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ABSTRACT

Background and Aim: Poorly managed dairy farm wastewater is a significant reservoir of antibiotic-resistant bacteria,
particularly Escherichia coli, contributing to the environmental spread of antimicrobial resistance (AMR) and posing risks to
animal and public health. Conventional wastewater treatment systems are often insufficient to inactivate these resistant
organisms. Silver nanoparticles (AgNPs), especially those synthesized by pulsed laser ablation (PLA) in liquid, offer a high-
purity, chemical-free nanomaterial with promising antimicrobial properties. This study aimed to evaluate the in vitro
antimicrobial efficacy of laser-synthesized AgNPs against antibiotic-resistant E. coli isolated from dairy cattle wastewater
within a One Health framework.

Materials and Methods: Wastewater samples were collected aseptically from 50 smallholder dairy farms in East Java,
Indonesia. E. coli isolates were identified using standard cultural, morphological, Gram staining, and biochemical (Indole,
methyl red, Voges—Proskauer, citrate) methods. Antibiotic resistance was screened using the Kirby—Bauer disk diffusion
method against streptomycin, erythromycin, penicillin, and tetracycline. AgNPs were synthesized via PLA in
polyvinylpyrrolidone medium and characterized using transmission electron microscopy, ultraviolet—visible spectroscopy,
and Fourier transform infrared spectroscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) of AgNPs were determined by broth microdilution and agar subculture methods, respectively, across
concentrations ranging from 0.195 to 100 ppm. Statistical analysis was performed using one-way analysis of variance followed
by Tukey’s post hoc test at a significance level of p < 0.05.

Results: PLA successfully produced monodisperse AgNPs with a mean diameter of 11.62 + 1.8 nm and a characteristic surface
plasmon resonance peak at 418 nm, confirming high-purity and stability. Twenty antibiotic-resistant E. coli isolates were
evaluated. MIC values ranged from 37.5 to 100 ppm, with erythromycin-resistant isolates showing the lowest MICs (45.0
10.5 ppm) and streptomycin-resistant isolates the highest (75.0 £ 33.3 ppm). Most isolates (75%) exhibited MBC values >100
ppm, indicating predominantly bacteriostatic activity at the tested concentrations. No statistically significant differences in
MIC values were observed among resistance groups (p > 0.05). A concentration of 62.5 ppm was identified as the most
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effective inhibitory dose across resistance profiles.

Conclusion: Laser-synthesized AgNPs demonstrated consistent in vitro inhibitory activity against antibiotic-resistant E. coli
from dairy wastewater, with an optimal MIC of approximately 62.5 ppm. These findings highlight the potential application of
AgNPs as a supplementary control strategy in dairy waste management and AMR mitigation, supporting an integrated One
Health approach.

Keywords: antimicrobial resistance, dairy farm wastewater, Escherichia coli, laser ablation, One Health, silver nanoparticles,
wastewater management, zoonotic bacteria.

INTRODUCTION

Antimicrobials are a cornerstone of modern public health; however, the increasing prevalence of
antimicrobial resistance (AMR), particularly in the livestock sector, poses a serious threat to the effectiveness of
infectious disease therapy in both animals and humans [1, 2]. Poorly managed dairy farm waste represents a
major source for the dissemination of antibiotic-resistant bacteria (ARB) [3]. Such waste frequently contains high
concentrations of Escherichia coli harboring antibiotic resistance genes associated with antimicrobial use in
veterinary production systems [4]. E. coli isolated from dairy cow waste has been shown to exhibit resistance to
multiple antibiotic classes, including tetracyclines, beta-lactams, macrolides, and aminoglycosides [5, 6]. The
presence of ARB in agricultural waste is not only indicative of on-farm management challenges but also constitutes
a significant environmental and public health risk [7].

Conventional wastewater treatment systems are frequently inadequate for the effective inactivation of ARB
[8], highlighting the urgent need for alternative control strategies. Silver nanoparticles (AgNPs) have
demonstrated broad-spectrum antibacterial activity against a wide range of pathogenic bacteria, including
antibiotic-resistant strains, under both in vitro and in vivo conditions [9, 10]. The antimicrobial activity of AgNPs
is mediated by multiple nonspecific mechanisms, including disruption of bacterial cell membranes, induction of
oxidative stress, and interference with essential intracellular biochemical processes, thereby limiting bacteria's
ability to develop resistance [11, 12]. The inhibitory and bactericidal effects of AgNPs against E. coli have been
consistently reported [13—15].

In the present study, AgNPs were synthesized using pulsed laser ablation (PLA) in liquid, a technique that
offers distinct advantages over conventional chemical synthesis approaches. PLA enables the production of AgNPs
with very high-purity (>99%) without residual chemical contaminants, such as reducing agents, stabilizers, or
capping agents, which are commonly associated with chemical synthesis and may interfere with antimicrobial
assessment [16]. In addition, PLA-derived AgNPs exhibit uniform particle size, high surface reactivity,
sustainability, and long-term colloidal stability. Consequently, PLA was selected as the most appropriate method
to generate AgNPs with optimal characteristics for reliable antimicrobial evaluation against antibiotic-resistant E.
coli isolates originating from livestock waste [17].

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are critical
parameters for determining effective antimicrobial doses and are widely used to assess the in vitro efficacy of
AgNPs against pathogenic isolates from livestock waste, particularly E. coli [10]. Continued refinement of AgNP
synthesis methods and evaluation at biologically relevant concentrations is expected to contribute to novel
strategies for controlling ARB in the livestock sector and reducing the environmental and public health risks
associated with AMR dissemination [9, 18].

Despite growing evidence supporting the antimicrobial potential of AgNPs against ARB, several critical gaps
remain in the context of livestock-associated environmental contamination. Most existing studies rely on
chemically synthesized or biologically derived AgNPs, which may contain residual reagents that confound
antimicrobial assessment and limit reproducibility. In addition, many investigations use reference strains rather
than field-derived ARB, reducing real-world relevance. Data on the in vitro efficacy of high-purity, PLA-synthesized
AgNPs against antibiotic-resistant E. coli originating specifically from dairy farm wastewater are scarce. Moreover,
comparative evaluations of MIC and MBC across different antibiotic resistance profiles of E. coli isolates remain
limited, hindering the identification of an optimal inhibitory concentration applicable to heterogeneous resistance
patterns. This lack of integrated evidence impedes the translation of AgNP-based interventions into practical
livestock waste management strategies to mitigate AMR dissemination within a One Health framework.

Therefore, this study aimed to evaluate the in vitro antimicrobial efficacy of PLA-synthesized AgNPs against
antibiotic-resistant E. coli isolated from dairy farm wastewater. Specifically, the study sought to determine and
compare the MIC and MBC values of AgNPs across E. coli isolates exhibiting resistance to different antibiotic
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classes, and to identify an effective inhibitory concentration applicable across resistance profiles. By using high-
purity, chemically uncontaminated AgNPs and field-derived isolates, this work aims to provide robust evidence
supporting the potential application of AgNPs as a complementary control strategy for ARB in dairy waste systems
and to contribute to AMR mitigation efforts under a One Health approach.

MATERIALS AND METHODS
Ethical approval

This study was approved by the Ethical Clearance Committee of the Faculty of Veterinary Medicine,
Universitas Wijaya Kusuma Surabaya, Indonesia (Ethics number: 97-KKE/2025). All procedures were conducted in
accordance with institutional ethical guidelines for microbiological research and environmental sampling. The
collection, transportation, and handling of dairy farm wastewater samples followed established institutional
biosafety protocols and relevant national regulations in Indonesia.

Study period and location

The study was conducted from June to August 2025 at the Veterinary Public Health Laboratory, Faculty of
Veterinary Medicine, Universitas Wijaya Kusuma Surabaya, Indonesia.

Research design

A cross-sectional study was conducted to evaluate the antimicrobial effectiveness of AgNPs synthesized
using PLA against antibiotic-resistant E. coli isolates obtained from dairy cow waste in the livestock area of Grati
District, Pasuruan Regency, East Java.

Sample collection

Wastewater samples (5 mL per farm) were collected from 50 smallholder dairy farms housing approximately
2-10 dairy cows each. Samples were obtained directly from drainage channels or wastewater storage tanks using
sterile pipettes. To minimize external contamination, sampling was performed at a depth of 5-10 cm below the
wastewater surface under aseptic conditions. Each sample was labeled with farm identity, date, time, and
environmental conditions. All samples (n = 50) were transported to the laboratory in insulated containers with ice
packs maintained at 4°C and processed within 2 h of collection.

Synthesis of AgNPs using PLA

AgNPs were synthesized from silver metal plates, 5 x 10 x 20 mm?3, 99.9% purity (Sigma-Aldrich, St. Louis,
MO, USA), using polyvinylpyrrolidone (PVP) (Merck KGaA, Darmstadt, Germany) as the liquid medium. An Nd:YAG
laser, 1064 nm wavelength, 7 ns pulse width, 20 Hz (Polaris Il, New Wave Research, Fremont, CA, USA) was used
as the radiation source, with laser parameters controlled using LaserExec Il software (New Wave Research,
Fremont, CA, USA). The laser energy was set at 30 mJ with a repetition rate of 10 Hz. Characterization was
performed using a ultraviolet-visible (UV-Vis) spectrophotometer (Shimadzu Corporation, Kyoto, Japan),
transmission electron microscopy (TEM; JEOL Ltd, Tokyo, Japan) coupled with energy-dispersive X-ray spectro-
scopy, and Fourier transform infrared spectroscopy (FTIR) (Shimadzu Corporation, Kyoto, Japan) [19].

During synthesis, the laser beam was directed by a silver mirror and focused through a quartz lens (30 mm
focal length) onto the silver target immersed in a liquid medium in a Petri dish for 11 h. The solution color gradually
changed from transparent to light yellow and then to brownish yellow with increasing laser exposure. TEM,
particle size analysis, UV—-Vis spectrophotometer, and FTIR spectroscopy were used to assess morphology, particle
size distribution, optical plasmon resonance, and surface chemistry [19]. The AgNP suspension was stored in
sealed amber glass bottles at 4°C-8°C to maintain stability and prevent aggregation. Only a single batch was used
in this study. The freshly synthesized AgNP colloid was diluted in sterile 0.9% NaCl to obtain an initial stock
concentration of 1000 ppm.

Isolation and identification of E. coli

Wastewater samples (1 mL) were inoculated into 9 mL of buffered peptone water (Himedia, Mumbai, India)
and incubated at 37°C for 18—-24 h for pre-enrichment. Subsequently, 0.1 mL of enriched culture was streaked
onto MacConkey agar (Oxoid, Basingstoke, UK) and incubated at 37°C for 18-24 h under aerobic conditions.
Lactose-fermenting colonies exhibiting pink to red coloration, smooth surface, round shape, and convex edges
were selected for further analysis. Presumptive E. coli isolates were confirmed using morphological examination,
Gram staining, and standard biochemical tests (Indole, methyl red, Voges—Proskauer, citrate) [20, 21].
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Antimicrobial susceptibility testing (AST)

Confirmed E. coli isolates were subjected to AST using the Kirby—Bauer disk diffusion method in accordance
with Clinical and Laboratory Standards Institute (CLSI) M100, 34th edition standards [22]. Four antibiotic disks
(Oxoid) were used for screening: penicillin (10 1U/disk), streptomycin (10 pg/disk), erythromycin (15 pg/disk), and
tetracycline (30 ug/disk). Resistance breakpoints were defined as <11 mm for streptomycin and tetracycline, and
<13 mm for penicillin, according to the CLSI 2024 guidelines [22]. As E. coli is not routinely tested for erythromycin
under CLSI standards, a general resistance cutoff of <13 mm was applied. A total of 20 antibiotic-resistant E. coli
isolates (five per antibiotic category) were selected for MIC and MBC assays [22, 23]. E. coli ATCC 25922 (Oxoid)
was used as the quality control strain.

Determination of MIC

Bacterial inocula were prepared by culturing selected E. coli isolates in Mueller—Hinton broth (MHB) (Oxoid,
Basingstoke, UK) at 37°C for 18 h with agitation at 150 rpm until an ODgoo of 0.5-0.6 McFarland standard was
achieved, corresponding to approximately 1.5 x 108 CFU/mL. MIC determination was performed using the broth
microdilution method according to CLSI M07-A8 guidelines [24]. Serial twofold dilutions of AgNPs (100-0.195
ppm) were prepared in 96-well microplates (OneMed, Sidoarjo, Indonesia) containing MHB inoculated with
standardized bacterial suspensions (108 CFU/mL). Plates were incubated at 37°C for 24 h. The MIC endpoint was
defined as the lowest AgNP concentration showing no visible bacterial growth, as assessed by visual turbidity
before and after incubation. Negative and positive controls were included, and all assays were performed in
duplicate.

Determination of MBC

MBC determination was conducted using the conventional agar diffusion method. Aliquots (10 uL) from MIC
wells without visible growth were spread onto Mueller—Hinton agar (Himedia) plates and incubated at 37°C for
24 h. The MBC endpoint was defined as the lowest AgNP concentration resulting in the complete absence of
bacterial growth on agar plates, indicating total bacterial killing [25]. All tests were performed in duplicate.

Statistical analysis

MIC and MBC values were analyzed using one-way analysis of variance followed by Tukey’s multiple
comparison test to identify differences among antibiotic resistance groups. Statistical significance was set at p <
0.05. All analyses were performed using IBM SPSS Statistics version 29 (IBM Corp., Armonk, NY, USA).

RESULTS
Characterization of AgNPs

AgNPs were successfully synthesized using PLA in PVP media and demonstrated excellent physicochemical
characteristics. TEM analysis of 247 particles showed an average particle diameter of 11.62 + 1.8 nm, with a
coefficient of variation of 15.5%, indicating a narrow and monodisperse size distribution. UV-Vis spectrophoto-
meter revealed a distinct surface plasmon resonance peak at 418 nm with an absorbance intensity of 0.786 AU,
confirming the formation of metallic silver without detectable silver oxide contamination. FTIR analysis verified
the presence of PVP K30 as a capping and stabilizing agent on the AgNP surface, characterized by a strong peak
at 1680 cm™ (C = O stretching) and additional peaks at 2950, 1550, and 1250 cm™, indicating an intact PVP
backbone without degradation. The estimated coating thickness of approximately 2.6 nm contributed to colloidal
stability. Overall, the synthesized AgNPs exhibited high purity, uniform morphology, and stability, making them
suitable for subsequent antimicrobial evaluation (MIC/MBC) against antibiotic-resistant E. coli isolates from dairy
cow waste.

Antimicrobial activity against antibiotic-resistant E. coli

The antimicrobial activity of AgNPs was evaluated against antibiotic-resistant E. coli isolates recovered from
dairy cattle waste. The isolates comprised streptomycin-resistant (S1-S5), erythromycin-resistant (E1-E5),
penicillin-resistant (P1-P5), and tetracycline-resistant (T1-T5) groups.

Figure 1 presents the MIC results determined using the standard broth microdilution method. Following MIC
determination, MBC assessment was performed by subculturing wells without visible growth onto Mueller—
Hinton agar. As illustrated in Figure 2, AgNPs exerted a bactericidal effect at 100 ppm against isolate P1, whereas
isolate P2 continued to grow at the same concentration.
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Figure 1: Results of the minimum inhibitory concen-
tration assay of silver nanoparticles against antibiotic-
resistant Escherichia coli were determined using the
standard broth microdilution method. K- indicates the
negative control with no bacterial growth (clear wells),
whereas K+ indicates the positive control with
bacterial growth (turbid wells).

Figure 2: Results of the minimum bactericidal concentration assay of silver
nanoparticles against antibiotic-resistant Escherichia coli determined using the
conventional agar diffusion method on Mueller—Hinton agar. P denotes penicillin-
resistant isolates.

MIC and MBC distribution among resistance groups

The MIC and MBC values for all antibiotic-resistant E. coli isolates tested against AgNPs are summarized in
Table 1. MIC values ranged from 37.5 to 100 ppm across all isolates. In contrast, MBC values were generally higher,
with most isolates exhibiting MBC values exceeding 100 ppm, the highest concentration tested in this study. These
findings indicate that AgNPs exerted a strong inhibitory (bacteriostatic) effect but comparatively weaker
bactericidal activity against antibiotic-resistant E. coli isolated from dairy cattle waste.

Table 1: MIC and MBC of AgNPs against antibiotic-resistant Escherichia coli isolates recovered from dairy cattle wastewater.

Antibiotic Isolate Inhibition zone (mm) CLSI resistance zone (mm) MIC (ppm) MBC (ppm)
Streptomycin S1 11 <11 75 >100
S2 8 75 >100
S3 10 62.5 >100
S4 0 100 >100
S5 8 62.5 >100
Erythromycin E1l 8 <13 50 100
E2 10 50 100
E3 10 37.5 >100
E4 10 50 100
E5 10 37.5 >100
Penicillin P1 0 <13 50 100
P2 0 37.5 >100
P3 0 50 100
P4 0 62.5 >100
P5 0 62.5 >100
Tetracycline T1 0 <11 62.5 >100
T2 0 75 >100
T3 0 37.5 >100
T4 0 50 >100
T5 8 62.5 >100

AgNPs = Silver nanoparticles, MIC = Minimum inhibitory concentration, MBC = Minimum bactericidal concentration, CLSI = Clinical and Laboratory Standards
Institute. Values >100 ppm indicate no bactericidal activity at the highest concentration tested.
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After 24 h of incubation, streptomycin-resistant E. coli required the highest AgNP concentrations for growth
inhibition, with MIC values ranging from 62.5 to 100 ppm. In contrast, erythromycin-resistant E. coli showed the
lowest MIC values among the resistance groups, ranging from 37.5 to 50 ppm. Across all isolates, MBC values
exceeded corresponding MIC values and ranged between 100 and >100 ppm. Overall, 75% (15/20) of the isolates
exhibited MBC values >100 ppm. Only five isolates showed an MBC of 100 ppm, comprising three erythromycin-
resistant and two penicillin-resistant E. coli isolates. Due to the predominance of MBC values >100 ppm, further
MBC interpretation was limited to descriptive analysis.

Comparative statistical analysis of MIC values

One-way ANOVA followed by Tukey’s multiple comparison test revealed no statistically significant
differences in mean MIC values among the antibiotic resistance groups (F (3,36) = 2.20; p = 0.105). Post hoc
Tukey’s Honestly Significant Differences analysis confirmed that none of the pairwise comparisons reached
statistical significance (p > 0.05). Descriptively, streptomycin-resistant isolates exhibited the highest mean MIC
values (75.0 £ 33.3 ppm), whereas erythromycin-resistant isolates showed the lowest mean MIC values with the
narrowest variability (45.0 + 10.5 ppm). These data are presented in Table 2.

Table 2: Distribution of MBC of AgNPs across antibiotic resistance categories of Escherichia coli isolates recovered from dairy
cattle wastewater.

Resistant category n Mean + SD Range
Streptomycin 10 75.0+33.3 25-100
Erythromycin 10 45.0 £10.5 25-50
Penicillin 10 52.5+27.5 25-100
Tetracycline 10 57.5+31.3 25-100

AgNPs = Silver nanoparticles, MBC = Minimum bactericidal concentration, SD = Standard deviation. Values represent ppm.
Identification of the most effective inhibitory concentration

The lowest MIC value observed was 37.5 ppm, which inhibited erythromycin-resistant E. coli isolates (E2 and
E5), one penicillin-resistant isolate (P2), and one tetracycline-resistant isolate (T3). At this concentration,
streptomycin-resistant E. coli isolates were not inhibited (Figure 3). Growth inhibition of streptomycin-resistant
isolates was first observed at an MIC of 62.5 ppm. Therefore, 62.5 ppm was identified as the most effective
concentration for consistently inhibiting the growth of antibiotic-resistant E. coli isolated from dairy cattle waste
across resistance profiles.

120
100
Figure 3: Minimum inhibitory concentration of

= % silver nanoparticles against antibiotic-resistant
§ 60 Escherichia coli. Data bars represent the mean of
O duplicate measurements for each isolate. S =
= 40 Streptomycin-resistant, E = Erythromycin-resistant,

2 I I I I P = Penicillin-resistant, T = Tetracycline-resistant.

E2E5P2T3EL1E2E4P1P3T4S3S5P4P5T1T5S1S52T2S54

Antibiotic-resistant Escherichia coli

DISCUSSION
Antimicrobial efficacy of AgNPs against antibiotic-resistant E. coli

AgNPs have been extensively investigated as alternative antimicrobial agents against ARB due to their broad-
spectrum activity. In the present study, the antimicrobial efficacy of AgNPs was evaluated against E. coli isolates
resistant to streptomycin, erythromycin, penicillin, and tetracycline recovered from dairy cow waste. The
observed MIC values ranged from 37.5 to 100 ppm, indicating effective growth inhibition within this concentration
range. A serial twofold dilution assay (100-0.195 ppm) using a standardized bacterial inoculum of 108 CFU/mL
was applied, consistent with commonly adopted nanomaterial antimicrobial testing protocols, thereby ensuring
data reliability and comparability with previous studies [26, 27].
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Variation in MIC among resistance phenotypes

The lowest MIC values were recorded for erythromycin-resistant E. coli (37.5-50 ppm), whereas
streptomycin-resistant isolates required higher AgNP concentrations (62.5—100 ppm) for growth inhibition [28].
These differences likely reflect variability in resistance mechanisms, including efflux pump activity or antibiotic
target modifications, which may also influence nanoparticle—cell interactions [27]. Streptomycin-resistant E. coli
may possess enhanced protective mechanisms against metal nanoparticles, such as altered membrane
permeability or more efficient efflux systems, reducing nanoparticle penetration and intracellular accumulation
[29, 30].

Statistical comparison of inhibitory effects

One-way ANOVA followed by Tukey’s multiple comparison test showed no statistically significant differences
in MIC values among the antibiotic resistance groups, indicating that variations in AgNP concentration within the
tested range did not significantly alter overall inhibitory efficacy. This suggests a relatively narrow effective
concentration window for AgNP-mediated growth inhibition, within which concentration-dependent differences
are not statistically distinguishable [31]. Streptomycin-resistant E. coli required an MIC of 62.5 ppm for inhibition,
whereas erythromycin-, penicillin-, and tetracycline-resistant isolates were inhibited at concentrations below 62.5
ppm. Accordingly, 62.5 ppm was identified as the most effective concentration for consistent inhibition of
antibiotic-resistant E. coli isolated from dairy cattle waste.

Bacteriostatic versus bactericidal activity

MBC values exceeded MIC values for most isolates and frequently surpassed the maximum tested
concentration of 100 ppm, indicating limited bactericidal activity under the conditions tested. These findings
support the notion that AgNPs primarily exert a bacteriostatic effect against these isolates rather than direct
bactericidal action [32]. Similar observations have been reported previously, where bacterial survival and
metabolic activity persisted under sublethal AgNP exposure, suggesting that higher concentrations or
combination strategies may be required to achieve complete bacterial killing [33]. The antimicrobial mechanisms
of AgNPs, including membrane disruption, Reactive oxygen species (ROS) generation, and interactions with
proteins and DNA, contribute to growth inhibition and, at higher doses, cell death [34].

Influence of biofilm formation and heteroresistance

Bacterial biofilm formation and antibiotic resistance profiles play a critical role in determining sensitivity to
AgNPs. Biofilm-producing bacteria exhibit increased resistance due to the extracellular matrix acting as a physical
barrier that limits nanoparticle penetration, along with adaptive responses such as upregulation of efflux pump-
related genes associated with metal resistance [35, 36]. These adaptations may promote cross-resistance to both
antibiotics and AgNPs, highlighting the need for combination therapies or biofilm-targeted approaches [37, 38].
The substantial variability in MIC values observed within resistance groups can be attributed to multiple
interacting factors, including heterogeneous resistance mechanisms, media-induced changes in AgNP stability and
Ag* ion availability [39], intrinsic heteroresistance within bacterial populations [40], and differences in biofilm-
forming capacity among isolates [41].

Mechanisms of action and adaptive responses

AgNPs exert antimicrobial activity through ROS generation, membrane damage, increased permeability, and
interference with bacterial proteins and DNA. Because these mechanisms differ from the specific targets of
conventional antibiotics, AgNPs generally remain effective against ARB and present a lower risk of resistance
development [26, 42]. Nevertheless, adaptive resistance may emerge through mutations affecting efflux systems,
membrane proteins, and stress response pathways following prolonged AgNP exposure [43, 44].

Impact of nanoparticle aggregation on antimicrobial activity

The relatively high MIC values observed in this study may be partly explained by AgNP aggregation within
the PVP matrix. Although PVP enhances colloidal stability, it may reduce Ag* ion release and diminish antimicrobial
efficacy. Under biorelevant conditions, AgNPs may aggregate to the micron scale, substantially reducing biological
activity by decreasing surface area and particle—cell contact [45]. Previous studies have demonstrated that
aggregation can alter MIC values by up to two orders of magnitude [46]. The MIC range observed here (37.5-100
ppm) is consistent with this phenomenon, as non-aggregated AgNPs of similar size typically exhibit MICs in the
pg/mL range. Reduced Ag* bioavailability, limited particle—bacteria interactions, and heterogeneous surface
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properties likely contributed to the predominance of MBC values >100 ppm and the identification of 62.5 ppm as
the optimal inhibitory concentration [45-47].

Comparative performance and formulation optimization

The effectiveness of AgNPs compared with conventional antibiotics highlights their potential as alternative
antimicrobial agents against antibiotic-resistant E. coli. However, these findings also underscore the need for
improved nanoparticle formulations or synergistic combinations with antibiotics to enhance bactericidal activity
[28, 48]. Strategies to overcome aggregation include replacing PVP with alternative stabilizers such as dextran or
plant-derived compounds, or applying surface coatings such as polydopamine or mesoporous silica to improve
Ag* release and antimicrobial performance [41, 49]. Such approaches have been shown to reduce MIC values to
more competitive ranges (5—20 ppm) [39].

Comparison with published studies

In this study, AgNPs effectively inhibited the growth of 20 antibiotic-resistant E. coli isolates from dairy farm
waste, with MIC values ranging from 37.5 to 100 ppm. Erythromycin-resistant isolates exhibited the highest
sensitivity, whereas streptomycin-resistant isolates required higher concentrations, reflecting heterogeneous
resistance patterns. These MIC values are comparable to or lower than those reported in several published studies
[50, 51]. For example, Trzcinska-Wencel et al. [50] reported MIC values of 16—64 pg/mL against E. coli ATCC with
MBCs of 32-512 ug/mL, while Tufail et al. [51] reported MICs of 3.3-3.6 ug/mL for biogenic AgNPs. Rana et al.
[52] reported an MIC of 1 mg/mL against E. coli MTCC 1698. The MIC values observed here (0.0375-0.1 mg/mL)
are particularly noteworthy given that they were obtained using field-derived antibiotic-resistant isolates rather
than more susceptible reference strains.

Practical implications and One Health relevance

Evaluating E. coli isolates from dairy cow waste has direct relevance to veterinary medicine and livestock
waste management. The application of antimicrobial agents such as AgNPs in waste treatment systems may
reduce environmental dissemination of resistant bacteria and limit exposure risks to animals and humans.
However, further research is required to optimize dosing strategies while considering long-term environmental
safety and potential nanoparticle residues in animal products [53, 54].

This study aligns strongly with the One Health framework, which integrates human, animal, and
environmental health. Dairy cattle waste represents a significant reservoir of ARB capable of transmission through
multiple environmental pathways [55, 56]. Inadequately treated agricultural waste can contaminate soil, surface
water, and drinking water sources, posing sustained public health risks [57, 58]. The demonstrated antimicrobial
activity of AgNPs against antibiotic-resistant E. coli supports the role of nanotechnology in strengthening One
Health—based AMR mitigation strategies, particularly by reducing pathogen spillover from livestock systems to
the wider human population [59]. By identifying 62.5 ppm as an effective inhibitory concentration across
resistance profiles, this study offers a scalable technological option for integration into modern livestock waste
management and cross-sectoral AMR risk reduction programs [60].

CONCLUSION

This study demonstrated that PLA-synthesized AgNPs effectively inhibited the growth of antibiotic-resistant
E. coliisolated from dairy cattle waste. The MIC values ranged from 37.5 to 100 ppm, with erythromycin-resistant
isolates showing the highest sensitivity (37.5-50 ppm) and streptomycin-resistant isolates requiring higher
concentrations (62.5-100 ppm). Most isolates exhibited MBC values >100 ppm, indicating that AgNPs
predominantly exerted a bacteriostatic rather than bactericidal effect under the tested conditions. Statistical
analysis revealed no significant differences in MIC values among resistance groups (p > 0.05), and 62.5 ppm was
identified as the most effective concentration for consistent growth inhibition across resistance profiles.

The observed inhibitory efficacy of AgNPs against antibiotic-resistant E. coli supports their potential
application as a supplementary control measure in dairy waste management systems. Incorporation of AgNP-
based treatments as a pre-treatment or polishing step in wastewater handling may reduce the environmental
dissemination of ARB and lower exposure risks for livestock and surrounding communities. These findings are
particularly relevant for resource-limited settings where conventional wastewater treatment methods are
insufficient.

Key strengths include the use of high-purity, PLA-synthesized AgNPs free from chemical synthesis residues
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and the evaluation of field-derived antibiotic-resistant E. coli isolates rather than reference strains. The
comprehensive assessment of MIC and MBC across multiple resistance phenotypes enhances the real-world
relevance of the findings within a livestock and environmental health context.

This study was limited to in vitro testing under controlled laboratory conditions and did not assess AgNP
performance in complex wastewater matrices or field-scale systems. The predominance of MBC values >100 ppm
indicates limited bactericidal activity at the concentrations tested. In addition, potential environmental impacts,
nanoparticle persistence, and toxicity to non-target organisms were not evaluated.

Future research should focus on optimizing AgNP formulations to enhance bactericidal efficacy, including
surface modification, alternative stabilizers, or synergistic combinations with antibiotics or other antimicrobials.
Evaluation of AgNP performance in real wastewater systems, assessment of long-term environmental safety, and
investigation of resistance development under prolonged exposure are also warranted. Integration of AgNP-based
interventions into holistic AMR mitigation strategies should be explored within a One Health framework.

Overall, PLA-synthesized AgNPs represent a promising non-antibiotic approach for inhibiting antibiotic-
resistant E. coli in dairy cattle waste. By identifying 62.5 ppm as an effective inhibitory concentration across
resistance profiles, this study provides a scientific basis for the potential integration of nanotechnology-based
solutions into livestock waste management and AMR risk reduction strategies.
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