-carbon/redox balance, membrane remodeling, and nucleotide and energy metabolism. 

The integration of blood biochemistry with plasma metabolomics provides a systems-level framework for 
defining physiological age in Alope chickens beyond chronological measures alone. The identified biochemical 
trends and metabolite candidates support age-informed nutritional strategies, including higher digestible protein 
density and redox support during early growth, balanced energy–protein supply with phospholipid support during 
mid-growth, and controlled energy density with optimized fat quality and amino acid balance at later stages. 
These insights have direct relevance for improving feeding efficiency, physiological monitoring, and sustainability 
in village and smallholder chicken production systems. 

Key strengths include the integration of field-relevant clinical biochemistry with untargeted plasma 
metabolomics, the establishment of age-stratified biochemical reference patterns for an indigenous village 
chicken genotype, and the identification of functional biomarker axes linked to nutrition-sensitive metabolic 
processes rather than production traits alone. The consistent agreement between univariate, multivariate, and 
pathway-level analyses reinforces the biological coherence of the findings. 

Several limitations should be acknowledged. The study was conducted on a single village chicken variety with 
a modest sample size, limiting generalizability. The cross-sectional design captured population-level age 
differences rather than individual developmental trajectories, and the metabolomics platform provided partial 
chemical coverage. In addition, pathway enrichment results were exploratory, UA and endocrine regulators were 
not measured, and environmental variability typical of smallholder systems was not explicitly modeled. 

Future research should validate these findings in larger and independent cohorts, preferably using 
longitudinal designs that track individual metabolic trajectories. Targeted quantification of candidate metabolites, 
integration with hormonal and genetic data, and evaluation under controlled dietary and environmental 
interventions will be essential to confirm robustness and translational value. Expansion of this framework to other 
village chicken populations may further enhance its applicability. 

In conclusion, this study provides an integrated biochemical and metabolomic framework for understanding 
age-related metabolic maturation in Alope chickens (G. g. domesticus). By linking physiological age to nutrition-
sensitive metabolic pathways, the findings advance precision nutrition concepts into low-input and smallholder 
poultry systems and contribute to sustainable production strategies aligned with One Health principles. 
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